Age at First Molar Emergence in Early Miocene Afropithecus Turkanensis

Total Page:16

File Type:pdf, Size:1020Kb

Age at First Molar Emergence in Early Miocene Afropithecus Turkanensis Journal of Human Evolution 44 (2003) 307–329 Age at first molar emergence in early Miocene Afropithecus turkanensis and life-history evolution in the Hominoidea Jay Kelley1*, Tanya M. Smith2 1 Department of Oral Biology (m/c 690), College of Dentistry, University of Illinois at Chicago, 801 S. Paulina, Chicago, IL 60612, USA 2 Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA Received 12 July 2002; accepted 7 January 2003 Abstract Among primates, age at first molar emergence is correlated with a variety of life history traits. Age at first molar emergence can therefore be used to broadly infer the life histories of fossil primate species. One method of determining age at first molar emergence is to determine the age at death of fossil individuals that were in the process of erupting their first molars. This was done for an infant partial mandible of Afropithecus turkanensis (KNM-MO 26) from the w17.5 Ma site of Moruorot in Kenya. A range of estimates of age at death was calculated for this individual using the permanent lateral incisor germ preserved in its crypt, by combining the number and periodicity of lateral enamel perikymata with estimates of the duration of cuspal enamel formation and the duration of the postnatal delay in the inception of crown mineralization. Perikymata periodicity was determined using daily cross striations between adjacent Retzius lines in thin sections of two A. turkanensis molars from the nearby site of Kalodirr. Based on the position of the KNM-MO 26 M1 in relation to the mandibular alveolar margin, it had not yet undergone gingival emergence. The projected time to gingival emergence was estimated based on radiographic studies of M1 eruption in extant baboons and chimpanzees. The estimates of age at M1 emergence in KNM-MO 26 range from 28.2 to 43.5 months, using minimum and average values from extant great apes and humans for the estimated growth parameters. Even the absolute minimum value is well outside the ranges of extant large Old World monkeys for which there are data (12.5 to <25 months), but is within the range of chimpanzees (25.7 to 48.0 months). It is inferred, therefore, that A. turkanensis had a life history profile broadly like that of Pan. This is additional evidence to that provided by Sivapithecus parvada (Function, Phylogeny, and Fossils: Miocene Hominoid Evolution and Adaptations, 1997, 173) that the prolonged life histories characteristic of extant apes were achieved early in the evolutionary history of the group. However, it is unclear at present whether life-history prolongation in apes represents the primitive catarrhine pace of life history extended through phyletic increase in body mass, or whether it is derived with respect to a primitive, size-adjusted life history that was broadly intermediate between those of extant hominoids and cercopithecoids. Life history evolution in primates as a whole may have occurred largely through a series of grade-shifts, with the establishment of fundamental life-history profiles early in the histories of major higher taxa. These may have included shifts that were largely body mass dependent, as well as those that occurred in the absence of significant changes in body mass. 2003 Elsevier Science Ltd. All rights reserved. Keywords: Miocene hominoid; dentition; dental eruption; enamel microstructure; primate life history; primate evolution * Corresponding author. Tel.: +1-312-996-6054; fax: +1-312-996-6044 E-mail addresses: [email protected] (J. Kelley), [email protected] (T.M. Smith). 0047-2484/03/$ - see front matter 2003 Elsevier Science Ltd. All rights reserved. doi:10.1016/S0047-2484(03)00005-8 308 J. Kelley, T.M. Smith / Journal of Human Evolution 44 (2003) 307–329 Introduction Life history is one of the most fundamental attributes of a species’ biology. The term ‘life history’ encompasses a host of specific traits, but is most commonly conceptualized in terms of a series of growth and maturational phases ultimately related to the scheduling of reproduction and lifetime reproductive output. These include gesta- tion period, age at weaning, age at sexual maturity and first breeding, interbirth interval, and lon- gevity. Given the importance of life history, it is not surprising that it has become an important issue in primate paleobiology. To date, most of the effort to reconstruct the life histories of extinct species has been focused on the human lineage. Fig. 1. Least squares regression of age at first breeding (months) However, attempts to reconstruct aspects of the against average body mass (kg), both log-transformed, in the life histories of extinct non-human primates are following extant primate higher taxa (numbers of included species in parentheses): Al, Alouattini (2); At, Atelini (2); Ca, becoming increasingly common (Lee and Foley, Callitrichinae (3); Cb, Cebinae (3); Ce, Cercopithecinae (6); Co, 1993; Kelley, 1997, 2002; Kelley et al., 2001; Colobinae (8); Ho, Hominidae (3); Hy, Hylobatidae (2); In, Godfrey et al., 2002; Schwartz et al., 2002). The Indriidae (3); Le, Lemuridae (7). Data on age at first breeding from Godfrey et al. (2001) and from K. Strier, personal evolution of primate life histories, and the role of communication, for Brachyteles arachnoides (Atelini); body life history in the adaptive radiations of major mass data from Smith and Jungers (1997). Body masses are primate groups, are also beginning to receive averages of male and female means for the included species. Results are unchanged using female mass rather than average increasing attention (Charnov and Berrigan, 1993; mass. Kelley, 1997, 2002; Ross, 1998; Godfrey et al., 2001; Macho, 2001). Among catarrhines, extant apes and Old World inferred from the slowed life histories of gibbons, monkeys can be characterized as having under- which probably diverged from the great apes in the gone life-history divergence; apes have relatively early Miocene or early middle Miocene (Caccone slow life histories for their body mass whereas and Powell, 1989), but ultimately this hypothesis monkeys appear to have relatively fast life histories can only be tested in the fossil record. for their mass (Fig. 1; see also Harvey and Importantly, the above hypothesis presumes Clutton-Brock, 1985; Watts, 1990; Kelley, 1997). that life histories have changed in both the This difference is most evident in a comparison of hominoid and cercopithecoid lineages from a gibbons and monkeys, as the body mass range of primitive catarrhine condition that was broadly gibbons (approximately 5–10 kg) falls entirely intermediate, with life-history prolongation in within that of Old World monkeys, and average hominoids and acceleration in cercopithecoids. mass in the two groups is similar. For the timing of However, it is presently unclear that this presump- any given life-history trait in relation to body tion is warranted, an issue that will be further mass, gibbons lie above the primate regression line explored below. while Old World monkeys lie below (Fig. 1). It has The principal means for inferring the life histo- been hypothesized that the life-history divergence ries of fossil species has been through the chronol- between apes and Old World monkeys had its ogy of dental development. The timing of dental genesis soon after the cladogenesis of the two development in all mammals is highly correlated groups (Kelley, 1997), which probably took place with ontogeny as a whole; a functioning dentition in the late Oligocene to earliest Miocene (Kumar must be in place when an animal is weaned and and Hedges, 1998). This could plausibly be must develop in a way that will last for the J. Kelley, T.M. Smith / Journal of Human Evolution 44 (2003) 307–329 309 projected lifetime of the individual. The link 2002). However, the relatively late date for S. between dental development and ontogeny is evi- parvada limits its usefulness as a meaningful test denced by the correlations between aspects of of the hypothesis of an early life-history diver- dental development and individual life-history gence between apes and monkeys in the latest variables (Smith, 1989, 1991, 1992). Dental devel- Oligocene. opment is, in a sense, just another life-history trait The second fossil ape was an individual of (Smith and Tompkins, 1995), but one that is Afropithecus turkanensis from the early Miocene of preserved in the fossil record. While there is Kenya (Kelley, 1999, 2002). In the following analy- systematic variation in the relationship between sis we revise the earlier estimate of age at first dental development and various life-history molar emergence for this individual, which was attributes, primarily associated with variation in preliminary and lacked a full description of the diet (Godfrey et al., 2001), as well as occasional methods of analysis. The revised estimates re- idiosyncratic variation associated with specific ported here incorporate new data on molar crown ecological demands (Godfrey et al., 2002; formation in Afropithecus (see also Smith et al., Schwartz et al., 2002), within a broad framework 2003) and a more thorough and rigorous analysis the pace of dental development serves as a reliable of relevant comparative data. Knowing the age at proxy for the pace of life history as a whole. first molar emergence in Afropithecus is important Among living primates, it has been demonstrated because it nearly doubles the antiquity of such that age at first molar emergence is a particularly estimates for fossil apes, approaching the esti- good correlate of various life-history traits (Smith, mated date of divergence of apes and Old World 1989, 1991), emergence being defined as the initial monkeys. In addition, this analysis provides penetration of the oral gingiva by the molar cusps. further data for the documentation of dental Thus, if the average age at first molar emergence development in fossil apes, which complements can be established for a fossil species, then its information on developmental chronology and general life-history profile can be characterized as crown formation times derived from histological well.
Recommended publications
  • Download Full Article in PDF Format
    Dryopithecins, Darwin, de Bonis, and the European origin of the African apes and human clade David R. BEGUN University of Toronto, Department of Anthropology, 19 Russell Street, Toronto, ON, M5S 2S2 (Canada) [email protected] Begun R. D. 2009. — Dryopithecins, Darwin, de Bonis, and the European origin of the African apes and human clade. Geodiversitas 31 (4) : 789-816. ABSTRACT Darwin famously opined that the most likely place of origin of the common ancestor of African apes and humans is Africa, given the distribution of its liv- ing descendents. But it is infrequently recalled that immediately afterwards, Darwin, in his typically thorough and cautious style, noted that a fossil ape from Europe, Dryopithecus, may instead represent the ancestors of African apes, which dispersed into Africa from Europe. Louis de Bonis and his collaborators were the fi rst researchers in the modern era to echo Darwin’s suggestion about apes from Europe. Resulting from their spectacular discoveries in Greece over several decades, de Bonis and colleagues have shown convincingly that African KEY WORDS ape and human clade members (hominines) lived in Europe at least 9.5 million Mammalia, years ago. Here I review the fossil record of hominoids in Europe as it relates to Primates, Dryopithecus, the origins of the hominines. While I diff er in some details with Louis, we are Hispanopithecus, in complete agreement on the importance of Europe in determining the fate Rudapithecus, of the African ape and human clade. Th ere is no doubt that Louis de Bonis is Ouranopithecus, hominine origins, a pioneer in advancing our understanding of this fascinating time in our evo- new subtribe.
    [Show full text]
  • Human Evolution: a Paleoanthropological Perspective - F.H
    PHYSICAL (BIOLOGICAL) ANTHROPOLOGY - Human Evolution: A Paleoanthropological Perspective - F.H. Smith HUMAN EVOLUTION: A PALEOANTHROPOLOGICAL PERSPECTIVE F.H. Smith Department of Anthropology, Loyola University Chicago, USA Keywords: Human evolution, Miocene apes, Sahelanthropus, australopithecines, Australopithecus afarensis, cladogenesis, robust australopithecines, early Homo, Homo erectus, Homo heidelbergensis, Australopithecus africanus/Australopithecus garhi, mitochondrial DNA, homology, Neandertals, modern human origins, African Transitional Group. Contents 1. Introduction 2. Reconstructing Biological History: The Relationship of Humans and Apes 3. The Human Fossil Record: Basal Hominins 4. The Earliest Definite Hominins: The Australopithecines 5. Early Australopithecines as Primitive Humans 6. The Australopithecine Radiation 7. Origin and Evolution of the Genus Homo 8. Explaining Early Hominin Evolution: Controversy and the Documentation- Explanation Controversy 9. Early Homo erectus in East Africa and the Initial Radiation of Homo 10. After Homo erectus: The Middle Range of the Evolution of the Genus Homo 11. Neandertals and Late Archaics from Africa and Asia: The Hominin World before Modernity 12. The Origin of Modern Humans 13. Closing Perspective Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS The basic course of human biological history is well represented by the existing fossil record, although there is considerable debate on the details of that history. This review details both what is firmly understood (first echelon issues) and what is contentious concerning humanSAMPLE evolution. Most of the coCHAPTERSntention actually concerns the details (second echelon issues) of human evolution rather than the fundamental issues. For example, both anatomical and molecular evidence on living (extant) hominoids (apes and humans) suggests the close relationship of African great apes and humans (hominins). That relationship is demonstrated by the existing hominoid fossil record, including that of early hominins.
    [Show full text]
  • Unravelling the Positional Behaviour of Fossil Hominoids: Morphofunctional and Structural Analysis of the Primate Hindlimb
    ADVERTIMENT. Lʼaccés als continguts dʼaquesta tesi queda condicionat a lʼacceptació de les condicions dʼús establertes per la següent llicència Creative Commons: http://cat.creativecommons.org/?page_id=184 ADVERTENCIA. El acceso a los contenidos de esta tesis queda condicionado a la aceptación de las condiciones de uso establecidas por la siguiente licencia Creative Commons: http://es.creativecommons.org/blog/licencias/ WARNING. The access to the contents of this doctoral thesis it is limited to the acceptance of the use conditions set by the following Creative Commons license: https://creativecommons.org/licenses/?lang=en Doctorado en Biodiversitat Facultad de Ciènces Tesis doctoral Unravelling the positional behaviour of fossil hominoids: Morphofunctional and structural analysis of the primate hindlimb Marta Pina Miguel 2016 Memoria presentada por Marta Pina Miguel para optar al grado de Doctor por la Universitat Autònoma de Barcelona, programa de doctorado en Biodiversitat del Departamento de Biologia Animal, de Biologia Vegetal i d’Ecologia (Facultad de Ciències). Este trabajo ha sido dirigido por el Dr. Salvador Moyà Solà (Institut Català de Paleontologia Miquel Crusafont) y el Dr. Sergio Almécija Martínez (The George Washington Univertisy). Director Co-director Dr. Salvador Moyà Solà Dr. Sergio Almécija Martínez A mis padres y hermana. Y a todas aquelas personas que un día decidieron perseguir un sueño Contents Acknowledgments [in Spanish] 13 Abstract 19 Resumen 21 Section I. Introduction 23 Hominoid positional behaviour The great apes of the Vallès-Penedès Basin: State-of-the-art Section II. Objectives 55 Section III. Material and Methods 59 Hindlimb fossil remains of the Vallès-Penedès hominoids Comparative sample Area of study: The Vallès-Penedès Basin Methodology: Generalities and principles Section IV.
    [Show full text]
  • Title Three-Dimensional Morphology of the Sigmoid Notch of The
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository Three-Dimensional Morphology of the Sigmoid Notch of the Title Ulna in Kenyapithecus and Proconsul NAKATSUKASA, Masato; SHIMIZU, Daisuke; NAKANO, Author(s) Yoshihiko; ISHIDA, Hidemi African study monographs. Supplementary issue (1996), 24: Citation 57-71 Issue Date 1996-12 URL http://dx.doi.org/10.14989/68383 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University African Study Monographs, Suppl. 24: 57-71, December 1996 57 THREE-DIMENSIONAL MORPHOLOGY OF THE SIGMOID NOTCH OF THE ULNA IN KENYAPITHECUS AND PROCONSUL Masato Nakatsukasa Daisuke Shimizu Laboratory of Physical Anthropology, Faculty of Science, Kyoto University Yoshihiko Nakano Department of Biological Anthropology, Faculty of Human Sciences, Osaka University Hidemi Ishida Laboratory of Physical Anthropology, Faculty of Science, Kyoto University ABSTRACT The three-dimensional (3-D) morphology of the sigmoid notch was examined in Kenyapithecus, Proconsul, and several living anthropoids by using an automatic 3-D digitizer. It was revealed that Kenyapithecus and Proconsul exhibit a very similar morphology of the dis­ tal region of the sigmoid notch; including the absence of a median keel and a downward sloped coronoid process. In addition, the proxilnal region of the sigmoid notch is curved more acutely relative to the distal region in Proconsul. This morphological complex is unique and not found in the examined living primates. The benefits of 3-D morphometries are discussed. Key Words: Kenyapithecus, Proconsul, sigmoid notch, three-dimensional morphometrics, ulna. INTRODUCTION Recently, automatic three-dimensional (3-0) digitizers have become more fre­ quently to be used for biometrics.
    [Show full text]
  • Juvenile Hominoid Cranium from the Terminal Miocene of Yunnan, China
    Article Geology November 2013 Vol.58 No.31: 37713779 doi: 10.1007/s11434-013-6021-x Juvenile hominoid cranium from the terminal Miocene of Yunnan, China JI XuePing1,2, JABLONSKI Nina G3, SU Denise F4, DENG ChengLong5, FLYNN Lawrence J6, YOU YouShan7 & KELLEY Jay8* 1 Department of Paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; 2 Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China; 3 Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA; 4 Department of Paleobotany and Paleoecology, Cleveland Museum of Natural History, Cleveland, OH 44106, USA; 5 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 6 Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, MA 02138, USA; 7 Zhaotong Institute of Cultural Relics, Zhaotong 657000, China; 8 Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA Received May 28, 2013; accepted July 8, 2013; published online August 7, 2013 Fossil apes are known from several late Miocene localities in Yunnan Province, southwestern China, principally from Shihuiba (Lufeng) and the Yuanmou Basin, and represent three species of Lufengpithecus. They mostly comprise large samples of isolated teeth, but there are also several partial or complete adult crania from Shihuiba and a single juvenile cranium from Yuanmou. Here we describe a new, relatively complete and largely undistorted juvenile cranium from the terminal Miocene locality of Shuitangba, also in Yunnan. It is only the second ape juvenile cranium recovered from the Miocene of Eurasia and it is provisionally assigned to the species present at Shihuiba, Lufengpithecus lufengensis.
    [Show full text]
  • Alternative Models for Evaluating Variation and Sexual Dimorphism in Fossil Hominoid Samples Jeremiah E
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 140:253–264 (2009) Beyond Gorilla and Pongo: Alternative Models for Evaluating Variation and Sexual Dimorphism in Fossil Hominoid Samples Jeremiah E. Scott,1* Caitlin M. Schrein,1 and Jay Kelley2 1School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, Tempe, AZ 85287-4101 2Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612 KEY WORDS bootstrap; dental variation; Lufengpithecus; Ouranopithecus; Sivapithecus ABSTRACT Sexual size dimorphism in the postca- cies. Using these samples, we also evaluated molar dimor- nine dentition of the late Miocene hominoid Lufengpithe- phism and taxonomic composition in two other Miocene cus lufengensis exceeds that in Pongo pygmaeus, demon- ape samples—Ouranopithecus macedoniensis from strating that the maximum degree of molar size dimor- Greece, specimens of which can be sexed based on associ- phism in apes is not represented among the extant ated canines and P3s, and the Sivapithecus sample from Hominoidea. It has not been established, however, that Haritalyangar, India. Ouranopithecus is more dimorphic the molars of Pongo are more dimorphic than those of than the extant taxa but is similar to Lufengpithecus, any other living primate. In this study, we used resam- demonstrating that the level of molar dimorphism pling-based methods to compare molar dimorphism in required for the Greek fossil sample under the single-spe- Gorilla, Pongo,andLufengpithecus to that in the papio- cies taxonomy is not unprecedented when the compara- nin Mandrillus leucophaeus to test two hypotheses: tive framework is expanded to include extinct primates. (1) Pongo possesses the most size-dimorphic molars In contrast, the Haritalyangar Sivapithecus sample, if among living primates and (2) molar size dimorphism in it represents a single species, exhibits substantially Lufengpithecus is greater than that in the most dimorphic greater molar dimorphism than does Lufengpithecus.
    [Show full text]
  • A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade Salvador Moya` -Sola` A,1, David M
    A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene).
    [Show full text]
  • Tapirus Yunnanensis from Shuitangba, a Terminal Miocene Hominoid Site in Zhaotong, Yunnan Province of China JI Xue-Ping1 Nina G
    第53卷 第3期 古 脊 椎 动 物 学 报 pp. 177-192 2015年7月 VERTEBRATA PALASIATICA figs. 1-7 Tapirus yunnanensis from Shuitangba, a terminal Miocene hominoid site in Zhaotong, Yunnan Province of China JI Xue-Ping1 Nina G. JABLONSKI2 TONG Hao-Wen3* Denise F. SU4 Jan Ove R. EBBESTAD5 LIU Cheng-Wu6 YU Teng-Song7 (1 Yunnan Institute of Cultural Relics and Archaeology & Research Center for Southeast Asian Archeology Kunming 650118, China) (2 Department of Anthropology, the Pennsylvania State University University Park, PA 16802, USA) (3 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044, China *Corresponding author: [email protected]) (4 Department of Paleobotany and Paleoecology, Cleveland Museum of Natural History Cleveland, OH 44106, USA) (5 Museum of Evolution, Uppsala University Norbyvägen 16, SE-75236 Uppsala, Sweden) (6 Qujing Institute of Cultural Relics Qujing 655000, Yunnan, China) (7 Zhaotong Institute of Cultural Relics Zhaotong, 657000, Yunnan, China) Abstract The fossil tapirid records of Late Miocene and Early Pliocene were quite poor in China as before known. The recent excavations of the terminal Miocene hominoid site (between 6 and 6.5 Ma) at Shuitangba site, Zhaotong in Yunnan Province resulted in the discovery of rich tapir fossils, which include left maxilla with P2-M2 and mandibles with complete lower dentitions. The new fossil materials can be referred to Tapirus yunnanensis, which represents a quite small species of the genus Tapirus. But T. yunnanensis is slightly larger than another Late Miocene species T. hezhengensis from Gansu, northwest China, both of which are remarkably smaller than the Plio-Pleistocene Tapirus species in China.
    [Show full text]
  • Short.Pdf (8.887Kb)
    3D ANALYSIS OF HIP JOINT MOBILITY AND THE EVOLUTION OF LOCOMOTOR ABILITIES IN MIOCENE HOMINOIDS Ashley S. Hammond Dr. Carol V. Ward, Dissertation Supervisor ABSTRACT The emergence of extant ape-like locomotor behaviors has become a defining issue in reconstructing ape evolution. Suspensory positional behaviors, such as antipronograde bridging, climbing, clambering and transfer, distinguish extant hominoids from Old World monkeys and most New World monkeys. It has been widely theorized that suspensory behaviors involve highly abducted hip joint postures, potentially permitting suspensory behaviors to be inferred from joint function rather than relying on isolated morphologies. This thesis tests whether adaptations for suspensory behaviors can be inferred in fossil nonhuman hominoids from the hip joint. The first study tests the association between suspensory behaviors and hip mobility in anesthetized living anthropoids (n=104). Suspensory taxa were found to have significantly higher passive ranges of abduction and external rotation compared to non-suspensory taxa. The second study developed a digital modeling technique to estimate range of hip abduction and then tested the accuracy of the modeling approach against the live animal data. Hip joint abduction and the abducted knee position were reconstructed in a large sample of extant anthropoids (n=252) and then quantitatively compared these simulations to the in vivo data for passive range of abduction. Suspensory taxa were significantly larger in both simulated abduction (degrees) and abducted knee position (mm), although there was overlap between locomotor groups. The results provided a hypothetical framework for how to interpret abduction modeled in fossil taxa. The final study modeled hip abduction in early Miocene hominoid Proconsul nyanzae, late Miocene crown hominoid Rudapithecus hungaricus, and several large- bodied Plio-Pleistocene fossil cercopithecoids (Paracolobus mutiwa, Paracolobus chemeroni, Theropithecus oswaldi) using the validated modeling approach from the second study.
    [Show full text]
  • Ancestral Facial Morphology of Old World Higher Primates (Anthropoidea/Catarrhini/Miocene/Cranium/Anatomy) BRENDA R
    Proc. Natl. Acad. Sci. USA Vol. 88, pp. 5267-5271, June 1991 Evolution Ancestral facial morphology of Old World higher primates (Anthropoidea/Catarrhini/Miocene/cranium/anatomy) BRENDA R. BENEFIT* AND MONTE L. MCCROSSINt *Department of Anthropology, Southern Illinois University, Carbondale, IL 62901; and tDepartment of Anthropology, University of California, Berkeley, CA 94720 Communicated by F. Clark Howell, March 11, 1991 ABSTRACT Fossil remains of the cercopithecoid Victoia- (1, 5, 6). Contrasting craniofacial configurations of cercopithe- pithecus recently recovered from middle Miocene deposits of cines and great apes are, in consequence, held to be indepen- Maboko Island (Kenya) provide evidence ofthe cranial anatomy dently derived with regard to the ancestral catarrhine condition of Old World monkeys prior to the evolutionary divergence of (1, 5, 6). This reconstruction has formed the basis of influential the extant subfamilies Colobinae and Cercopithecinae. Victoria- cladistic assessments ofthe phylogenetic relationships between pithecus shares a suite ofcraniofacial features with the Oligocene extant and extinct catarrhines (1, 2). catarrhine Aegyptopithecus and early Miocene hominoid Afro- Reconstructions of the ancestral catarrhine morphotype pithecus. AU three genera manifest supraorbital costae, anteri- are based on commonalities of subordinate morphotypes for orly convergent temporal lines, the absence of a postglabellar Cercopithecoidea and Hominoidea (1, 5, 6). Broadly distrib- fossa, a moderate to long snout, great facial
    [Show full text]
  • 08 Early Primate Evolution
    Paper No. : 14 Human Origin and Evolution Module : 08 Early Primate Evolution Development Team Principal Investigator Prof. Anup Kumar Kapoor Department of Anthropology, University of Delhi Dr. Satwanti Kapoor (Retd Professor) Paper Coordinator Department of Anthropology, University of Delhi Mr. Vijit Deepani & Prof. A.K. Kapoor Content Writer Department of Anthropology, University of Delhi Prof. R.K. Pathak Content Reviewer Department of Anthropology, Panjab University, Chandigarh 1 Early Primate Evolution Anthropology Description of Module Subject Name Anthropology Paper Name Human Origin and Evolution Module Name/Title Early Primate Evolution Module Id 08 Contents: Fossil Primates: Introduction Theories of primate origin Primates: Pre- Pleistocene Period a. Palaeocene epoch b. Eocene epoch c. Oligocene epoch d. Miocene – Pliocene epoch Summary Learning outcomes: The learner will be able to develop: an understanding about fossil primates and theories of primate origin. an insight about the extinct primate types of Pre-Pleistocene Period. 2 Early Primate Evolution Anthropology Fossil Primates: Introduction In modern time, the living primates are graded in four principle domains – Prosimian, Monkey, Ape and man. On the basis of examination of fossil evidences, it has been established that all the living primates have evolved and ‘adaptively radiated’ from a common ancestor. Fossil primates exhibit a palaeontological record of evolutionary processes that occurred over the last 65 to 80 million years. Crucial evidence of intermediate forms, that bridge the gap between extinct and extant taxa, is yielded by the macroevolutionary study of the primate fossil evidences. The paleoanthropologists often utilize the comparative anatomical method to develop insight about morphological adaptations in fossil primates.
    [Show full text]
  • Orangutans in Perspective 291
    290 PARTTWO ThePrimates Knott, C.D., and Kahlenberg,S. (2007).In Primatesin Perspective,S. Bearder. C.J.Campbell, A. Fuentes,K.C. MacKinnon and M. Panger,eds. Oxford: Oxford University Press,pp. 290-305. 4*? ad Orangutansin Perspective ForcedCopulations and Female Mating Resistance CherylD, Knott and Sonya M. Kohlenberg INTRODUCTION Though intriguing, this suite of features has proven dif- ficult for researchersto fully understand.The semi-solitary Orangutans (genus Pongo) represent the extreme of many lifestyle of orangutanscombined with their slow life histor- biological para"rneters.Among mammals they have the ies and large ranges means that data accumulate slowly. longest interbirth interval (up to 9 years) and are the largest Also, rapid habitat destruction and political instability in of those that are primarily arboreal. They are the most soli- SoutheastAsia have left only a handful of field sites cur- tary of the diurnal primates and the most sexually dimorphic rently in operation (Fig. 17.1). Despite these difficulties, of the great apes. They range over large areas and do not long-term behavioral studies and recent genetic and hor- have obviously distinct communities. Additionally, adult monal data enable us to begin answering some of the most male orangutanscome in two morphologically distinct types, theoretically interesting questions about this endangered an unusual phenomenonknown as bimaturisnt The smaller great ape. In this chapter, we summarize what is currently of the two male morphs also pursue a mating strategythat is known about the taxonomy and distribution, ecology, social rare among mammals: they obtain a large proportion of organization, reproductive parameters,and conservation of copulations by force.
    [Show full text]