212BOAW Asparagus.Indd
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE
Guide to the Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- LILIACEAE LILIACEAE de Jussieu 1789 (Lily Family) (also see AGAVACEAE, ALLIACEAE, ALSTROEMERIACEAE, AMARYLLIDACEAE, ASPARAGACEAE, COLCHICACEAE, HEMEROCALLIDACEAE, HOSTACEAE, HYACINTHACEAE, HYPOXIDACEAE, MELANTHIACEAE, NARTHECIACEAE, RUSCACEAE, SMILACACEAE, THEMIDACEAE, TOFIELDIACEAE) As here interpreted narrowly, the Liliaceae constitutes about 11 genera and 550 species, of the Northern Hemisphere. There has been much recent investigation and re-interpretation of evidence regarding the upper-level taxonomy of the Liliales, with strong suggestions that the broad Liliaceae recognized by Cronquist (1981) is artificial and polyphyletic. Cronquist (1993) himself concurs, at least to a degree: "we still await a comprehensive reorganization of the lilies into several families more comparable to other recognized families of angiosperms." Dahlgren & Clifford (1982) and Dahlgren, Clifford, & Yeo (1985) synthesized an early phase in the modern revolution of monocot taxonomy. Since then, additional research, especially molecular (Duvall et al. 1993, Chase et al. 1993, Bogler & Simpson 1995, and many others), has strongly validated the general lines (and many details) of Dahlgren's arrangement. The most recent synthesis (Kubitzki 1998a) is followed as the basis for familial and generic taxonomy of the lilies and their relatives (see summary below). References: Angiosperm Phylogeny Group (1998, 2003); Tamura in Kubitzki (1998a). Our “liliaceous” genera (members of orders placed in the Lilianae) are therefore divided as shown below, largely following Kubitzki (1998a) and some more recent molecular analyses. ALISMATALES TOFIELDIACEAE: Pleea, Tofieldia. LILIALES ALSTROEMERIACEAE: Alstroemeria COLCHICACEAE: Colchicum, Uvularia. LILIACEAE: Clintonia, Erythronium, Lilium, Medeola, Prosartes, Streptopus, Tricyrtis, Tulipa. MELANTHIACEAE: Amianthium, Anticlea, Chamaelirium, Helonias, Melanthium, Schoenocaulon, Stenanthium, Veratrum, Toxicoscordion, Trillium, Xerophyllum, Zigadenus. -
Asparagus Fern Care
plant care INSPIRATION REPOTTING & DIVIDING While Asparagus Ferns do not mind being pot- bound, likely, there will come a point where they need to be repotted or divided. Dividing, with a INFORMATION Asparagus Fern little patience is relatively easy. Once removed from the pot, using a clean, sharp knife, groups of ‘bulblets’ can be separated, with the attached foliage intact. Divided plants should be potted using a good quality potting mix (such as Sunshine LC1) in containers which allow for plenty of root growth. The crown of the plant should be at soil level. Water thoroughly. VARIETIES Sprengeri (Asparagus densiorus ‘Sprengeri’) Perhaps the most common of this group, it has long been favored as a foliage compliment in outdoor containers. As the hardiest of the Asparagus Ferns, it can survive temperatures well below freezing, & can last well into the winter oustide, sometimes adorning itself with Not actually a fern at all, Asparagus Ferns are directly related to the common vegetable, hence showy, bright red (but poisonous) berries. Developing a graceful, the name. They are also more distantly related to onions, garlic, and lilies, all within the family cascading habit, it is suitable for pots or baskets, indoors or out. Liliaceae. Despite their relationships, all parts of the ornamental Asparagus Ferns are poisonous. Adaptable, and extremely easy to grow, these plants are long lived, and can thrive with little Foxtail Fern (Asparagus densiorus ‘Meyersii’) care. Beware their soft appearance; stems of all varieties are lined with small but sharp thorns. This dramatic form produces spire-like fronds which radiate reliably from a central core. -
Trillium, As an Indicator of Deer Density Hanover Biodiversity Committee October, 2017
[DRAFT v. 10] Trillium, as an indicator of deer density Hanover Biodiversity Committee October, 2017 Rationale for this Report Members of the lily family, such as Trillium and Clintonia, are among the favored foods of deer; 30 species of Trillium are found East of the Mississippi. The decline of these plants is mentioned in multiple publications1 as one key indicator of deer over-abundance. Red Trillium (Trillium erectum), also called ‘wake Robin’, found in the north-east and is (or was) fairly common in many Hanover forested neighborhoods. We suggest that monitoring this plant where it is (or once was) common demonstrates that deer density remains unsustainably high and future monitoring of the plant can help determine both the neighborhood density of deer and also serve as an indicator of change in deer density. Monitoring for this plant is easy, with just a small bit of training about the process. This report suggests a serious decline in biodiversity in Hanover over the past 15 years, as indicated by impact on red Trillium at three sites. We believe that with a focused increase in hunting pressure, this and other declining native plants might recover. Red Trillium is a frequent member of typical ‘rich mesic forests2’ plant communities found in Hanover; other plants often found nearby are Virginia waterleaf, blood root, wild ginger, foam flower, blue cohosh, and certain other members of the lily family. Besides aggressive deer browse, these communities are also threatened in varying degrees by invasive plants: garlic mustard, Dame’s rocket, wild parsnip, wild chervil and forget-me-not as well as the usual woody invaders. -
Asparagus Densiflorus 'Sprengeri'
FPS051 Asparagus densiflorus ‘Sprengeri’ Sprengeri Asparagus Fern1 Edward F. Gilman, Ryan W. Klein, and Gail Hansen2 Introduction ‘Sprengeri’ Asparagus Fern is a rounded herbaceous perennial that is used in the landscape for its attractive, fine-textured foliage. This 1 to 4 foot-tall plant has true leaves that are scale-like and inconspicuous. The structures that most refer to as leaves are actually leaf-like branchlets called cladophylls. These tiny cladophylls are linear, flat- tened structures that are bright green in color. They occur singly or in groups of 3 or more at a node. The stems of this plant emerge directly from the ground and become woody and spiny, so be careful when handling this species. The thorns cause significant irritation to many people Figure 1. Full form—Asparagus densiflorus: ‘Sprengeri’ Sprengeri that handle the plant. Pretty, red, ovoid berries occur on asparagus fern. Asparagus densiflorus throughout the year. Several birds eat Credits: Edward F. Gilman, UF/IFAS and probably distribute the fruit. These fruits follow tiny, General Information white, flowers that occur in axillary racemes; the flowers are inconspicuous for the most part but fragrant. Seeds Scientific name: Asparagus densiflorus ‘Sprengeri’ germinate in the landscape and the plant has escaped into Pronunciation: ass-SPAR-uh-gus den-sif-FLOR-us natural habitats in parts of Florida. It can also become a Common name(s): ‘Sprengeri’ asparagus fern weed in your landscape. Family: Liliaceae Plant type: herbaceous; perennial USDA hardiness zones: 9B through 11 (Figure 2) Planting month for zone 7: year round Planting month for zone 8: year round Planting month for zone 9: year round Planting month for zone 10 and 11: year round Origin: not native to North America Invasive potential: potentially invasive 1. -
The Evolution of a Sex Chromosome in Asparagus by Alex E. Harkess (Under the Direction of James H. Leebens-Mack) Abstract the Ov
The Evolution of a Sex Chromosome in Asparagus by Alex E. Harkess (Under the Direction of James H. Leebens-Mack) Abstract The overwhelming majority of flowering plants reproduce through the production of hermaphroditic flowers. A small percentage of angiosperm species instead are dioecious, producing either male or female flowers on individual plants. Dioecy can be mediated at the molecular level by a sex chromosome that genetically differentiates males and females. Sex chromosomes evolve from autosomes, and this conversion is hypothesized to involve muta- tions in one or more linked genes that determine sex. Given the complexities of anther and ovule development, the full suite of sex determination genes has not been described for any dioecious plant. Here we explore the conversion from autosome to an XY sex chromosome using garden asparagus (Asparagus officinalis), an ideal model system for studying the ear- liest events in sex chromosome evolution given that it recently evolved a sex chromosome pair. Focusing first on broad trends, genomic characterization of several hermaphroditic and dioecious species across the Asparagus genus revealed an increase in retrotransposon con- tent coincident with the evolution of dioecy. To identify putative sex determination genes on this Y chromosome, we then explore the timing of male and female sterility events in garden asparagus, hypothesizing that anther sterility in females likely occurs before pollen microsporogenesis. Finally, we assemble and annotate a high quality reference genome for garden asparagus, and perform a suite of mutant analyses to identify two genes in a non- recombining region of the Y that are ultimately responsible for sex determination. -
The Rust Fungi of Luzuriaga (Luzuriagaceae) with Description of a New Species, Puccinia Luzuriagae-Polyphyllae
Research Collection Journal Article The rust fungi of Luzuriaga (Luzuriagaceae) with description of a new species, Puccinia luzuriagae-polyphyllae Author(s): Berndt, Reinhard Publication Date: 2010 Permanent Link: https://doi.org/10.3929/ethz-b-000017585 Originally published in: Mycological Progress 9(1), http://doi.org/10.1007/s11557-009-0629-x Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Mycol Progress (2010) 9:125–130 DOI 10.1007/s11557-009-0629-x ORIGINAL ARTICLE The rust fungi of Luzuriaga (Luzuriagaceae) with description of a new species, Puccinia luzuriagae-polyphyllae Reinhard Berndt Received: 22 June 2009 /Revised: 4 September 2009 /Accepted: 7 October 2009 /Published online: 24 November 2009 # German Mycological Society and Springer 2009 Abstract Three species of rust fungi (Uredinales), Puccinia of Alstroemeriaceae which is restricted to the New World perforans, P. fuegiana (= Uromyces skottsbergii), and with its two genera Alstroemeria and Bomarea (Fay et al. Aecidium callixenis have been described on members of 2006, http://www.mobot.org/MOBOT/Research/Apweb/ Luzuriaga (Luzuriagaceae). Puccinia luzuriagae-polyphyllae orders/lilialesweb.htm; retrieved 16 March 2009). is added as a new species on Luzuriaga polyphylla from Three rust fungi are known on members of Luzuriaga: Chile. The rust had been confused hitherto with P. perforans Puccinia perforans Mont., P. fuegiana Lindq. (= Uromyces occurring on L. radicans. Both species differ from P. skottsbergii Jørst.) and Aecidium callixenis Berk. ex Syd. & fuegiana on L. marginata by the absence of a uredinial state P. -
Pared to Dicots, Including Greater Genome Size Variation and Grea
American Journal of Botany 99(9): 1501–1512. 2012. R IBOSOMAL DNA DISTRIBUTION AND A GENUS-WIDE PHYLOGENY REVEAL PATTERNS OF CHROMOSOMAL EVOLUTION 1 IN A LSTROEMERIA (ALSTROEMERIACEAE) J ULIANA C HACÓN 2,4 , A RETUZA S OUSA 2 , C ARLOS M. BAEZA 3 , AND S USANNE S. RENNER 2 2 Systematic Botany and Mycology, University of Munich, 80638 Munich, Germany; and 3 Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográfi cas, Universidad de Concepción, Casilla 160-C, Concepción, Chile • Premise of the study: Understanding the fl exibility of monocot genomes requires a phylogenetic framework, which so far is available for few of the ca. 2800 genera. Here we use a molecular tree for the South American genus Alstroemeria to place karyological information, including fl uorescent in situ hybridization (FISH) signals, in an explicit evolutionary context. • Methods: From a phylogeny based on plastid, nuclear, and mitochondrial sequences for most species of Alstroemeria , we se- lected early-branching (Chilean) and derived (Brazilian) species for which we obtained 18S-25S and 5S rDNA FISH signals; we also analyzed chromosome numbers, 1C-values, and telomere FISH signals (in two species). • Key results: Chromosome counts for Alstroemeria cf. rupestris and A. pulchella confi rm 2 n = 16 as typical of the genus, which now has chromosomes counted for 29 of its 78 species. The rDNA sites are polymorphic both among and within species, and interstitial telomeric sites in Alstroemeria cf. rupestris suggest chromosome fusion. • Conclusions: In spite of a constant chromosome number, closely related species of Alstroemeria differ drastically in their rDNA, indicating rapid increase, decrease, or translocations of these genes. -
GENOME EVOLUTION in MONOCOTS a Dissertation
GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field. -
The Complete Chloroplast Genome Sequence of Asparagus (Asparagus Officinalis L.) and Its Phy- Logenetic Positon Within Asparagales
Central International Journal of Plant Biology & Research Bringing Excellence in Open Access Research Note *Corresponding author Wentao Sheng, Department of Biological Technology, Nanchang Normal University, Nanchang 330032, The Complete Chloroplast Jiangxi, China, Tel: 86-0791-87619332; Fax: 86-0791- 87619332; Email: Submitted: 14 September 2017 Genome Sequence of Accepted: 09 October 2017 Published: 10 October 2017 Asparagus (Asparagus ISSN: 2333-6668 Copyright © 2017 Sheng et al. officinalis L.) and its OPEN ACCESS Keywords Phylogenetic Positon within • Asparagus officinalis L • Chloroplast genome • Phylogenomic evolution Asparagales • Asparagales Wentao Sheng*, Xuewen Chai, Yousheng Rao, Xutang, Tu, and Shangguang Du Department of Biological Technology, Nanchang Normal University, China Abstract Asparagus (Asparagus officinalis L.) is a horticultural homology of medicine and food with health care. The entire chloroplast (cp) genome of asparagus was sequenced with Hiseq4000 platform. The complete cp genome maps a circular molecule of 156,699bp built with a quadripartite organization: two inverted repeats (IRs) of 26,531bp, separated by a large single copy (LSC) sequence of 84,999bp and a small single copy (SSC) sequence of 18,638bp. A total of 112 genes comprising of 78 protein-coding genes, 30 tRNAs and 4 rRNAs were successfully annotated, 17 of which included introns. The identity, number and GC content of asparagus cp genes were similar to those of other asparagus species genomes. Analysis revealed 81 simple sequence repeat (SSR) loci, most composed of A or T, contributing to a bias in base composition. A maximum likelihood phylogenomic evolution analysis showed that asparagus was closely related to Polygonatum cyrtonema that belonged to the genus Asparagales. -
Mini Data Sheet on Asparagus Asparagoides (Asparagaceae)
EPPO, 2013 Mini data sheet on Asparagus asparagoides (Asparagaceae) Added in 2012 – Deleted in 2013 Reasons for deletion: Asparagus asparagoides was added to the EPPO Alert List in 2012 but as no immediate risk was perceived, it was transferred to the Observation List in 2013. Why Asparagus asparagoides (Asparagaceae) is a rhizomatous perennial climbing vine originating from South Africa. One of its English common names is “bridal creeper”. This species is invasive in Australia. It is used as an ornamental plant in the EPPO region, and is listed as an invasive alien plant in Spain, but is also present in other EPPO member countries. Considering the invasive behavior of this species elsewhere in the world as well as in EPPO countries, it is considered that Mediterranean and Macaronesian countries may be at risk, and that the species should usefully be monitored. Geographical distribution EPPO region: France (including Corse), Italy (Sicilia), Malta, Morocco, Portugal (Azores, Madeira), Spain (including Islas Canarias), Tunisia. Note: The species had erroneously been indicated as present in Slovenia (from an incorrect interpretation of Jogan, 2005). Africa (native): Ethiopia, Kenya, Lesotho, Malawi, Morocco, Namibia, South Africa, Swaziland, Tanzania, Tunisia, Uganda, Zimbabwe. North America: Mexico, USA (California, Hawaii (East Maui)). South and Central America: Argentina, Guatemala, Uruguay. Oceania (invasive): Australia (New South Wales, Queensland, South Australia, Tasmania, Victoria, Western Australia), New Zealand. Morphology A. asparagoides is a geophyte with a perennial cylindrical, slender (about 5 mm wide), branching rhizome, growing parallel to the soil surface, bearing fleshy tubers (25–42 mm long and 8–20 mm wide). It produces thin shoots, slightly woody at the base and up to 6 m long when support is available. -
Liliaceae Lily Family
Liliaceae lily family While there is much compelling evidence available to divide this polyphyletic family into as many as 25 families, the older classification sensu Cronquist is retained here. Page | 1222 Many are familiar as garden ornamentals and food plants such as onion, garlic, tulip and lily. The flowers are showy and mostly regular, three-merous and with a superior ovary. Key to genera A. Leaves mostly basal. B B. Flowers orange; 8–11cm long. Hemerocallis bb. Flowers not orange, much smaller. C C. Flowers solitary. Erythronium cc. Flowers several to many. D D. Leaves linear, or, absent at flowering time. E E. Flowers in an umbel, terminal, numerous; leaves Allium absent. ee. Flowers in an open cluster, or dense raceme. F F. Leaves with white stripe on midrib; flowers Ornithogalum white, 2–8 on long peduncles. ff. Leaves green; flowers greenish, in dense Triantha racemes on very short peduncles. dd. Leaves oval to elliptic, present at flowering. G G. Flowers in an umbel, 3–6, yellow. Clintonia gg. Flowers in a one-sided raceme, white. Convallaria aa. Leaves mostly cauline. H H. Leaves in one or more whorls. I I. Leaves in numerous whorls; flowers >4cm in diameter. Lilium ii. Leaves in 1–2 whorls; flowers much smaller. J J. Leaves 3 in a single whorl; flowers white or purple. Trillium jj. Leaves in 2 whorls, or 5–9 leaves; flowers yellow, small. Medeola hh. Leaves alternate. K K. Flowers numerous in a terminal inflorescence. L L. Plants delicate, glabrous; leaves 1–2 petiolate. Maianthemum ll. Plant coarse, robust; stems pubescent; leaves many, clasping Veratrum stem. -
Asparagus Densiflorus 'Sprengeri' (Asparagus Fern, Sprenger's Asparagus Fern) Asparagus Fern Is a Tuberous Perennial Native to South Africa
Asparagus densiflorus 'Sprengeri' (Asparagus Fern, Sprenger's Asparagus Fern) Asparagus fern is a tuberous perennial native to South Africa. The upright stems look like a foxtail with all the firn like leaves. Small white but fragrant flowers appear in the summer time followed by a red berries. In cold climate grown as a house plant in warmer climates use as a ground cover in shade places. Could be invasive in hot climate. Green stems are valued by florists for adding to flower arrangements. <ul> </ul> Landscape Information Pronounciation: ass-SPAR-uh-gus den-sif- FLOR-us Plant Type: Groundcover Origin: South Africa Heat Zones: 9, 10, 11, 12, 13, 14, 15, 16 Hardiness Zones: 9, 10, 11, 12, 13 Uses: Mass Planting, Indoor, Container, Cut Flowers / Arrangements, Ground cover, Green Wall Size/Shape Growth Rate: Fast Tree Shape: Spreading Plant Image Height at Maturity: 0.5 to 1 m Spread at Maturity: 0.5 to 1 meter Time to Ultimate Height: 2 to 5 Years Asparagus densiflorus 'Sprengeri' (Asparagus Fern, Sprenger's Asparagus Fern) Botanical Description Foliage Leaf Arrangement: Alternate Leaf Venation: Nearly Invisible Leaf Persistance: Evergreen Leaf Type: Simple Leaf Blade: Less than 5 Leaf Shape: Linear Leaf Margins: Entire Leaf Textures: Medium Leaf Scent: No Fragance Color(growing season): Green Color(changing season): Green Flower Flower Showiness: False Flower Image Flower Size Range: 0 - 1.5 Flower Type: Panicle Flower Sexuality: Monoecious (Bisexual) Flower Scent: Pleasant Flower Color: Yellow Seasons: Summer Fruit Fruit Type: Berry Fruit