Perissodactyla, Rhinocerotidae) from the Upper

Total Page:16

File Type:pdf, Size:1020Kb

Perissodactyla, Rhinocerotidae) from the Upper Geobios 50 (2017) 197–209 Available online at ScienceDirect www.sciencedirect.com Original article A new Elasmotheriini (Perissodactyla, Rhinocerotidae) from the upper § Miocene of Samburu Hills and Nakali, northern Kenya a, b c d Naoto Handa *, Masato Nakatsukasa , Yutaka Kunimatsu , Hideo Nakaya a Museum of Osaka University, 1-20 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan b Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto 606-8502, Japan c Faculty of Business Administration, Ryukoku University, 67 Tsukamoto-cho, Fukakusa, Fushimi-ku, Kyoto 612-8577, Japan d Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan A R T I C L E I N F O A B S T R A C T Article history: Several rhinocerotid cheek teeth and mandibular fragments from the upper Miocene of the Samburu Received 15 August 2016 Hills and Nakali in northern Kenya are described. These specimens show characteristics that place them Accepted 20 April 2017 in the Tribe Elasmotheriini such as a constricted protocone, a developed antecrochet, and coronal Available online 8 May 2017 cement. The present specimens are compared with other Elasmotheriini species from Eurasia and sub- Saharan East Africa. They are found to be morphologically different from the previously known species of Keywords: Elasmotheriini. Morphologically, they are most similar to Victoriaceros kenyensis from the middle Elasmotheriini Miocene of Kenya, but differ from V. kenyensis in having the upper molars with the simple crochet, Rhinocerotidae lingual groove of the protocone and enamel ring in the medisinus. Therefore, the present specimens are Late Miocene assigned to a new genus and species of Elasmotheriini: Samburuceros ishidai. A cladistic analysis Samburu Hills Nakali tentatively places S. ishidai nov. gen., nov. sp. as a sister taxon of V. kenyensis. However, questions remain Kenya regarding a further detailed discussion of the phylogenetic relationship between the African Elasmotheriini and other Eurasian taxa because of the incompleteness of the specimens from Africa, as already noticed by several researchers. C 2017 Elsevier Masson SAS. All rights reserved. 1. Introduction and Gue´rin, 1974), and later in the late Miocene locality of the Samburu Hills in Kenya (Nakaya et al., 1987). Ougandatherium The Tribe Elasmotheriini (Heissig, 1973, 1989; = Elasmotheriina napakense was discovered in the early Miocene (20–19 Ma) locality in Antoine, 2002, 2003), an extinct group of Rhinocerotidae of Napak in Uganda (Gue´rin and Pickford, 2003). Geraads et al. (Mammalia, Perissodactyla), was widely distributed in Europe, (2012) described Victoriaceros kenyensis from the middle Miocene Asia and sub-Saharan East Africa, especially during the early to locality (ca. 15.5 Ma) of Maboko in Kenya. Recently, Geraads et al. middle Miocene of Europe (Cerden˜o and Nieto, 1995; Heissig, (2016) described a skull from the early Miocene (> 17.7 Ma) 1996, 1999), early to middle Miocene of Pakistan (Heissig, 1972; locality of Karungu in western Kenya, and tentatively assigned it as Antoine and Welcomme, 2000), early Miocene to late Pleistocene a second species of Victoriaceros, V. hooijeri. of China (Tong and Moigne, 2000; Deng and Downs, 2002; Antoine, The Kenya–Japan joint expedition carried out fieldwork in the 2003), and Pleistocene of Russia (Schvyreva, 2015). The first known Samburu Hills during the 1980s and 1990s (Ishida and Pickford, Elasmotheriini are from the early Miocene of Pakistan (Antoine and 1997) and has been working in Nakali since 2002 (Kunimatsu et al., Welcomme, 2000). This tribe diversified during the early to middle 2007). Abundant mammal fossils, including the large hominoid Miocene in Eurasia and became extinct during the Pleistocene in fossils Samburupithecus kiptalami and Nakalipithecus nakayamai, Europe and Asia (Heissig, 1989). have been discovered in these localities. Rhinocerotid fossils were In contrast, only a few species have been reported so far from also discovered through fieldwork in those localities (Nakaya et al., sub-Saharan East Africa (Fig. 1). Kenyatherium bishopi was first 1987; Kunimatsu et al., 2007; Fukuchi et al., 2008; Handa et al., discovered in the late Miocene locality of Nakali in Kenya (Aguirre 2015; Handa, 2016). Nakaya (1994) reported a taxon of rhinoce- rotid from the upper Miocene Namurungule Formation in the Samburu Hills as ‘‘Iranotheriinae sp. nov.’’. This taxon was first § Corresponding editor: Pierre-Olivier Antoine. reported as Rhinocerotidae gen. et sp. indet. (Nakaya et al., 1987). * Corresponding author. Tsujikawa (2005) cited the identification of Nakaya (1994) as the E-mail address: [email protected] (N. Handa). http://dx.doi.org/10.1016/j.geobios.2017.04.002 C 0016-6995/ 2017 Elsevier Masson SAS. All rights reserved. 198 N. Handa et al. / Geobios 50 (2017) 197–209 Fig. 1. Map showing the African Elasmotherhiini-bearing localities. Modified from Sawada et al., 1998. number of species of rhinocerotids from the Namurungule this area (Kunimatsu et al., 2007; Sakai et al., 2013). The Nakali Formation. However, a detailed taxonomic description of those Formation is unconformably overlaid by the Nasorut Formation, specimens has not been undertaken since Nakaya (1994). Further- which is composed of trachytic or basaltic lava and volcaniclastics. more, a few undescribed specimens that would belong to The thickness of the Nakali Formation is about 340 m. This ‘‘Iranotheriinae sp. nov.’’ were also found in the Nakali Formation formation is divided into three units: the Lower, Middle, and Upper in Nakali. Here, we describe those specimens as a new genus and Members in ascending order (Kunimatsu et al., 2007; Sakai et al., species of Elasmotheriini. 2013). The Lower Member is composed mainly of lacustrine and fluvio-lacustrine deposits. The Middle Member consists of a pyroclastic flow deposit, whose thickness is ca. 40 m. The Upper 2. Geological setting Member is characterized by fluvio-lacustrine and lacustrine deposits. Nakalipithecus nakayamai was collected from the Upper The Samburu Hills is located 50 km south of Lake Turkana Member (Kunimatsu et al., 2007). The studied rhinocerotid (Fig. 1). The Miocene succession (including the Nachola, Aka specimens from the Nakali Formation were found in the Upper 40 39 Aiteputh, Namurungule, and Kongia formations) and Pliocene and Lower Members. Ar/ Ar dating provided ages of 9.82 Æ 0.09 succession (corresponding to the Tirr Tirr Formation) are and 9.90 Æ 0.09 Ma for the uppermost part of the Lower Member of distributed in this area (Saneyoshi et al., 2006; Sakai et al., this formation (Kunimatsu et al., 2007). The paleomagnetic stratigra- 2010). Among them, the Namurungule Formation overlies the Aka phy of the uppermost level of the Lower Member and the lowermost Aitheputh Formation conformably and underlies the Kongia level of the Upper Member correlates with Chron C5n.1r (9.88 to Formation unconformably. Some parts of the boundary between 9.92 Ma; Kunimatsu et al., 2007). the Aka Aiteputh and Namurungule formations are local faults. The Namurungule Formation is about 200 m thick and is divided into the Upper and Lower Members, which consist of alluvial fan and 3. Review of the Rhinocerotidae from the Namurungule and fluvio-lacustrine, and fluvio-lacustrine delta and fluvial deposits, Nakali formations respectively (Saneyoshi et al., 2006; Sakai et al., 2010). Samburupi- thecus kiptalami was found from the Lower Member (Ishida and Nakaya et al. (1984, 1987) reported abundant specimens of the Pickford, 1997). There is a lahar deposit between the Lower and Rhinocerotidae from the Samburu Hills. After that, additional Upper Members. The studied rhinocerotid specimens from the mammalian fossils were recovered through the fieldwork sessions Namurungule Formation were discovered from the Lower Mem- in 1990s (Tsujikawa, 2005). Nakaya et al. (1984) preliminarily ber. The K/Ar age of the hominoid fossil-bearing horizon of the reported several rhinocerotid fossils from the Namurungule Lower Member is estimated to be 9.57 Æ 0.22 Ma and 9.47 Æ 0.22 Ma Formation, such as Brachypotherium sp. and Rhinocerotidae gen. (Sawada et al., 1998, 2006). In the paleomagnetic stratigraphy, the et sp. indet. Nakaya et al. (1987) reported additional specimens, Upper and Lower Members are correlated with Chron C4Ar.2n which were preliminarily identified as Chilotheridium sp., Para- (9.64 to 9.58 Ma) and Chrons C4Ar.2r to C4Ar.1n (9.58 to 9.31 Ma), diceros sp., K. bishopi, and Rhinocerotidae gen. et sp. indet. Later, respectively (Sawada et al., 1998, 2006). Nakaya (1994) discussed the faunal changes among the late Nakali is located 60 km south of the Samburu Hills (Fig. 1). The Miocene terrestrial mammals in sub-Saharan East Africa. In this upper Miocene Nakali and Nasorut formations are distributed in context, Rhinocerotidae gen. et sp. indet., reported by Nakaya et al. N. Handa et al. / Geobios 50 (2017) 197–209 199 (1987) was transferred to Iranotheriinae sp. nov. (Nakaya, 1994: Abbreviations: M: upper molar; m: lower molar; P: upper p. 17). Tsujikawa (2005) described additional rhinocerotid fossils premolar; p: lower premolar; MB: Maboko, Kenya; NA: Nakali, discovered from the Namurungule Formation in 1986, 1998 and Kenya; NC: Nyakach, Kenya; SH: Samburu Hills, Kenya; MN: 1999; he reported Chilotheridium pattersoni, Paradiceros mukirii, European Neogene Mammal Zones. and Rhinocerotidae gen. et sp. indet. Fukuchi et al. (2008) noted a cheek teeth row specimen of P.sp. from the Namurungule 5. Systematic paleontology Formation as Diceros sp. There are a few reports of rhinocerotid fossils from Nakali. Aguirre and Gue´rin (1974) first reported a new Class Mammalia Linnaeus, 1758 species, K. bishopi, based on material collected in the 1960s. Since Order Perissodactyla Owen, 1848 2000, a great amount of additional mammalian fossils was Family Rhinocerotidae Owen, 1845 recovered from new fieldwork, and the presence of Diceros sp. Subfamily Rhinocerotinae Dollo, 1885 was reported but without description and illustration (Kunimatsu Tribe Elasmotheriini Bonaparte, 1845 et al., 2007; Fukuchi et al., 2008).
Recommended publications
  • Sergio Almécija
    Sergio Almécija Center for the Advanced Study of Human Paleobiology Email: [email protected] Department of Anthropology Cellphone: (646) 943-1159 The George Washington University Science and Engineering Hall 800 22nd Street NW, Suite 6000 Washington, DC 20052 EDUCATION PhD, Cum Laude. Institut Català de Paleontologia Miquel Crusafont at Universitat Autònoma de Barcelona and Universitat de Barcelona, Biological Anthropology, (October 30th, 2009). Dissertation: Evolution of the hand in Miocene apes: implications for the appearance of the human hand. Advisor: Salvador Moyà-Solà. MA with Advanced Studies Certificate (DEA). Institut Català de Paleontologia Miquel Crusafont at Universitat Autònoma de Barcelona. Biological Anthropology, 2007. BS. Universitat Autònoma de Barcelona, Biological Sciences, 2005. PROFESSIONAL APPOINTMENTS Assistant Professor. Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University. Present. Research Instructor. Department of Anatomical Sciences, Stony Brook University. 2012-2015. Fulbright Postdoctoral Fellow. Department of Vertebrate Paleontology, American Museum of Natural History and New York Consortium in Evolutionary Primatology. 2010-2012. Research Associate. Department of Paleoprimatology and Human Paleontology, Institut Català de Paleontologia Miquel Crusafont. 2010-present. RESEARCH INTERESTS Evolution of humans and apes. Based on the morphology of living and fossil hominoids (and other primates), to identify key skeletal adaptations defining different stages of great ape and human evolution, as well as the original selective pressures responsible for specific evolutionary transitions. Morphometrics. Apart from describing new great ape and hominin fossil materials, I am interested in broad comparative studies of key regions of the skeleton using state-of-the-art methods such as three-dimensional morphometrics and phylogenetically-informed comparative methods.
    [Show full text]
  • A New Species of Mioeuoticus (Lorisiformes, Primates) from the Early Middle Miocene of Kenya
    ANTHROPOLOGICAL SCIENCE Vol. 125(2), 59–65, 2017 A new species of Mioeuoticus (Lorisiformes, Primates) from the early Middle Miocene of Kenya Yutaka KUNIMATSU1*, Hiroshi TSUJIKAWA2, Masato NAKATSUKASA3, Daisuke SHIMIZU3, Naomichi OGIHARA4, Yasuhiro KIKUCHI5, Yoshihiko NAKANO6, Tomo TAKANO7, Naoki MORIMOTO3, Hidemi ISHIDA8 1Faculty of Business Administration, Ryukoku University, Kyoto 612-8577, Japan 2Department of Rehabilitation, Faculty of Medical Science and Welfare, Tohoku Bunka Gakuen University, Sendai 981-8551, Japan 3Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan 4Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama 223-8522, Japan 5Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan 6Graduate School of Human Sciences, Osaka University, Suita 565-0871, Japan 7Japan Monkey Center, Inuyama 484-0081, Japan 8Professor Emeritus, Kyoto University, Kyoto 606-8502, Japan Received 24 November 2016; accepted 22 March 2017 Abstract We here describe a prosimian specimen discovered from the early Middle Miocene (~15 Ma) of Nachola, northern Kenya. It is a right maxilla that preserves P4–M3, and is assigned to a new species of the Miocene lorisid genus Mioeuoticus. Previously, Mioeuoticus was known from the Early Miocene of East Africa. The Nachola specimen is therefore the first discovery of this genus from the Middle Mi- ocene. The presence of a new lorisid species in the Nachola fauna indicates a forested paleoenvironment for this locality, consistent with previously known evidence including the abundance of large-bodied hominoid fossils (Nacholapithecus kerioi), the dominance of browsers among the herbivore fauna, and the presence of plenty of petrified wood.
    [Show full text]
  • Download Full Article in PDF Format
    Dryopithecins, Darwin, de Bonis, and the European origin of the African apes and human clade David R. BEGUN University of Toronto, Department of Anthropology, 19 Russell Street, Toronto, ON, M5S 2S2 (Canada) [email protected] Begun R. D. 2009. — Dryopithecins, Darwin, de Bonis, and the European origin of the African apes and human clade. Geodiversitas 31 (4) : 789-816. ABSTRACT Darwin famously opined that the most likely place of origin of the common ancestor of African apes and humans is Africa, given the distribution of its liv- ing descendents. But it is infrequently recalled that immediately afterwards, Darwin, in his typically thorough and cautious style, noted that a fossil ape from Europe, Dryopithecus, may instead represent the ancestors of African apes, which dispersed into Africa from Europe. Louis de Bonis and his collaborators were the fi rst researchers in the modern era to echo Darwin’s suggestion about apes from Europe. Resulting from their spectacular discoveries in Greece over several decades, de Bonis and colleagues have shown convincingly that African KEY WORDS ape and human clade members (hominines) lived in Europe at least 9.5 million Mammalia, years ago. Here I review the fossil record of hominoids in Europe as it relates to Primates, Dryopithecus, the origins of the hominines. While I diff er in some details with Louis, we are Hispanopithecus, in complete agreement on the importance of Europe in determining the fate Rudapithecus, of the African ape and human clade. Th ere is no doubt that Louis de Bonis is Ouranopithecus, hominine origins, a pioneer in advancing our understanding of this fascinating time in our evo- new subtribe.
    [Show full text]
  • Human Evolution: a Paleoanthropological Perspective - F.H
    PHYSICAL (BIOLOGICAL) ANTHROPOLOGY - Human Evolution: A Paleoanthropological Perspective - F.H. Smith HUMAN EVOLUTION: A PALEOANTHROPOLOGICAL PERSPECTIVE F.H. Smith Department of Anthropology, Loyola University Chicago, USA Keywords: Human evolution, Miocene apes, Sahelanthropus, australopithecines, Australopithecus afarensis, cladogenesis, robust australopithecines, early Homo, Homo erectus, Homo heidelbergensis, Australopithecus africanus/Australopithecus garhi, mitochondrial DNA, homology, Neandertals, modern human origins, African Transitional Group. Contents 1. Introduction 2. Reconstructing Biological History: The Relationship of Humans and Apes 3. The Human Fossil Record: Basal Hominins 4. The Earliest Definite Hominins: The Australopithecines 5. Early Australopithecines as Primitive Humans 6. The Australopithecine Radiation 7. Origin and Evolution of the Genus Homo 8. Explaining Early Hominin Evolution: Controversy and the Documentation- Explanation Controversy 9. Early Homo erectus in East Africa and the Initial Radiation of Homo 10. After Homo erectus: The Middle Range of the Evolution of the Genus Homo 11. Neandertals and Late Archaics from Africa and Asia: The Hominin World before Modernity 12. The Origin of Modern Humans 13. Closing Perspective Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS The basic course of human biological history is well represented by the existing fossil record, although there is considerable debate on the details of that history. This review details both what is firmly understood (first echelon issues) and what is contentious concerning humanSAMPLE evolution. Most of the coCHAPTERSntention actually concerns the details (second echelon issues) of human evolution rather than the fundamental issues. For example, both anatomical and molecular evidence on living (extant) hominoids (apes and humans) suggests the close relationship of African great apes and humans (hominins). That relationship is demonstrated by the existing hominoid fossil record, including that of early hominins.
    [Show full text]
  • The Threads of Evolutionary, Behavioural and Conservation Research
    Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Edited by Alison M Behie and Marc F Oxenham Chapters written in honour of Professor Colin P Groves Published by ANU Press The Australian National University Acton ACT 2601, Australia Email: [email protected] This title is also available online at http://press.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Title: Taxonomic tapestries : the threads of evolutionary, behavioural and conservation research / Alison M Behie and Marc F Oxenham, editors. ISBN: 9781925022360 (paperback) 9781925022377 (ebook) Subjects: Biology--Classification. Biology--Philosophy. Human ecology--Research. Coexistence of species--Research. Evolution (Biology)--Research. Taxonomists. Other Creators/Contributors: Behie, Alison M., editor. Oxenham, Marc F., editor. Dewey Number: 578.012 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design and layout by ANU Press Cover photograph courtesy of Hajarimanitra Rambeloarivony Printed by Griffin Press This edition © 2015 ANU Press Contents List of Contributors . .vii List of Figures and Tables . ix PART I 1. The Groves effect: 50 years of influence on behaviour, evolution and conservation research . 3 Alison M Behie and Marc F Oxenham PART II 2 . Characterisation of the endemic Sulawesi Lenomys meyeri (Muridae, Murinae) and the description of a new species of Lenomys . 13 Guy G Musser 3 . Gibbons and hominoid ancestry . 51 Peter Andrews and Richard J Johnson 4 .
    [Show full text]
  • Unravelling the Positional Behaviour of Fossil Hominoids: Morphofunctional and Structural Analysis of the Primate Hindlimb
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Doctorado en Biodiversitat Facultad de Ciènces Tesis doctoral Unravelling the positional behaviour of fossil hominoids: Morphofunctional and structural analysis of the primate hindlimb Marta Pina Miguel 2016 Memoria presentada por Marta Pina Miguel para optar al grado de Doctor por la Universitat Autònoma de Barcelona, programa de doctorado en Biodiversitat del Departamento de Biologia Animal, de Biologia Vegetal i d’Ecologia (Facultad de Ciències). Este trabajo ha sido dirigido por el Dr. Salvador Moyà Solà (Institut Català de Paleontologia Miquel Crusafont) y el Dr. Sergio Almécija Martínez (The George Washington Univertisy). Director Co-director Dr. Salvador Moyà Solà Dr. Sergio Almécija Martínez A mis padres y hermana. Y a todas aquelas personas que un día decidieron perseguir un sueño Contents Acknowledgments [in Spanish] 13 Abstract 19 Resumen 21 Section I. Introduction 23 Hominoid positional behaviour The great apes of the Vallès-Penedès Basin: State-of-the-art Section II. Objectives 55 Section III. Material and Methods 59 Hindlimb fossil remains of the Vallès-Penedès hominoids Comparative sample Area of study: The Vallès-Penedès Basin Methodology: Generalities and principles Section IV.
    [Show full text]
  • The Late Miocene Mammalian Fauna of Chorora, Awash Basin
    The late Miocene mammalian fauna of Chorora, Awash basin, Ethiopia: systematics, biochronology and 40K-40Ar ages of the associated volcanics Denis Geraads, Zeresenay Alemseged, Hervé Bellon To cite this version: Denis Geraads, Zeresenay Alemseged, Hervé Bellon. The late Miocene mammalian fauna of Chorora, Awash basin, Ethiopia: systematics, biochronology and 40K-40Ar ages of the associated volcanics. Tertiary Research, 2002, 21 (1-4), pp.113-122. halshs-00009761 HAL Id: halshs-00009761 https://halshs.archives-ouvertes.fr/halshs-00009761 Submitted on 24 Mar 2006 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. The late Miocene mammalian fauna of Chorora, Awash basin, Ethiopia: systematics, biochronology and 40K-40Ar ages of the associated volcanics Denis GERAADS - EP 1781 CNRS, 44 rue de l'Amiral Mouchez, 75014 PARIS, France Zeresenay ALEMSEGED - National Museum, P.O.Box 76, Addis Ababa, Ethiopia Hervé BELLON - UMR 6538 CNRS, Université de Bretagne Occidentale, BP 809, 29285 BREST CEDEX, France ABSTRACT New whole-rock 40K-40Ar ages on lava flows bracketing the Chorora Fm, Ethiopia, confirm that its Hipparion-bearing sediments must be in the 10-11 Ma time-range. The large Mammal fauna includes 10 species.
    [Show full text]
  • Paleoecological Comparison Between Late Miocene Localities of China and Greece Based on Hipparion Faunas
    Paleoecological comparison between late Miocene localities of China and Greece based on Hipparion faunas Tao DENG Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044 (China) [email protected] Deng T. 2006. — Paleoecological comparison between late Miocene localities of China and Greece based on Hipparion faunas. Geodiversitas 28 (3) : 499-516. ABSTRACT Both China and Greece have abundant fossils of the late Miocene Hipparion fauna. Th e habitat of the Hipparion fauna in Greece was a sclerophyllous ever- green woodland. Th e Chinese late Miocene Hipparion fauna is represented respectively in the Guonigou fauna (MN 9), the Dashengou fauna (MN 10), and the Yangjiashan fauna (MN 11) from Linxia, Gansu, and the Baode fauna (MN 12) from Baode, Shanxi. According to the evidence from lithology, carbon isotopes, paleobotany, taxonomic framework, mammalian diversity and faunal similarity, the paleoenvironment of the Hipparion fauna in China was a subarid open steppe, which is diff erent from that of Greece. Th e red clay bearing the Hipparion fauna in China is windblown in origin, i.e. eolian deposits. Stable carbon isotopes from tooth enamel and paleosols indicate that C3 plants domi- nated the vegetation during the late Miocene in China. Pollens of xerophilous and sub-xerophilous grasses show a signal of steppe or dry grassland. Forest mammals, such as primates and chalicotheres, are absent or scarce, but grass- land mammals, such as horses and rhinoceroses, are abundant in the Chinese Hipparion fauna. Th e species richness of China and Greece exhibits a similar KEY WORDS trend with a clear increase from MN 9 to MN 12, but the two regions have Hipparion fauna, low similarities at the species level.
    [Show full text]
  • Title Hind Limb of the Nacholapithecus Kerioi Holotype And
    Hind limb of the Nacholapithecus kerioi holotype and Title implications for its positional behavior NAKATSUKASA, MASATO; KUNIMATSU, YUTAKA; Author(s) SHIMIZU, DAISUKE; NAKANO, YOSHIHIKO; KIKUCHI, YASUHIRO; ISHIDA, HIDEMI Citation Anthropological Science (2012), 120(3): 235-250 Issue Date 2012 URL http://hdl.handle.net/2433/168515 Right © 2012 The Anthropological Society of Nippon Type Journal Article Textversion author Kyoto University Hind limb of the Nacholapithecus kerioi holotype and implications for its positional behavior (revised) Masato Nakatsukasa, Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan Yutaka Kunimatsu, Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan Daisuke Shimizu, Japan Monkey Centre, Inuyama, Aichi 484-0081, Japan Yosihiko Nakano, Department of Biological Anthropology, Osaka University, Suita, Osaka 565-8502, Japan Yashihiro Kikuchi, Department of Anatomy and Physiology, Faculty of Medicine, Saga University, Saga 849-8501, Japan Hidemi Ishida, Department of Nursing, Seisen University, Hikone, Shiga 521-1123, Japan Running title: Nacholapithecus hind limb Corresponding author Masato Nakatsukasa, Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Sakyo, Kyoto 606-8502, Japan [email protected] 1 Abstract We present the final description of the hind limb elements of the Nacholapithecus kerioi holotype (KNM-BG 35250) from the middle Miocene of Kenya. Previously, it has been noted that the postcranial (i.e., the phalanges, spine, and shoulder girdle) anatomy of N. kerioi shows greater affinity to other early/middle Miocene African hominoids, collectively called "non-specialized pronograde arboreal quadrupeds", than to extant hominoids. This was also the case for the hind limb.
    [Show full text]
  • Reassessment of the Phylogenetic Relationships of the Late Miocene Apes Hispanopithecus and Rudapithecus Based on Vestibular Morphology
    Reassessment of the phylogenetic relationships of the late Miocene apes Hispanopithecus and Rudapithecus based on vestibular morphology Alessandro Urciuolia,1, Clément Zanollib, Sergio Almécijaa,c,d, Amélie Beaudeta,e,f,g, Jean Dumoncelh, Naoki Morimotoi, Masato Nakatsukasai, Salvador Moyà-Solàa,j,k, David R. Begunl, and David M. Albaa,1 aInstitut Català de Paleontologia Miquel Crusafont, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; bUniv. Bordeaux, CNRS, MCC, PACEA, UMR 5199, F-33600 Pessac, France; cDivision of Anthropology, American Museum of Natural History, New York, NY 10024; dNew York Consortium in Evolutionary Primatology, New York, NY 10016; eDepartment of Archaeology, University of Cambridge, Cambridge CB2 1QH, United Kingdom; fSchool of Geography, Archaeology, and Environmental Studies, University of the Witwatersrand, Johannesburg, WITS 2050, South Africa; gDepartment of Anatomy, University of Pretoria, Pretoria 0001, South Africa; hLaboratoire Anthropology and Image Synthesis, UMR 5288 CNRS, Université de Toulouse, 31073 Toulouse, France; iLaboratory of Physical Anthropology, Graduate School of Science, Kyoto University, 606 8502 Kyoto, Japan; jInstitució Catalana de Recerca i Estudis Avançats, 08010 Barcelona, Spain; kUnitat d’Antropologia, Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain; and lDepartment of Anthropology, University of Toronto, Toronto, ON M5S 2S2, Canada Edited by Justin S. Sipla, University of Iowa, Iowa City, IA, and accepted by Editorial Board Member C. O. Lovejoy December 3, 2020 (received for review July 19, 2020) Late Miocene great apes are key to reconstructing the ancestral Dryopithecus and allied forms have long been debated. Until a morphotype from which earliest hominins evolved. Despite con- decade ago, several species of European apes from the middle sensus that the late Miocene dryopith great apes Hispanopithecus and late Miocene were included within this genus (9–16).
    [Show full text]
  • A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade Salvador Moya` -Sola` A,1, David M
    A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene).
    [Show full text]
  • Fossil Primates
    AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates.
    [Show full text]