Human Evolution: a Paleoanthropological Perspective - F.H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Place of the Neanderthals in Hominin Phylogeny ⇑ Suzanna White, John A.J
Journal of Anthropological Archaeology 35 (2014) 32–50 Contents lists available at ScienceDirect Journal of Anthropological Archaeology journal homepage: www.elsevier.com/locate/jaa The place of the Neanderthals in hominin phylogeny ⇑ Suzanna White, John A.J. Gowlett, Matt Grove School of Archaeology, Classics and Egyptology, University of Liverpool, William Hartley Building, Brownlow Street, Liverpool L69 3GS, UK article info abstract Article history: Debate over the taxonomic status of the Neanderthals has been incessant since the initial discovery of the Received 8 May 2013 type specimens, with some arguing they should be included within our species (i.e. Homo sapiens nean- Revision received 21 March 2014 derthalensis) and others believing them to be different enough to constitute their own species (Homo Available online 13 May 2014 neanderthalensis). This synthesis addresses the process of speciation as well as incorporating information on the differences between species and subspecies, and the criteria used for discriminating between the Keywords: two. It also analyses the evidence for Neanderthal–AMH hybrids, and their relevance to the species Neanderthals debate, before discussing morphological and genetic evidence relevant to the Neanderthal taxonomic Taxonomy debate. The main conclusion is that Neanderthals fulfil all major requirements for species status. The Species status extent of interbreeding between the two populations is still highly debated, and is irrelevant to the issue at hand, as the Biological Species Concept allows -
An Early Modern Human from the Pes¸Tera Cu Oase, Romania
An early modern human from the Pes¸tera cu Oase, Romania Erik Trinkaus*†, Oana Moldovan‡,S¸ tefan Milota§, Adrian Bıˆlga˘r¶, Laurent¸iu Sarcina§, Sheela Athreyaʈ, Shara E. Bailey**, Ricardo Rodrigo††, Gherase Mircea§, Thomas Higham‡‡, Christopher Bronk Ramsey‡‡, and Johannes van der Plicht§§ *Department of Anthropology, Campus Box 1114, Washington University, St. Louis, MO 63130; ‡Institutul de Speologie ‘‘Emil Racovit¸a˘ ,’’ Clinicilor 5, P.O. Box 58, 3400 Cluj, Romania; §Pro Acva Grup, Strada˘Surduc 1, 1900 Timis¸oara, Romania; ¶Strada˘Decebal 1, 1500 Drobeta Turnu Severin, Romania; ʈDepartment of Anthropology, Texas A&M University, College Station TX 77843; **Department of Anthropology, George Washington University, 2110 G Street, Washington, DC 20052; ††Centro Nacional da Arqueologia Na´utica e Subaqua´tica, Instituto Portugueˆs de Arqueologia, Avenida da India 136, 1300 Lisboa, Portugal; ‡‡Research Laboratory for Archaeology and the History of Art, University of Oxford, 6 Keble Road, Oxford OX1 3QJ, United Kingdom; and §§Centrum voor Isotopen Onderzoek, Rijksuniversiteit Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands Contributed by Erik Trinkaus, August 8, 2003 The 2002 discovery of a robust modern human mandible in the Pes¸tera cu Oase, southwestern Romania, provides evidence of early modern humans in the lower Danubian Corridor. Directly accelerator mass spectrometry radiocarbon (14C)-dated to 34,000– 36,000 14C years B.P., the Oase 1 mandible is the oldest definite early modern human specimen in Europe and provides perspec- tives on the emergence and evolution of early modern humans in the northwestern Old World. The moderately long Oase 1 mandi- ble exhibits a prominent tuber symphyseos and overall proportions that place it close to earlier Upper Paleolithic European specimens. -
The Taxonomy of Primates in the Laboratory Context
P0800261_01 7/14/05 8:00 AM Page 3 C HAPTER 1 The Taxonomy of Primates T HE T in the Laboratory Context AXONOMY OF P Colin Groves RIMATES School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia 3 What are species? D Taxonomy: EFINITION OF THE The biological Organizing nature species concept Taxonomy means classifying organisms. It is nowadays commonly used as a synonym for systematics, though Disagreement as to what precisely constitutes a species P strictly speaking systematics is a much broader sphere is to be expected, given that the concept serves so many RIMATE of interest – interrelationships, and biodiversity. At the functions (Vane-Wright, 1992). We may be interested basis of taxonomy lies that much-debated concept, the in classification as such, or in the evolutionary implica- species. tions of species; in the theory of species, or in simply M ODEL Because there is so much misunderstanding about how to recognize them; or in their reproductive, phys- what a species is, it is necessary to give some space to iological, or husbandry status. discussion of the concept. The importance of what we Most non-specialists probably have some vague mean by the word “species” goes way beyond taxonomy idea that species are defined by not interbreeding with as such: it affects such diverse fields as genetics, biogeog- each other; usually, that hybrids between different species raphy, population biology, ecology, ethology, and bio- are sterile, or that they are incapable of hybridizing at diversity; in an era in which threats to the natural all. Such an impression ultimately derives from the def- world and its biodiversity are accelerating, it affects inition by Mayr (1940), whereby species are “groups of conservation strategies (Rojas, 1992). -
Homo Habilis
COMMENT SUSTAINABILITY Citizens and POLICY End the bureaucracy THEATRE Shakespeare’s ENVIRONMENT James Lovelock businesses must track that is holding back science world was steeped in on surprisingly optimistic governments’ progress p.33 in India p.36 practical discovery p.39 form p.41 The foot of the apeman that palaeo ‘handy man’, anthropologists had been Homo habilis. recovering in southern Africa since the 1920s. This, the thinking went, was replaced by the taller, larger-brained Homo erectus from Asia, which spread to Europe and evolved into Nean derthals, which evolved into Homo sapiens. But what lay between the australopiths and H. erectus, the first known human? BETTING ON AFRICA Until the 1960s, H. erectus had been found only in Asia. But when primitive stone-chop LIBRARY PICTURE EVANS MUSEUM/MARY HISTORY NATURAL ping tools were uncovered at Olduvai Gorge in Tanzania, Leakey became convinced that this is where he would find the earliest stone- tool makers, who he assumed would belong to our genus. Maybe, like the australopiths, our human ancestors also originated in Africa. In 1931, Leakey began intensive prospect ing and excavation at Olduvai Gorge, 33 years before he announced the new human species. Now tourists travel to Olduvai on paved roads in air-conditioned buses; in the 1930s in the rainy season, the journey from Nairobi could take weeks. The ravines at Olduvai offered unparalleled access to ancient strata, but field work was no picnic in the park. Water was often scarce. Leakey and his team had to learn to share Olduvai with all of the wild animals that lived there, lions included. -
Hands-On Human Evolution: a Laboratory Based Approach
Hands-on Human Evolution: A Laboratory Based Approach Developed by Margarita Hernandez Center for Precollegiate Education and Training Author: Margarita Hernandez Curriculum Team: Julie Bokor, Sven Engling A huge thank you to….. Contents: 4. Author’s note 5. Introduction 6. Tips about the curriculum 8. Lesson Summaries 9. Lesson Sequencing Guide 10. Vocabulary 11. Next Generation Sunshine State Standards- Science 12. Background information 13. Lessons 122. Resources 123. Content Assessment 129. Content Area Expert Evaluation 131. Teacher Feedback Form 134. Student Feedback Form Lesson 1: Hominid Evolution Lab 19. Lesson 1 . Student Lab Pages . Student Lab Key . Human Evolution Phylogeny . Lab Station Numbers . Skeletal Pictures Lesson 2: Chromosomal Comparison Lab 48. Lesson 2 . Student Activity Pages . Student Lab Key Lesson 3: Naledi Jigsaw 77. Lesson 3 Author’s note Introduction Page The validity and importance of the theory of biological evolution runs strong throughout the topic of biology. Evolution serves as a foundation to many biological concepts by tying together the different tenants of biology, like ecology, anatomy, genetics, zoology, and taxonomy. It is for this reason that evolution plays a prominent role in the state and national standards and deserves thorough coverage in a classroom. A prime example of evolution can be seen in our own ancestral history, and this unit provides students with an excellent opportunity to consider the multiple lines of evidence that support hominid evolution. By allowing students the chance to uncover the supporting evidence for evolution themselves, they discover the ways the theory of evolution is supported by multiple sources. It is our hope that the opportunity to handle our ancestors’ bone casts and examine real molecular data, in an inquiry based environment, will pique the interest of students, ultimately leading them to conclude that the evidence they have gathered thoroughly supports the theory of evolution. -
The Threads of Evolutionary, Behavioural and Conservation Research
Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Edited by Alison M Behie and Marc F Oxenham Chapters written in honour of Professor Colin P Groves Published by ANU Press The Australian National University Acton ACT 2601, Australia Email: [email protected] This title is also available online at http://press.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Title: Taxonomic tapestries : the threads of evolutionary, behavioural and conservation research / Alison M Behie and Marc F Oxenham, editors. ISBN: 9781925022360 (paperback) 9781925022377 (ebook) Subjects: Biology--Classification. Biology--Philosophy. Human ecology--Research. Coexistence of species--Research. Evolution (Biology)--Research. Taxonomists. Other Creators/Contributors: Behie, Alison M., editor. Oxenham, Marc F., editor. Dewey Number: 578.012 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design and layout by ANU Press Cover photograph courtesy of Hajarimanitra Rambeloarivony Printed by Griffin Press This edition © 2015 ANU Press Contents List of Contributors . .vii List of Figures and Tables . ix PART I 1. The Groves effect: 50 years of influence on behaviour, evolution and conservation research . 3 Alison M Behie and Marc F Oxenham PART II 2 . Characterisation of the endemic Sulawesi Lenomys meyeri (Muridae, Murinae) and the description of a new species of Lenomys . 13 Guy G Musser 3 . Gibbons and hominoid ancestry . 51 Peter Andrews and Richard J Johnson 4 . -
Paranthropus Boisei: Fifty Years of Evidence and Analysis Bernard A
Marshall University Marshall Digital Scholar Biological Sciences Faculty Research Biological Sciences Fall 11-28-2007 Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard A. Wood George Washington University Paul J. Constantino Biological Sciences, [email protected] Follow this and additional works at: http://mds.marshall.edu/bio_sciences_faculty Part of the Biological and Physical Anthropology Commons Recommended Citation Wood B and Constantino P. Paranthropus boisei: Fifty years of evidence and analysis. Yearbook of Physical Anthropology 50:106-132. This Article is brought to you for free and open access by the Biological Sciences at Marshall Digital Scholar. It has been accepted for inclusion in Biological Sciences Faculty Research by an authorized administrator of Marshall Digital Scholar. For more information, please contact [email protected], [email protected]. YEARBOOK OF PHYSICAL ANTHROPOLOGY 50:106–132 (2007) Paranthropus boisei: Fifty Years of Evidence and Analysis Bernard Wood* and Paul Constantino Center for the Advanced Study of Hominid Paleobiology, George Washington University, Washington, DC 20052 KEY WORDS Paranthropus; boisei; aethiopicus; human evolution; Africa ABSTRACT Paranthropus boisei is a hominin taxon ers can trace the evolution of metric and nonmetric var- with a distinctive cranial and dental morphology. Its iables across hundreds of thousands of years. This pa- hypodigm has been recovered from sites with good per is a detailed1 review of half a century’s worth of fos- stratigraphic and chronological control, and for some sil evidence and analysis of P. boi se i and traces how morphological regions, such as the mandible and the both its evolutionary history and our understanding of mandibular dentition, the samples are not only rela- its evolutionary history have evolved during the past tively well dated, but they are, by paleontological 50 years. -
Using Sub-Species Level Phylogenies
1 Reconstructing the ancestral phenotypes of great apes and 2 humans (Homininae) using sub-species level phylogenies 3 Keaghan Yaxley1 and Robert Foley2 4 1Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, UK 5 2Leverhulme Centre for Human Evolutionary Studies, University of Cambridge, UK 6 7 8 1 9 Abstract 10 By their close affinity, the African great apes are of interest to the study of human evolution. 11 While numerous researchers have described the ancestors we share with these species with 12 reference to extant great apes, few have done so with phylogenetic comparative methods. 13 One obstacle to the application of these techniques is the within-species phenotypic variation 14 found in this group. Here we leverage this variation, modelling common ancestors using 15 Ancestral State Reconstructions (ASRs) with reference to subspecies level trait data. A 16 subspecies level phylogeny of the African great apes and humans was estimated from full- 17 genome mtDNA sequences and used to implement ASRs for fifteen continuous traits known 18 to vary between great ape subspecies. While including within-species phenotypic variation 19 increased phylogenetic signal for our traits and improved the performance of our ASRs, 20 whether this was done through the inclusion of subspecies phylogeny or through the use of 21 existing methods made little difference. Our ASRs corroborate previous findings that the Last 22 Common Ancestor (LCA) of humans, chimpanzees and bonobos was a chimp-like animal, 23 but also suggest that the LCA of humans, chimpanzees, bonobos and gorillas was an animal 24 unlike any extant African great ape. -
Unravelling the Positional Behaviour of Fossil Hominoids: Morphofunctional and Structural Analysis of the Primate Hindlimb
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Doctorado en Biodiversitat Facultad de Ciènces Tesis doctoral Unravelling the positional behaviour of fossil hominoids: Morphofunctional and structural analysis of the primate hindlimb Marta Pina Miguel 2016 Memoria presentada por Marta Pina Miguel para optar al grado de Doctor por la Universitat Autònoma de Barcelona, programa de doctorado en Biodiversitat del Departamento de Biologia Animal, de Biologia Vegetal i d’Ecologia (Facultad de Ciències). Este trabajo ha sido dirigido por el Dr. Salvador Moyà Solà (Institut Català de Paleontologia Miquel Crusafont) y el Dr. Sergio Almécija Martínez (The George Washington Univertisy). Director Co-director Dr. Salvador Moyà Solà Dr. Sergio Almécija Martínez A mis padres y hermana. Y a todas aquelas personas que un día decidieron perseguir un sueño Contents Acknowledgments [in Spanish] 13 Abstract 19 Resumen 21 Section I. Introduction 23 Hominoid positional behaviour The great apes of the Vallès-Penedès Basin: State-of-the-art Section II. Objectives 55 Section III. Material and Methods 59 Hindlimb fossil remains of the Vallès-Penedès hominoids Comparative sample Area of study: The Vallès-Penedès Basin Methodology: Generalities and principles Section IV. -
Title Three-Dimensional Morphology of the Sigmoid Notch of The
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Three-Dimensional Morphology of the Sigmoid Notch of the Title Ulna in Kenyapithecus and Proconsul NAKATSUKASA, Masato; SHIMIZU, Daisuke; NAKANO, Author(s) Yoshihiko; ISHIDA, Hidemi African study monographs. Supplementary issue (1996), 24: Citation 57-71 Issue Date 1996-12 URL http://dx.doi.org/10.14989/68383 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University African Study Monographs, Suppl. 24: 57-71, December 1996 57 THREE-DIMENSIONAL MORPHOLOGY OF THE SIGMOID NOTCH OF THE ULNA IN KENYAPITHECUS AND PROCONSUL Masato Nakatsukasa Daisuke Shimizu Laboratory of Physical Anthropology, Faculty of Science, Kyoto University Yoshihiko Nakano Department of Biological Anthropology, Faculty of Human Sciences, Osaka University Hidemi Ishida Laboratory of Physical Anthropology, Faculty of Science, Kyoto University ABSTRACT The three-dimensional (3-D) morphology of the sigmoid notch was examined in Kenyapithecus, Proconsul, and several living anthropoids by using an automatic 3-D digitizer. It was revealed that Kenyapithecus and Proconsul exhibit a very similar morphology of the dis tal region of the sigmoid notch; including the absence of a median keel and a downward sloped coronoid process. In addition, the proxilnal region of the sigmoid notch is curved more acutely relative to the distal region in Proconsul. This morphological complex is unique and not found in the examined living primates. The benefits of 3-D morphometries are discussed. Key Words: Kenyapithecus, Proconsul, sigmoid notch, three-dimensional morphometrics, ulna. INTRODUCTION Recently, automatic three-dimensional (3-0) digitizers have become more fre quently to be used for biometrics. -
New Hominoid Mandible from the Early Late Miocene Irrawaddy Formation in Tebingan Area, Central Myanmar Masanaru Takai1*, Khin Nyo2, Reiko T
Anthropological Science Advance Publication New hominoid mandible from the early Late Miocene Irrawaddy Formation in Tebingan area, central Myanmar Masanaru Takai1*, Khin Nyo2, Reiko T. Kono3, Thaung Htike4, Nao Kusuhashi5, Zin Maung Maung Thein6 1Primate Research Institute, Kyoto University, 41 Kanrin, Inuyama, Aichi 484-8506, Japan 2Zaykabar Museum, No. 1, Mingaradon Garden City, Highway No. 3, Mingaradon Township, Yangon, Myanmar 3Keio University, 4-1-1 Hiyoshi, Kouhoku-Ku, Yokohama, Kanagawa 223-8521, Japan 4University of Yangon, Hlaing Campus, Block (12), Hlaing Township, Yangon, Myanmar 5Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan 6University of Mandalay, Mandalay, Myanmar Received 14 August 2020; accepted 13 December 2020 Abstract A new medium-sized hominoid mandibular fossil was discovered at an early Late Miocene site, Tebingan area, south of Magway city, central Myanmar. The specimen is a left adult mandibular corpus preserving strongly worn M2 and M3, fragmentary roots of P4 and M1, alveoli of canine and P3, and the lower half of the mandibular symphysis. In Southeast Asia, two Late Miocene medium-sized hominoids have been discovered so far: Lufengpithecus from the Yunnan Province, southern China, and Khoratpithecus from northern Thailand and central Myanmar. In particular, the mandibular specimen of Khoratpithecus was discovered from the neighboring village of Tebingan. However, the new mandible shows apparent differences from both genera in the shape of the outline of the mandibular symphyseal section. The new Tebingan mandible has a well-developed superior transverse torus, a deep intertoral sulcus (= genioglossal fossa), and a thin, shelf-like inferior transverse torus. In contrast, Lufengpithecus and Khoratpithecus each have very shallow intertoral sulcus and a thick, rounded inferior transverse torus. -
Darwin and the Recent African Origin of Modern Humans
EDITORIAL Darwin and the recent African origin of modern humans Richard G. Klein1 Program in Human Biology, Stanford University, Stanford, CA 94305 n this 200th anniversary of When Darwin and Huxley were ac- The Course of Human Evolution Charles Darwin’s birth and tive, many respected scientists sub- In the absence of fossils, Darwin could the 150th anniversary of the scribed to the now discredited idea that not have predicted the fundamental pat- publication of his monumen- human races represented variably tern of human evolution, but his evolu- Otal The Origin of Species (1859) (1), it evolved populations of Homo sapiens. tionary theory readily accommodates seems fitting to summarize Darwin’s The original Neanderthal skull had a the pattern we now recognize. Probably views on human evolution and to show conspicuous browridge, and compared the most fundamental finding is that the how far we have come since. Darwin with the skulls of modern humans, it australopithecines, who existed from at famously neglected the subject in The was decidedly long and low. At the same least 4.5 million to 2 million years ago, Origin, except near the end where he time, it had a large braincase, and Hux- were distinguished from apes primarily noted only that ‘‘light would be thrown ley regarded it as ‘‘the extreme term of by anatomical specializations for habit- on the origin of man and his history’’ by a series leading gradually from it to the ual bipedalism, and it was only after 2 the massive evidence he had compiled highest and best developed of [modern] million years ago that people began to for evolution by means of natural selec- human crania.’’ It was only in 1891 that acquire the other traits, including our tion.