Title Three-Dimensional Morphology of the Sigmoid Notch of The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Full Article in PDF Format
Dryopithecins, Darwin, de Bonis, and the European origin of the African apes and human clade David R. BEGUN University of Toronto, Department of Anthropology, 19 Russell Street, Toronto, ON, M5S 2S2 (Canada) [email protected] Begun R. D. 2009. — Dryopithecins, Darwin, de Bonis, and the European origin of the African apes and human clade. Geodiversitas 31 (4) : 789-816. ABSTRACT Darwin famously opined that the most likely place of origin of the common ancestor of African apes and humans is Africa, given the distribution of its liv- ing descendents. But it is infrequently recalled that immediately afterwards, Darwin, in his typically thorough and cautious style, noted that a fossil ape from Europe, Dryopithecus, may instead represent the ancestors of African apes, which dispersed into Africa from Europe. Louis de Bonis and his collaborators were the fi rst researchers in the modern era to echo Darwin’s suggestion about apes from Europe. Resulting from their spectacular discoveries in Greece over several decades, de Bonis and colleagues have shown convincingly that African KEY WORDS ape and human clade members (hominines) lived in Europe at least 9.5 million Mammalia, years ago. Here I review the fossil record of hominoids in Europe as it relates to Primates, Dryopithecus, the origins of the hominines. While I diff er in some details with Louis, we are Hispanopithecus, in complete agreement on the importance of Europe in determining the fate Rudapithecus, of the African ape and human clade. Th ere is no doubt that Louis de Bonis is Ouranopithecus, hominine origins, a pioneer in advancing our understanding of this fascinating time in our evo- new subtribe. -
Human Evolution: a Paleoanthropological Perspective - F.H
PHYSICAL (BIOLOGICAL) ANTHROPOLOGY - Human Evolution: A Paleoanthropological Perspective - F.H. Smith HUMAN EVOLUTION: A PALEOANTHROPOLOGICAL PERSPECTIVE F.H. Smith Department of Anthropology, Loyola University Chicago, USA Keywords: Human evolution, Miocene apes, Sahelanthropus, australopithecines, Australopithecus afarensis, cladogenesis, robust australopithecines, early Homo, Homo erectus, Homo heidelbergensis, Australopithecus africanus/Australopithecus garhi, mitochondrial DNA, homology, Neandertals, modern human origins, African Transitional Group. Contents 1. Introduction 2. Reconstructing Biological History: The Relationship of Humans and Apes 3. The Human Fossil Record: Basal Hominins 4. The Earliest Definite Hominins: The Australopithecines 5. Early Australopithecines as Primitive Humans 6. The Australopithecine Radiation 7. Origin and Evolution of the Genus Homo 8. Explaining Early Hominin Evolution: Controversy and the Documentation- Explanation Controversy 9. Early Homo erectus in East Africa and the Initial Radiation of Homo 10. After Homo erectus: The Middle Range of the Evolution of the Genus Homo 11. Neandertals and Late Archaics from Africa and Asia: The Hominin World before Modernity 12. The Origin of Modern Humans 13. Closing Perspective Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS The basic course of human biological history is well represented by the existing fossil record, although there is considerable debate on the details of that history. This review details both what is firmly understood (first echelon issues) and what is contentious concerning humanSAMPLE evolution. Most of the coCHAPTERSntention actually concerns the details (second echelon issues) of human evolution rather than the fundamental issues. For example, both anatomical and molecular evidence on living (extant) hominoids (apes and humans) suggests the close relationship of African great apes and humans (hominins). That relationship is demonstrated by the existing hominoid fossil record, including that of early hominins. -
Unravelling the Positional Behaviour of Fossil Hominoids: Morphofunctional and Structural Analysis of the Primate Hindlimb
ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Doctorado en Biodiversitat Facultad de Ciènces Tesis doctoral Unravelling the positional behaviour of fossil hominoids: Morphofunctional and structural analysis of the primate hindlimb Marta Pina Miguel 2016 Memoria presentada por Marta Pina Miguel para optar al grado de Doctor por la Universitat Autònoma de Barcelona, programa de doctorado en Biodiversitat del Departamento de Biologia Animal, de Biologia Vegetal i d’Ecologia (Facultad de Ciències). Este trabajo ha sido dirigido por el Dr. Salvador Moyà Solà (Institut Català de Paleontologia Miquel Crusafont) y el Dr. Sergio Almécija Martínez (The George Washington Univertisy). Director Co-director Dr. Salvador Moyà Solà Dr. Sergio Almécija Martínez A mis padres y hermana. Y a todas aquelas personas que un día decidieron perseguir un sueño Contents Acknowledgments [in Spanish] 13 Abstract 19 Resumen 21 Section I. Introduction 23 Hominoid positional behaviour The great apes of the Vallès-Penedès Basin: State-of-the-art Section II. Objectives 55 Section III. Material and Methods 59 Hindlimb fossil remains of the Vallès-Penedès hominoids Comparative sample Area of study: The Vallès-Penedès Basin Methodology: Generalities and principles Section IV. -
Glaciation (Oakley, 1950). Variations in the Proposed Beginning Dates
EVOLUTION OF THE HUMAN HAND AMD THE GREAT HAND-AXE TRADITION Grover S. Krantz The hand-axe is both the earliest and the longest persisting of standar- dized stone tools. They present a continuous history of one tool type from the first to the third interglacial periods, a span.of at least 200,000 years and perhaps as many as half a million. Equally remarkable is their geographical range which covers all of Africa, western Europe and southern Asia--fully half of-the then habitable Old Vorld. Aside from differences in the local stone that was utilized, hand-axes from this whole area are constructed on the same plan and show no clear regional typology. Other tool types occur with hand-axes: utilized flakes are found at all levels, and in the later half of the sequence there-are cleavers, ovates, trimmed flakes and spherical stone balls. Throughout the sequence, however, the basic design of the hand-axe continues with its intended formnapparently unchanged. We thus have a continuous record of man's attempts to produce a single type of 'implement over mst of his tool making history. (See Figure 1.) Recent discoveries of fossil man have made it increasingly evident that biological evolution of the human body was also in progress coincident with the development of ancient stone tool types. 'While the exact time of appearance of Homo siens is still in some dispute (see Stewart, 1950 and Oakley., 1957), it is no nowseriously maintained that the earliest tool makers necessarily approximated the modern or even the neanderthal morphologies. -
A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade Salvador Moya` -Sola` A,1, David M
A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene). -
8. Primate Evolution
8. Primate Evolution Jonathan M. G. Perry, Ph.D., The Johns Hopkins University School of Medicine Stephanie L. Canington, B.A., The Johns Hopkins University School of Medicine Learning Objectives • Understand the major trends in primate evolution from the origin of primates to the origin of our own species • Learn about primate adaptations and how they characterize major primate groups • Discuss the kinds of evidence that anthropologists use to find out how extinct primates are related to each other and to living primates • Recognize how the changing geography and climate of Earth have influenced where and when primates have thrived or gone extinct The first fifty million years of primate evolution was a series of adaptive radiations leading to the diversification of the earliest lemurs, monkeys, and apes. The primate story begins in the canopy and understory of conifer-dominated forests, with our small, furtive ancestors subsisting at night, beneath the notice of day-active dinosaurs. From the archaic plesiadapiforms (archaic primates) to the earliest groups of true primates (euprimates), the origin of our own order is characterized by the struggle for new food sources and microhabitats in the arboreal setting. Climate change forced major extinctions as the northern continents became increasingly dry, cold, and seasonal and as tropical rainforests gave way to deciduous forests, woodlands, and eventually grasslands. Lemurs, lorises, and tarsiers—once diverse groups containing many species—became rare, except for lemurs in Madagascar where there were no anthropoid competitors and perhaps few predators. Meanwhile, anthropoids (monkeys and apes) emerged in the Old World, then dispersed across parts of the northern hemisphere, Africa, and ultimately South America. -
List of Entries
Volume 1.qxd 9/13/2005 3:29 PM Page ix GGGGG LIST OF ENTRIES Aborigines Anthropic principle Apes, greater Aborigines Anthropocentrism Apes, lesser Acheulean culture Anthropology and business Apollonian Acropolis Anthropology and Aquatic ape hypothesis Action anthropology epistemology Aquinas, Thomas Adaptation, biological Anthropology and the Third Arboreal hypothesis Adaptation, cultural World Archaeology Aesthetic appreciation Anthropology of men Archaeology and gender Affirmative action Anthropology of religion studies Africa, socialist schools in Anthropology of women Archaeology, biblical African American thought Anthropology, careers in Archaeology, environmental African Americans Anthropology, characteristics of Archaeology, maritime African thinkers Anthropology, clinical Archaeology, medieval Aggression Anthropology, cultural Archaeology, salvage Ape aggression Anthropology, economic Architectural anthropology Agricultural revolution Anthropology, history of Arctic Agriculture, intensive Future of anthropology Ardrey, Robert Agriculture, origins of Anthropology, humanistic Argentina Agriculture, slash-and-burn Anthropology, philosophical Aristotle Alchemy Anthropology, practicing Arsuaga, J. L. Aleuts Anthropology, social Art, universals in ALFRED: The ALlele FREquency Anthropology and sociology Artificial intelligence Database Social anthropology Artificial intelligence Algonquians Anthropology, subdivisions of Asante Alienation Anthropology, theory in Assimilation Alienation Anthropology, Visual Atapuerca Altamira cave -
A Comparative Analysis of the Wrist and Ankle Morphology of Hominoids and Lorisids, with Implications for the Evolution of Hominoid Locomotion
Durham E-Theses A comparative analysis of the wrist and ankle morphology of hominoids and lorisids, with implications for the evolution of hominoid locomotion Read, Catriona S. How to cite: Read, Catriona S. (2001) A comparative analysis of the wrist and ankle morphology of hominoids and lorisids, with implications for the evolution of hominoid locomotion, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/3775/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 A Comparative Analysis of the Wrist and Ankle Morphology of Hominoids and Lorisids, with Implications for the Evolution of Hominoid Locomotion A Dissertation presented by Catriona S. Read to The Graduate School For the degree of Master of Science m Biological Anthropology Department of Anthropology University of Durham September 2001 The co11yright of this thesis rests with the author. -
Fossil Primates
AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates. -
Age at First Molar Emergence in Early Miocene Afropithecus Turkanensis
Journal of Human Evolution 44 (2003) 307–329 Age at first molar emergence in early Miocene Afropithecus turkanensis and life-history evolution in the Hominoidea Jay Kelley1*, Tanya M. Smith2 1 Department of Oral Biology (m/c 690), College of Dentistry, University of Illinois at Chicago, 801 S. Paulina, Chicago, IL 60612, USA 2 Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA Received 12 July 2002; accepted 7 January 2003 Abstract Among primates, age at first molar emergence is correlated with a variety of life history traits. Age at first molar emergence can therefore be used to broadly infer the life histories of fossil primate species. One method of determining age at first molar emergence is to determine the age at death of fossil individuals that were in the process of erupting their first molars. This was done for an infant partial mandible of Afropithecus turkanensis (KNM-MO 26) from the w17.5 Ma site of Moruorot in Kenya. A range of estimates of age at death was calculated for this individual using the permanent lateral incisor germ preserved in its crypt, by combining the number and periodicity of lateral enamel perikymata with estimates of the duration of cuspal enamel formation and the duration of the postnatal delay in the inception of crown mineralization. Perikymata periodicity was determined using daily cross striations between adjacent Retzius lines in thin sections of two A. turkanensis molars from the nearby site of Kalodirr. Based on the position of the KNM-MO 26 M1 in relation to the mandibular alveolar margin, it had not yet undergone gingival emergence. -
A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade
A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene). -
Dental Anatomy of the Early Hominid, Orrorin Tugenensis, from the Lukeino Formation, Tugen Hills, Kenya
Revue de Paléobiologie, Genève (décembre 2018) 37 (2): 577-591 ISSN 0253-6730 Dental anatomy of the early hominid, Orrorin tugenensis, from the Lukeino Formation, Tugen Hills, Kenya Brigitte SENUT1,*, Martin PICKFORD2 & Dominique GOMMERY3 1 CR2P - Centre de Recherche en Paléontologie - Paris, MNHN - CNRS - Sorbonne Université, Muséum national d’Histoire naturelle, CP 38, 8, rue Buffon, F-75252 Paris cedex 05, France. E-mail: *[email protected] 2 CR2P - Centre de Recherche en Paléontologie - Paris, MNHN - CNRS - Sorbonne Université, Muséum national d’Histoire naturelle, CP 38, 8, rue Buffon, F-75252 Paris cedex 05, France. E-mail: [email protected] 3 CR2P - Centre de Recherche en Paléontologie - Paris, CNRS - MNHN - Sorbonne Université, Campus Pierre et Marie Curie - Jussieu, T. 46 - 56, E.5, Case 104, F-75252 Paris cedex 05, France. E-mail: [email protected] Abstract Subsequent to the initial publication of the Late Miocene hominid genus and species, Orrorin tugenensis, in 2001, additional dental remains were discovered which comprise the subject of this paper. Detailed descriptions of all the Orrorin fossils are provided and comparisons are made with other late Miocene and early Pliocene hominoid fossils, in particular Ardipithecus ramidus, Ardipithecus kadabba and Sahelanthropus tchadensis. The Late Miocene Lukeino Formation from which the remains of Orrorin were collected, has yielded rare remains of a chimpanzee-like hominoid as well as a gorilla-sized ape. Although comparisons with Ardipithecus ramidus are difficult due to the fact that measurements of the teeth have not been published, it is concluded thatAr. ramidus is chimpanzee-like in several features, whereas some of the Ardipithecus kadabba fossils are close to Orrorin (others are more chimpanzee-like).