Plant of the Month

Total Page:16

File Type:pdf, Size:1020Kb

Plant of the Month Plant of the Month - May by Allan Carr Geitonoplesium cymosum scrambling lily Pronunciation: guy-ton-o-PLEEZ-ee-um sy-MOW-sum HEMEROCALLIDACEAE Derivation: Geitonoplesium, from the Greek, geiton – a neighbour and plesio – near (because of its close affinity to the genus, Luzuriaga in which it was originally placed); cymosum, from the Greek, kyma – to swell, grow (presumably referring to the way in which a *cyme of flowers spreads outwards from the centre). Leaves, buds Buds, flower with native bee Leaves with raised mid vein Geitonoplesium is a monotypic genus (contains this single species) found in eastern Australia as well as Pacific Islands and Malaysia. Description: G. cymosum is a wiry twining climber often scrambling over itself. It is usually found in shaded positions and has fibrous roots and edible new growth. In eastern Australia it is found from north Qld down through eastern NSW to Vic. Leaves to 110 mm x 25 mm are alternate, shiny dark green above, paler below and have a distinct raised mid vein above several parallel longitudinal veins. Their shape can vary from *ovate to *lanceolate. Flowers to 15 mm across are borne in drooping *cymes of several white flowers with 6 petals and yellow *stamens from February to July. Fruits are black globular berries to 20 mm diameter with numerous waxy black seeds. This plant is very similar to Eustrephus latifolius (Plant of the Month - April) but can be easily identified by its leaves with an obvious raised mid vein, non-fringed flower petals or the black fruits. *ovate = shaped like an egg in outline, broadest near the base *lanceolate = shaped like a lance, about four times as long as it is wide and tapering to a point *cyme = a rounded arrangement of flowers where the flowers open from the centre first and spread outwards *stamen = one of the male organs of a flower consisting of a stalk (filament) and a pollen-bearer (anther) Habit with fruits .
Recommended publications
  • Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore
    Sunshine Coast Council Flying-Fox Dispersal Feasibility Study Cassia Wildlife Corridor, Coolum Beach and Tepequar Drive Roost, Maroochydore. Environmental Operations May 2013 0 | Page Table of Contents Introduction ................................................................................................................................ 2 Purpose ............................................................................................................................................... 2 Flying-fox Mitigation Strategies .......................................................................................................... 2 State and Federal Permits ................................................................................................................... 4 Roost Management Plan .................................................................................................................... 4 Risk ...................................................................................................................................................... 5 Flying-fox Dispersal Success in Australia ............................................................................................. 6 References .......................................................................................................................................... 7 Cassia Wildlife Corridor ................................................................................................................ 8 Background ........................................................................................................................................
    [Show full text]
  • The Rust Fungi of Luzuriaga (Luzuriagaceae) with Description of a New Species, Puccinia Luzuriagae-Polyphyllae
    Research Collection Journal Article The rust fungi of Luzuriaga (Luzuriagaceae) with description of a new species, Puccinia luzuriagae-polyphyllae Author(s): Berndt, Reinhard Publication Date: 2010 Permanent Link: https://doi.org/10.3929/ethz-b-000017585 Originally published in: Mycological Progress 9(1), http://doi.org/10.1007/s11557-009-0629-x Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library Mycol Progress (2010) 9:125–130 DOI 10.1007/s11557-009-0629-x ORIGINAL ARTICLE The rust fungi of Luzuriaga (Luzuriagaceae) with description of a new species, Puccinia luzuriagae-polyphyllae Reinhard Berndt Received: 22 June 2009 /Revised: 4 September 2009 /Accepted: 7 October 2009 /Published online: 24 November 2009 # German Mycological Society and Springer 2009 Abstract Three species of rust fungi (Uredinales), Puccinia of Alstroemeriaceae which is restricted to the New World perforans, P. fuegiana (= Uromyces skottsbergii), and with its two genera Alstroemeria and Bomarea (Fay et al. Aecidium callixenis have been described on members of 2006, http://www.mobot.org/MOBOT/Research/Apweb/ Luzuriaga (Luzuriagaceae). Puccinia luzuriagae-polyphyllae orders/lilialesweb.htm; retrieved 16 March 2009). is added as a new species on Luzuriaga polyphylla from Three rust fungi are known on members of Luzuriaga: Chile. The rust had been confused hitherto with P. perforans Puccinia perforans Mont., P. fuegiana Lindq. (= Uromyces occurring on L. radicans. Both species differ from P. skottsbergii Jørst.) and Aecidium callixenis Berk. ex Syd. & fuegiana on L. marginata by the absence of a uredinial state P.
    [Show full text]
  • Pared to Dicots, Including Greater Genome Size Variation and Grea
    American Journal of Botany 99(9): 1501–1512. 2012. R IBOSOMAL DNA DISTRIBUTION AND A GENUS-WIDE PHYLOGENY REVEAL PATTERNS OF CHROMOSOMAL EVOLUTION 1 IN A LSTROEMERIA (ALSTROEMERIACEAE) J ULIANA C HACÓN 2,4 , A RETUZA S OUSA 2 , C ARLOS M. BAEZA 3 , AND S USANNE S. RENNER 2 2 Systematic Botany and Mycology, University of Munich, 80638 Munich, Germany; and 3 Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográfi cas, Universidad de Concepción, Casilla 160-C, Concepción, Chile • Premise of the study: Understanding the fl exibility of monocot genomes requires a phylogenetic framework, which so far is available for few of the ca. 2800 genera. Here we use a molecular tree for the South American genus Alstroemeria to place karyological information, including fl uorescent in situ hybridization (FISH) signals, in an explicit evolutionary context. • Methods: From a phylogeny based on plastid, nuclear, and mitochondrial sequences for most species of Alstroemeria , we se- lected early-branching (Chilean) and derived (Brazilian) species for which we obtained 18S-25S and 5S rDNA FISH signals; we also analyzed chromosome numbers, 1C-values, and telomere FISH signals (in two species). • Key results: Chromosome counts for Alstroemeria cf. rupestris and A. pulchella confi rm 2 n = 16 as typical of the genus, which now has chromosomes counted for 29 of its 78 species. The rDNA sites are polymorphic both among and within species, and interstitial telomeric sites in Alstroemeria cf. rupestris suggest chromosome fusion. • Conclusions: In spite of a constant chromosome number, closely related species of Alstroemeria differ drastically in their rDNA, indicating rapid increase, decrease, or translocations of these genes.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • The 1770 Landscape of Botany Bay, the Plants Collected by Banks and Solander and Rehabilitation of Natural Vegetation at Kurnell
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Hochschulschriftenserver - Universität Frankfurt am Main Backdrop to encounter: the 1770 landscape of Botany Bay, the plants collected by Banks and Solander and rehabilitation of natural vegetation at Kurnell Doug Benson1 and Georgina Eldershaw2 1Botanic Gardens Trust, Mrs Macquaries Rd Sydney 2000 AUSTRALIA email [email protected] 2Parks & Wildlife Division, Dept of Environment and Conservation (NSW), PO Box 375 Kurnell NSW 2231 AUSTRALIA email [email protected] Abstract: The first scientific observations on the flora of eastern Australia were made at Botany Bay in April–May 1770. We discuss the landscapes of Botany Bay and particularly of the historic landing place at Kurnell (lat 34˚ 00’ S, long 151˚ 13’ E) (about 16 km south of central Sydney), as described in the journals of Lieutenant James Cook and Joseph Banks on the Endeavour voyage in 1770. We list 132 plant species that were collected at Botany Bay by Banks and Daniel Solander, the first scientific collections of Australian flora. The list is based on a critical assessment of unpublished lists compiled by authors who had access to the collection of the British Museum (now Natural History Museum), together with species from material at National Herbarium of New South Wales that has not been previously available. The list includes Bidens pilosa which has been previously regarded as an introduced species. In 1770 the Europeans set foot on Aboriginal land of the Dharawal people. Since that time the landscape has been altered in response to a succession of different land-uses; farming and grazing, commemorative tree planting, parkland planting, and pleasure ground and tourist visitation.
    [Show full text]
  • Cunninghamia Date of Publication: April 2020 a Journal of Plant Ecology for Eastern Australia
    Cunninghamia Date of Publication: April 2020 A journal of plant ecology for eastern Australia ISSN 0727- 9620 (print) • ISSN 2200 - 405X (Online) A Systematic Flora Survey, Floristic Classification and High-Resolution Vegetation Map of Lord Howe Island Paul Sheringham 1*, Peter Richards2, Phil Gilmour3, Jill Smith1 and Ernst Kemmerer 4 1 Department of Planning, Industry and Environment, Locked Bag 914 COFFS HARBOUR NSW 2450 2 17 Coronation Avenue, SAWTELL NSW 2452 3 523 Roses Rd, GLENIFFER, NSW 2454 4 Cradle Coast NRM, PO Box 338, BURNIE TAS 7320 * Author for correspondence: [email protected] Abstract: The present study took advantage of the availability of high resolution ADS40 digital imagery to 1) systematically resample the vegetation of the Lord Howe Island Group (LHIG, excluding Ball’s Pyramid); 2) conduct a numerical analysis of the floristic data; 3) map vegetation extent and the distribution of vegetation communities and 4) compare the resultant classification and mapping with those of Pickard (1983). In July 2013, a total of 86 full floristic and 105 rapid floristic sites were sampled across the island, based on a stratified random sampling design. A hierarchical agglomerative clustering strategy (Flexible UPGMA) and Bray-Curtis dissimilarity coefficient with default beta, along with nearest neighbour analysis to identify anomalous site allocations, was used to analyze the floristic data. In total 33 vegetation communities were delineated and mapped: 19 mapping units from the full floristic analysis; 7 variants identified within five of the above 19 groups; 3 mapping units from analysis of canopy- only floristic data; and 4 mapping units recognised in previous studies that are mapped but were not sampled in this survey.
    [Show full text]
  • 213Asparagus Workshop Part2.Indd
    128 Plant Protection Quarterly Vol.21(3) 2006 dioecious species examined had on aver- age twice the genome size of the South Af- Review of the current taxonomic status and rican hermaphroditic species and, based on internal transcribed spacers of nuclear authorship for Asparagus weeds in Australia ribosomal DNA, the species can be divided into two clusters, one of European species Kathryn L. Batchelor and John K. Scott, CSIRO Entomology, Private Bag 5, and the other of southern Africa species. PO Wembley, Western Australia 6913, Australia. Both Lee et al. (1997) and Stajner et al. Email: [email protected], [email protected] (2002) did not use outgroup taxa in their analyses. This issue and a larger sam- ple size (24 species) were addressed in a study by Fukuda et al. (2005) of the mo- Summary Systematic taxonomy of genera lecular phylogeny of Asparagus inferred Over the last 20 years, many scientifi c within the Asparagaceae from plastid petB intron and petD-rpoA papers and reports have been produced The debate over whether the Asparagace- intergenic spacer sequences. They found outlining the establishment, distribution ae contains one genus Asparagus with or evidence supporting a monophyletic ori- and weed status of Asparagus weeds in without subgenera, or up to 16 separate gin of Asparagus and the sub-division of Australia. Differing use of authorship genera has been going for over 200 years. Asparagus into more than three groups. and species names are present in this lit- The taxonomic history of the Asparagace- The Eurasian species of Asparagus formed erature resulting in confusion over which ae is well covered in recent papers.
    [Show full text]
  • Chromosome Numbers in Chilean Species of Luzuriaga Ruiz Et Pav. (Luzuriagaceae)
    Gayana Bot. 62(1): 53-55, 2005. Comunicación Breve ISSN 0016-5301 CHROMOSOME NUMBERS IN CHILEAN SPECIES OF LUZURIAGA RUIZ ET PAV. (LUZURIAGACEAE) NUMEROS CROMOSOMICOS EN ESPECIES CHILENAS DE LUZURIAGA RUIZ ET PAV. (LUZURIAGACEAE) Pedro Jara-Seguel & Cristina A. Zúñiga Escuela de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Casilla 15-D, Temuco-Chile. [email protected] ABSTRACT Mitotic chromosome counts for Luzuriaga radicans Ruiz et Pav. and L. polyphylla (Hook) J.F. Macbr. from Chile, reported here for the first time, are the same as those reported for L. parviflora (Hook) Kunth in New Zealand and L. marginata (Gaertner) Benth. on Falkland Islands (2n = 2x = 20). These results indicate a constancy of chromosome number in the genus Luzuriaga. Luzuriaga Ruiz et Pav. (Luzuriagaceae) is a small southern Chile. Specimens of one accession of each genus, with three species in the southern cone of species were obtained from naturally growing popu- South America (36º-50ºS) [L. radicans Ruiz et Pav. lations (Table I). The voucher specimens were de- L. polyphylla (Hook.) J.F. Macbr. and L. marginata posited in the herbarium (UCT) of the School of (Banks et Sol. ex Gaertn.) Benth.], and a single spe- Biological and Chemical Sciences of the Universidad cies in New Zealand, L. parviflora (Hook.) Kunth Católica de Temuco. In the laboratory, plants were (Fineran 1964; Moore & Edgar 1970; Arroyo & kept with their rhizomes submerged in water subject Leuenberger 1988a, 1988b). This genus is a clear to constant aeration, to favor active growth of ad- example of the floristic links between distant land ventitious roots.
    [Show full text]
  • Asparagus Weeds Management Manual
    Weeds of National Significance Asparagus weeds Management Manual Current management and control options for asparagus weeds Asparagus spp. in Australia National Asparagus Weeds Management Committee Asparagus weeds Management Manual Current management and control options for asparagus weeds Asparagus spp. in Australia Weeds of National Significance 203 i 203 State of NSW and ffice of Environment and Heritage This publication is intended to provide information only on the subect under review. It is not intended to provide, nor does it constitute, epert advice. eaders are warned against relying solely on the information herein. Further professional advice should be sought before acting on the information supplied in this manual. While all care has been taken in the preparation of this publication, neither the ffice of Environment and Heritage NSW, nor its staff accept any responsibility for any loss or damage that may result from any inaccuracy or omission, or from the use of the information herein. Published by: This publication should be cited as: ffice of Environment and Heritage ffice of Environment and Heritage 203. 6 oulburn Street, Sydney NSW 2000 Asparagus weeds management manual: current P Bo A20, Sydney South NSW 232 management and control options for asparagus weeds Asparagus spp. in Australia. ffice of Ph: 02 000 switchboard Environment and Heritage NSW, Sydney. Ph: 3 environment information and publications requests This proect was supported by the ffice of or 300 36 6 national parks, general Environment and Heritage NSW,
    [Show full text]
  • Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene Ndhf Thomas J
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 4 2006 Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF Thomas J. Givnish University of Wisconsin-Madison J. Chris Pires University of Wisconsin-Madison; University of Missouri Sean W. Graham University of British Columbia Marc A. McPherson University of Alberta; Duke University Linda M. Prince Rancho Santa Ana Botanic Gardens See next page for additional authors Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Givnish, Thomas J.; Pires, J. Chris; Graham, Sean W.; McPherson, Marc A.; Prince, Linda M.; Patterson, Thomas B.; Rai, Hardeep S.; Roalson, Eric H.; Evans, Timothy M.; Hahn, William J.; Millam, Kendra C.; Meerow, Alan W.; Molvray, Mia; Kores, Paul J.; O'Brien, Heath W.; Hall, Jocelyn C.; Kress, W. John; and Sytsma, Kenneth J. (2006) "Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 4. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/4 Phylogenetic Relationships of Monocots Based on the Highly Informative Plastid Gene ndhF Authors Thomas J. Givnish, J. Chris Pires, Sean W. Graham, Marc A. McPherson, Linda M. Prince, Thomas B. Patterson, Hardeep S. Rai, Eric H. Roalson, Timothy M. Evans, William J. Hahn, Kendra C. Millam, Alan W. Meerow, Mia Molvray, Paul J. Kores, Heath W. O'Brien, Jocelyn C. Hall, W. John Kress, and Kenneth J. Sytsma This article is available in Aliso: A Journal of Systematic and Evolutionary Botany: http://scholarship.claremont.edu/aliso/vol22/iss1/ 4 Aliso 22, pp.
    [Show full text]
  • Origins and Relationships of the Mixed Mesophytic Forest of Oregon-Idaho, China, and Kentucky: Review and Synthesis Jerry M
    University of Kentucky UKnowledge Biology Faculty Publications Biology 4-27-2016 Origins and Relationships of the Mixed Mesophytic Forest of Oregon-Idaho, China, and Kentucky: Review and Synthesis Jerry M. Baskin University of Kentucky, [email protected] Carol C. Baskin University of Kentucky, [email protected] Click here to let us know how access to this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/biology_facpub Part of the Biology Commons, and the Plant Sciences Commons Repository Citation Baskin, Jerry M. and Baskin, Carol C., "Origins and Relationships of the Mixed Mesophytic Forest of Oregon-Idaho, China, and Kentucky: Review and Synthesis" (2016). Biology Faculty Publications. 120. https://uknowledge.uky.edu/biology_facpub/120 This Article is brought to you for free and open access by the Biology at UKnowledge. It has been accepted for inclusion in Biology Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Origins and Relationships of the Mixed Mesophytic Forest of Oregon-Idaho, China, and Kentucky: Review and Synthesis Notes/Citation Information Published in Annals of the Missouri Botanical Garden, v. 101, issue 3, p. 525-552. The iM ssouri Botanical Garden Press has granted the permission for posting the article here. Digital Object Identifier (DOI) https://doi.org/10.3417/2014017 This article is available at UKnowledge: https://uknowledge.uky.edu/biology_facpub/120 Origins and Relationships of the Mixed Mesophytic Forest of Oregon–Idaho, China, and Kentucky: Review and Synthesis Author(s): Jerry M. Baskin and Carol C. Baskin Source: Annals of the Missouri Botanical Garden, 101(3):525-552.
    [Show full text]
  • Flora of Australia, Volume 46, Iridaceae to Dioscoreaceae
    FLORA OF AUSTRALIA Volume 46 Iridaceae to Dioscoreaceae This volume was published before the Commonwealth Government moved to Creative Commons Licensing. © Commonwealth of Australia 1986. This work is copyright. You may download, display, print and reproduce this material in unaltered form only (retaining this notice) for your personal, non-commercial use or use within your organisation. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced or distributed by any process or stored in any retrieval system or data base without prior written permission from the copyright holder. Requests and inquiries concerning reproduction and rights should be addressed to: [email protected] FLORA OF AUSTRALIA The nine families in this volume of the Flora of Australia are Iridaceae, Aloeaceae, Agavaceae, Xanthorrhoeaceae, Hanguan- aceae, Taccaceae, Stemonaceae, Smilacaceae and Dioscoreaceae. The Xanthorrhoeaceae has the largest representation with 10 genera and 99 species. Most are endemic with a few species of Lomandra and Romnalda extending to neighbouring islands. The family includes the spectacular blackboys and grass-trees. The Iridaceae is largely represented by naturalised species with 52 of the 78 species being introduced. Many of the introductions are ornamentals and several have become serious weeds. Patersonia is the largest genus with all 17 species endemic. Some of these are cultivated as ornamentals. The Dioscoreaccae is a family of economic significance, particularly in the old world tropics where some species are cultivated or collected for their tubers and bulbils. In Australia there are 5 species, one of which is a recent introduction. The endemic and native species, commonly known as yams, are traditionally eaten by the Aborigines.
    [Show full text]