Alternative Models for Evaluating Variation and Sexual Dimorphism in Fossil Hominoid Samples Jeremiah E

Total Page:16

File Type:pdf, Size:1020Kb

Alternative Models for Evaluating Variation and Sexual Dimorphism in Fossil Hominoid Samples Jeremiah E AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 140:253–264 (2009) Beyond Gorilla and Pongo: Alternative Models for Evaluating Variation and Sexual Dimorphism in Fossil Hominoid Samples Jeremiah E. Scott,1* Caitlin M. Schrein,1 and Jay Kelley2 1School of Human Evolution and Social Change, Institute of Human Origins, Arizona State University, Tempe, AZ 85287-4101 2Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL 60612 KEY WORDS bootstrap; dental variation; Lufengpithecus; Ouranopithecus; Sivapithecus ABSTRACT Sexual size dimorphism in the postca- cies. Using these samples, we also evaluated molar dimor- nine dentition of the late Miocene hominoid Lufengpithe- phism and taxonomic composition in two other Miocene cus lufengensis exceeds that in Pongo pygmaeus, demon- ape samples—Ouranopithecus macedoniensis from strating that the maximum degree of molar size dimor- Greece, specimens of which can be sexed based on associ- phism in apes is not represented among the extant ated canines and P3s, and the Sivapithecus sample from Hominoidea. It has not been established, however, that Haritalyangar, India. Ouranopithecus is more dimorphic the molars of Pongo are more dimorphic than those of than the extant taxa but is similar to Lufengpithecus, any other living primate. In this study, we used resam- demonstrating that the level of molar dimorphism pling-based methods to compare molar dimorphism in required for the Greek fossil sample under the single-spe- Gorilla, Pongo,andLufengpithecus to that in the papio- cies taxonomy is not unprecedented when the compara- nin Mandrillus leucophaeus to test two hypotheses: tive framework is expanded to include extinct primates. (1) Pongo possesses the most size-dimorphic molars In contrast, the Haritalyangar Sivapithecus sample, if among living primates and (2) molar size dimorphism in it represents a single species, exhibits substantially Lufengpithecus is greater than that in the most dimorphic greater molar dimorphism than does Lufengpithecus. living primates. Our results show that M. leucophaeus Given these results, the taxonomic status of this sample exceeds great apes in its overall level of dimorphism and remains equivocal. Am J Phys Anthropol 140:253–264, that L. lufengensis is more dimorphic than the extant spe- 2009. VC 2009 Wiley-Liss, Inc. A frequently encountered problem in hominoid paleon- However, adopting a multiple-species taxonomy for a fos- tology is identification of the source of high levels of size sil sample solely on the basis of excessive size variation variation in a fossil sample (e.g., Kay 1982a,b; Lieber- relative to Gorilla and Pongo is problematic for two rea- man et al., 1988; Cope and Lacy, 1992; Albrecht and sons. First, it is not clear that the upper limit of intra- Miller, 1993; Kramer, 1993; Martin and Andrews, 1993; specific variation in extant primates is represented by Richmond and Jungers, 1995; Lockwood et al., 1996, these taxa. Among living primates, Gorilla and Pongo 2000; Plavcan and Cope, 2001; Silverman et al., 2001; are exceeded in body-mass dimorphism (and presumably Scott and Lockwood, 2004; Villmoare, 2005). While some intraspecific variation in body mass) by the African sources are relatively easily identified and controlled papionin Mandrillus sphinx (Jungers and Smith, 1997; (e.g., variation due to ontogeny or pathology), others Setchell et al., 2001). Although it has not been estab- present greater difficulty. For example, high variation in lished whether this difference is reflected in aspects of a single fossil sample can be interpreted as evidence of skeletal or dental size variation and dimorphism, data the presence of multiple species, changes in size over from other papionins, particularly Papio, indicate that at time, or marked sexual dimorphism, or some combina- least some of the members of this clade may be more tion of these factors. Determining which of these alterna- skeletally and dentally dimorphic than the great apes tives is responsible for the pattern of variation in a given (e.g., Wood, 1976; Uchida, 1996a,b; Plavcan, 2002, 2003). fossil assemblage is important because each has different Second, the upper limit of intraspecific variation may implications regarding species diversity, modes of evolu- not be represented by any extant primate. Among fossil tionary change (i.e., anagenesis vs. cladogenesis), and primates, the hominoid sample from the late Miocene social behavior. One perspective on fossil hominoid taxonomy specifies that the degree of variation in extinct species should not *Correspondence to: Jeremiah E. Scott, School of Human Evolution be greater than that in Gorilla and Pongo, the most sex- and Social Change, Institute of Human Origins, Arizona State Univer- ually dimorphic extant hominoids, which logically sity, Tempe, AZ 85287-4101, USA. E-mail: [email protected] requires rejection of a single-species hypothesis in cases where a temporally and geographically restricted fossil Received 3 July 2008; accepted 28 January 2009 sample is more variable than these great apes (e.g., Kay, 1982a,b; Lieberman et al., 1988; Martin and Andrews DOI 10.1002/ajpa.21059 et al., 1993; Teaford et al., 1993; Walker et al., 1993; see Published online 8 April 2009 in Wiley InterScience also Cope and Lacy, 1992; Cope, 1993; Plavcan, 1993). (www.interscience.wiley.com). VC 2009 WILEY-LISS, INC. 254 J.E. SCOTT ET AL. site of Lufeng, China, represents a single species— time represented by the hominoid-bearing deposits at Lufengpithecus lufengensis—that exceeds Gorilla and Lufeng is unknown, temporal variation is unlikely to be Pongo in its degree of postcanine sexual dimorphism a major component of the high level of size variation in (Kelley and Xu, 1991; Kelley, 1993; Kelley and Plavcan, L. lufengensis, given that intrasexual variation in the 1998). Establishing that the Lufeng sample represents a sample is within the range of modern species (Kelley single highly dimorphic species was made possible by and Plavcan, 1998). The fact that L. lufengensis exceeds two key characteristics of the assemblage: the sample is Pongo in its level of molar dimorphism means that it is large, comprising hundreds of teeth (e.g., Kelley and potentially more dimorphic in the molar dentition than Etler, 1989; Wood and Xu, 1991), and a number of post- any extant primate, as Pongo is commonly thought to canine dentitions have been confidently sexed using possess the greatest level of molar dimorphism among associated canines and P3s (e.g., Kelley and Xu, 1991; living primates (e.g., Mahler, 1973; Kelley and Xu, 1991; Kelley, 1993; Kelley, 1995a,b). Using the sexed specimens Kelley and Plavcan, 1998). If true, then including the (n 16 for each molar position), Kelley and colleagues Lufeng sample as part of the comparative framework for (Kelley and Xu, 1991; Kelley, 1993; Kelley and Plavcan, assessing variation in fossil primate samples becomes 1998) demonstrated that molar dimorphism in L. lufen- even more critical. gensis is so high that there is no overlap between male In fact, it has not been quantitatively verified that and female individuals in bivariate plots of mesiodistal Pongo expresses the greatest degree of molar dimor- and buccolingual dimensions. Several researchers have phism among living primates, and therefore the claim argued that the Lufeng sample contains multiple species that the degree of molar dimorphism documented in L. (e.g., Wu and Oxnard, 1983a,b; Martin, 1991; Cope and lufengensis falls outside the range observed in living pri- Lacy, 1992; Plavcan, 1993), but a mixture of two or more mate species has not been adequately tested. Thus, in species is unlikely to have produced the pattern of varia- this study, we test two hypotheses regarding molar size tion observed in the sample, unless one appeals to highly dimorphism in primates: (1) Pongo represents the upper- improbable sampling events (Kelley and Plavcan, 1998). most extreme of molar dimorphism among living pri- Thus, L. lufengensis extends the known range of intra- mates, and (2) molar dimorphism in L. lufengensis is specific size variation and sexual dimorphism in greater than that in the most dimorphic living primate the Hominoidea, at least with respect to the postcanine species. We then apply the results of these analyses to dentition. other potential instances of extreme dimorphism in the Despite initial objections based on both ontological and late Miocene hominoid fossil record—the Sivapithecus epistemological grounds (e.g., Ruff et al., 1989; Martin, material from Haritalyangar, India, and the Ouranopi- 1991; Cope and Lacy, 1992; Martin and Andrews, 1993; thecus macedoniensis material from Greece (Kelley, Plavcan, 1993; Teaford et al., 1993; Walker et al., 1993), 2005; Schrein, 2006). Specifically, we evaluate whether the idea that some fossil hominoid species were more levels of apparent sexual dimorphism (i.e., the level of dimorphic than living great apes has gained wider accep- dimorphism required if the distinct large and small size tance, and many researchers now acknowledge extreme clusters evident in the Sivapithecus and O. macedonien- dimorphism as a potential source of high measures of sis molar samples represent conspecific males and variation that must be considered when evaluating fossil females, respectively) in these fossil samples fall within samples (e.g., Plavcan, 2001; Plavcan and Cope, 2001; the limits of dimorphism established for living primates Scott and Lockwood, 2004; Schrein, 2006; Skinner et al., and L. lufengensis. 2006; Simons et al., 2007; Humphrey and Andrews, 2008).1 This is not to say that extreme dimorphism should be regarded as the null hypothesis for Miocene hominoids; rather, we are suggesting that extreme MATERIALS AND METHODS dimorphism is a viable alternative to the hypothesis that Three extant species were included in the analysis: high levels of size variation in a fossil sample indicate the western lowland gorilla (Gorilla gorilla), the Bor- the presence of multiple species. Acceptance of L. lufen- nean orangutan (Pongo pygmaeus), and the drill (Man- gensis as a single highly dimorphic species highlights drillus leucophaeus) (Table 1).
Recommended publications
  • The Threads of Evolutionary, Behavioural and Conservation Research
    Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Taxonomic Tapestries The Threads of Evolutionary, Behavioural and Conservation Research Edited by Alison M Behie and Marc F Oxenham Chapters written in honour of Professor Colin P Groves Published by ANU Press The Australian National University Acton ACT 2601, Australia Email: [email protected] This title is also available online at http://press.anu.edu.au National Library of Australia Cataloguing-in-Publication entry Title: Taxonomic tapestries : the threads of evolutionary, behavioural and conservation research / Alison M Behie and Marc F Oxenham, editors. ISBN: 9781925022360 (paperback) 9781925022377 (ebook) Subjects: Biology--Classification. Biology--Philosophy. Human ecology--Research. Coexistence of species--Research. Evolution (Biology)--Research. Taxonomists. Other Creators/Contributors: Behie, Alison M., editor. Oxenham, Marc F., editor. Dewey Number: 578.012 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying or otherwise, without the prior permission of the publisher. Cover design and layout by ANU Press Cover photograph courtesy of Hajarimanitra Rambeloarivony Printed by Griffin Press This edition © 2015 ANU Press Contents List of Contributors . .vii List of Figures and Tables . ix PART I 1. The Groves effect: 50 years of influence on behaviour, evolution and conservation research . 3 Alison M Behie and Marc F Oxenham PART II 2 . Characterisation of the endemic Sulawesi Lenomys meyeri (Muridae, Murinae) and the description of a new species of Lenomys . 13 Guy G Musser 3 . Gibbons and hominoid ancestry . 51 Peter Andrews and Richard J Johnson 4 .
    [Show full text]
  • Chapter 1 - Introduction
    EURASIAN MIDDLE AND LATE MIOCENE HOMINOID PALEOBIOGEOGRAPHY AND THE GEOGRAPHIC ORIGINS OF THE HOMININAE by Mariam C. Nargolwalla A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Graduate Department of Anthropology University of Toronto © Copyright by M. Nargolwalla (2009) Eurasian Middle and Late Miocene Hominoid Paleobiogeography and the Geographic Origins of the Homininae Mariam C. Nargolwalla Doctor of Philosophy Department of Anthropology University of Toronto 2009 Abstract The origin and diversification of great apes and humans is among the most researched and debated series of events in the evolutionary history of the Primates. A fundamental part of understanding these events involves reconstructing paleoenvironmental and paleogeographic patterns in the Eurasian Miocene; a time period and geographic expanse rich in evidence of lineage origins and dispersals of numerous mammalian lineages, including apes. Traditionally, the geographic origin of the African ape and human lineage is considered to have occurred in Africa, however, an alternative hypothesis favouring a Eurasian origin has been proposed. This hypothesis suggests that that after an initial dispersal from Africa to Eurasia at ~17Ma and subsequent radiation from Spain to China, fossil apes disperse back to Africa at least once and found the African ape and human lineage in the late Miocene. The purpose of this study is to test the Eurasian origin hypothesis through the analysis of spatial and temporal patterns of distribution, in situ evolution, interprovincial and intercontinental dispersals of Eurasian terrestrial mammals in response to environmental factors. Using the NOW and Paleobiology databases, together with data collected through survey and excavation of middle and late Miocene vertebrate localities in Hungary and Romania, taphonomic bias and sampling completeness of Eurasian faunas are assessed.
    [Show full text]
  • Juvenile Hominoid Cranium from the Terminal Miocene of Yunnan, China
    Article Geology November 2013 Vol.58 No.31: 37713779 doi: 10.1007/s11434-013-6021-x Juvenile hominoid cranium from the terminal Miocene of Yunnan, China JI XuePing1,2, JABLONSKI Nina G3, SU Denise F4, DENG ChengLong5, FLYNN Lawrence J6, YOU YouShan7 & KELLEY Jay8* 1 Department of Paleoanthropology, Yunnan Institute of Cultural Relics and Archaeology, Kunming 650118, China; 2 Yunnan Key Laboratory for Paleobiology, Yunnan University, Kunming 650091, China; 3 Department of Anthropology, The Pennsylvania State University, University Park, PA 16802, USA; 4 Department of Paleobotany and Paleoecology, Cleveland Museum of Natural History, Cleveland, OH 44106, USA; 5 State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China; 6 Peabody Museum of Archaeology and Ethnology, Harvard University, Cambridge, MA 02138, USA; 7 Zhaotong Institute of Cultural Relics, Zhaotong 657000, China; 8 Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ 85287, USA Received May 28, 2013; accepted July 8, 2013; published online August 7, 2013 Fossil apes are known from several late Miocene localities in Yunnan Province, southwestern China, principally from Shihuiba (Lufeng) and the Yuanmou Basin, and represent three species of Lufengpithecus. They mostly comprise large samples of isolated teeth, but there are also several partial or complete adult crania from Shihuiba and a single juvenile cranium from Yuanmou. Here we describe a new, relatively complete and largely undistorted juvenile cranium from the terminal Miocene locality of Shuitangba, also in Yunnan. It is only the second ape juvenile cranium recovered from the Miocene of Eurasia and it is provisionally assigned to the species present at Shihuiba, Lufengpithecus lufengensis.
    [Show full text]
  • A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade Salvador Moya` -Sola` A,1, David M
    A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene).
    [Show full text]
  • A Unique Middle Miocene European Hominoid and the Origins of the Great Ape and Human Clade
    A unique Middle Miocene European hominoid and the origins of the great ape and human clade Salvador Moya` -Sola` a,1, David M. Albab,c, Sergio Alme´ cijac, Isaac Casanovas-Vilarc, Meike Ko¨ hlera, Soledad De Esteban-Trivignoc, Josep M. Roblesc,d, Jordi Galindoc, and Josep Fortunyc aInstitucio´Catalana de Recerca i Estudis Avanc¸ats at Institut Catala`de Paleontologia (ICP) and Unitat d’Antropologia Biolo`gica (Dipartimento de Biologia Animal, Biologia Vegetal, i Ecologia), Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; bDipartimento di Scienze della Terra, Universita`degli Studi di Firenze, Via G. La Pira 4, 50121 Florence, Italy; cInstitut Catala`de Paleontologia, Universitat Auto`noma de Barcelona, Edifici ICP, Campus de Bellaterra s/n, 08193 Cerdanyola del Valle`s, Barcelona, Spain; and dFOSSILIA Serveis Paleontolo`gics i Geolo`gics, S.L. c/ Jaume I nu´m 87, 1er 5a, 08470 Sant Celoni, Barcelona, Spain Edited by David Pilbeam, Harvard University, Cambridge, MA, and approved March 4, 2009 (received for review November 20, 2008) The great ape and human clade (Primates: Hominidae) currently sediments by the diggers and bulldozers. After 6 years of includes orangutans, gorillas, chimpanzees, bonobos, and humans. fieldwork, 150 fossiliferous localities have been sampled from the When, where, and from which taxon hominids evolved are among 300-m-thick local stratigraphic series of ACM, which spans an the most exciting questions yet to be resolved. Within the Afro- interval of 1 million years (Ϸ12.5–11.3 Ma, Late Aragonian, pithecidae, the Kenyapithecinae (Kenyapithecini ؉ Equatorini) Middle Miocene).
    [Show full text]
  • Fossil Primates
    AccessScience from McGraw-Hill Education Page 1 of 16 www.accessscience.com Fossil primates Contributed by: Eric Delson Publication year: 2014 Extinct members of the order of mammals to which humans belong. All current classifications divide the living primates into two major groups (suborders): the Strepsirhini or “lower” primates (lemurs, lorises, and bushbabies) and the Haplorhini or “higher” primates [tarsiers and anthropoids (New and Old World monkeys, greater and lesser apes, and humans)]. Some fossil groups (omomyiforms and adapiforms) can be placed with or near these two extant groupings; however, there is contention whether the Plesiadapiformes represent the earliest relatives of primates and are best placed within the order (as here) or outside it. See also: FOSSIL; MAMMALIA; PHYLOGENY; PHYSICAL ANTHROPOLOGY; PRIMATES. Vast evidence suggests that the order Primates is a monophyletic group, that is, the primates have a common genetic origin. Although several peculiarities of the primate bauplan (body plan) appear to be inherited from an inferred common ancestor, it seems that the order as a whole is characterized by showing a variety of parallel adaptations in different groups to a predominantly arboreal lifestyle, including anatomical and behavioral complexes related to improved grasping and manipulative capacities, a variety of locomotor styles, and enlargement of the higher centers of the brain. Among the extant primates, the lower primates more closely resemble forms that evolved relatively early in the history of the order, whereas the higher primates represent a group that evolved more recently (Fig. 1). A classification of the primates, as accepted here, appears above. Early primates The earliest primates are placed in their own semiorder, Plesiadapiformes (as contrasted with the semiorder Euprimates for all living forms), because they have no direct evolutionary links with, and bear few adaptive resemblances to, any group of living primates.
    [Show full text]
  • Age at First Molar Emergence in Early Miocene Afropithecus Turkanensis
    Journal of Human Evolution 44 (2003) 307–329 Age at first molar emergence in early Miocene Afropithecus turkanensis and life-history evolution in the Hominoidea Jay Kelley1*, Tanya M. Smith2 1 Department of Oral Biology (m/c 690), College of Dentistry, University of Illinois at Chicago, 801 S. Paulina, Chicago, IL 60612, USA 2 Interdepartmental Doctoral Program in Anthropological Sciences, Stony Brook University, Stony Brook, NY 11794, USA Received 12 July 2002; accepted 7 January 2003 Abstract Among primates, age at first molar emergence is correlated with a variety of life history traits. Age at first molar emergence can therefore be used to broadly infer the life histories of fossil primate species. One method of determining age at first molar emergence is to determine the age at death of fossil individuals that were in the process of erupting their first molars. This was done for an infant partial mandible of Afropithecus turkanensis (KNM-MO 26) from the w17.5 Ma site of Moruorot in Kenya. A range of estimates of age at death was calculated for this individual using the permanent lateral incisor germ preserved in its crypt, by combining the number and periodicity of lateral enamel perikymata with estimates of the duration of cuspal enamel formation and the duration of the postnatal delay in the inception of crown mineralization. Perikymata periodicity was determined using daily cross striations between adjacent Retzius lines in thin sections of two A. turkanensis molars from the nearby site of Kalodirr. Based on the position of the KNM-MO 26 M1 in relation to the mandibular alveolar margin, it had not yet undergone gingival emergence.
    [Show full text]
  • Tapirus Yunnanensis from Shuitangba, a Terminal Miocene Hominoid Site in Zhaotong, Yunnan Province of China JI Xue-Ping1 Nina G
    第53卷 第3期 古 脊 椎 动 物 学 报 pp. 177-192 2015年7月 VERTEBRATA PALASIATICA figs. 1-7 Tapirus yunnanensis from Shuitangba, a terminal Miocene hominoid site in Zhaotong, Yunnan Province of China JI Xue-Ping1 Nina G. JABLONSKI2 TONG Hao-Wen3* Denise F. SU4 Jan Ove R. EBBESTAD5 LIU Cheng-Wu6 YU Teng-Song7 (1 Yunnan Institute of Cultural Relics and Archaeology & Research Center for Southeast Asian Archeology Kunming 650118, China) (2 Department of Anthropology, the Pennsylvania State University University Park, PA 16802, USA) (3 Key Laboratory of Vertebrate Evolution and Human Origins of Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences Beijing 100044, China *Corresponding author: [email protected]) (4 Department of Paleobotany and Paleoecology, Cleveland Museum of Natural History Cleveland, OH 44106, USA) (5 Museum of Evolution, Uppsala University Norbyvägen 16, SE-75236 Uppsala, Sweden) (6 Qujing Institute of Cultural Relics Qujing 655000, Yunnan, China) (7 Zhaotong Institute of Cultural Relics Zhaotong, 657000, Yunnan, China) Abstract The fossil tapirid records of Late Miocene and Early Pliocene were quite poor in China as before known. The recent excavations of the terminal Miocene hominoid site (between 6 and 6.5 Ma) at Shuitangba site, Zhaotong in Yunnan Province resulted in the discovery of rich tapir fossils, which include left maxilla with P2-M2 and mandibles with complete lower dentitions. The new fossil materials can be referred to Tapirus yunnanensis, which represents a quite small species of the genus Tapirus. But T. yunnanensis is slightly larger than another Late Miocene species T. hezhengensis from Gansu, northwest China, both of which are remarkably smaller than the Plio-Pleistocene Tapirus species in China.
    [Show full text]
  • Forelimb Long Bones of Nacholapithecus (KNM-BG 35250) from the Middle Miocene in Nachola, Northern Kenya
    ANTHROPOLOGICAL SCIENCE Vol. 126(3), 135–149, 2018 Forelimb long bones of Nacholapithecus (KNM-BG 35250) from the middle Miocene in Nachola, northern Kenya Tomo TAKANO1*, Masato NAKATSUKASA2, Yutaka KUNIMATSU3, Yoshihiko NAKANO4, Naomichi OGIHARA5**, Hidemi ISHIDA6 1Japan Monkey Centre, Kanrin 26, Inuyama, Aichi 484-0081, Japan 2Laboratory of Physical Anthropology, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan 3Faculty of Business Administration, Ryukoku University, Kyoto 612-8577, Japan 4Laboratory of Biological Anthropology, Department of Human Science, Osaka University, Suita, Osaka 565-0871, Japan 5Department of Mechanical Engineering, Faculty of Science and Technology, Keio University, Yokohama, Kanagawa 223-8522, Japan 6Professor Emeritus, Kyoto University, Kyoto 606-8502, Japan Received 1 May 2017; accepted 22 October 2018 Abstract This paper provides a thorough description of humeral, ulnar, and radial specimens of the Nacholapithecus holotype (KNM-BG 35250). A spool-shaped humeral trochlea (and keeled sigmoid notch of the ulna) is a hallmark of elbow joint evolution in hominoids. In lacking this feature, the elbow of Nacholapithecus is comparatively primitive, resembling that of proconsulids. However, the humer- oulnar joint in Nacholapithecus is specialized for higher stability than that in proconsulids. The humer- oradial joint (humeral capitulum) resembles that of extant apes and Sivapithecus. This condition may represent an intermediate stage leading to the fully modern elbow in extant apes. If this is the case, spe- cialization of the humeroradial joint preceded that of the humeroulnar joint. Nacholapithecus elbow joint morphology suggests more enhanced forearm rotation compared to proconsulids. This observation ac- cords with the forelimb-dominated positional behavior of Nacholapithecus relative to proconsulids, which has been proposed on the grounds of limb proportions and the morphology of the phalanges, shoulder girdle, and vertebrae.
    [Show full text]
  • The Influence of Life History and Diet on the Distribution of Catarrhine Primates During the Pleistocene in Eastern Asia
    Nina G. Jablonski The influence of life history and diet on Department of Anthropology, the distribution of catarrhine primates California Academy of during the Pleistocene in eastern Asia Sciences, Golden Gate Park, San Francisco, CA 94118-4599, U.S.A. E-mail: Environmental changes during the Pleistocene in eastern Asia had [email protected] profound impacts on the distributions of mammalian groups. Critical for many mammals were the southward latitudinal shifts of the tropical and subtropical vegetational zones, and decreases in the areas Matthew J. Whitfort of these zones. Examination of the responses of members of a single Department of Anatomy clade, the Catarrhini, indicates that the main catarrhine genera of and Human Biology, eastern Asia responded individually to the environmental changes in The University of Western the Pleistocene. These responses were influenced by the life history Australia, Nedlands, parameters and diets of the genera involved. Those animals WA 6907, Australia. E-mail: (macaques, langurs) with shorter gestation times, shorter weaning [email protected] periods, shorter interbirth intervals, higher intrinsic rates of increase of population, and abilities to survive on a wider variety of vegetation Nola Roberts-Smith in seasonal habitats were less adversely affected than those (gibbons, ESRI Australia Pty. Ltd., orang-utans and the giant extinct hominoid, Gigantopithecus) with 345 Harborne St., Herdsman, more protracted reproductive schedules, lower intrinsic rates of WA 6017, Australia. E-mail: population increase and preferences for the higher quality foods [email protected] (especially ripe fruits) of less seasonal environments. Hominids, while displaying ‘‘hyper-ape’’ life history parameters, increasingly overcame the constraints of these parameters through extrasomatic means not Xu Qinqi available to other catarrhines.
    [Show full text]
  • Contents VOLUME 135 (2) 2005 135 (2)
    Contents VOLUME 135 (2) 2005 135 (2) Introduction. Ninth International Congress on the Zoogeography and Ecology of Greece and Adjacent Regions (9ICZEGAR) 105 (Thessaloniki, Greece). Assessing Biodiversity in the Eastern Mediterranean Region: Approaches and Applications Haralambos ALIVIZATOS, Vassilis GOUTNER and Stamatis ZOGARIS 109 Contribution to the study of the diet of four owl species (Aves, Strigiformes) from mainland and island areas of Greece Chryssanthi ANTONIADOU, Drossos KOUTSOUBAS and Chariton C. CHINTIROGLOU Belgian Journal of Zoology 119 Mollusca fauna from infralittoral hard substrate assemblages in the North Aegean Sea Maria D. ARGYROPOULOU, George KARRIS, Efi M. PAPATHEODOROU and George P. STAMOU 127 Epiedaphic Coleoptera in the Dadia Forest Reserve (Thrace, Greece) : The Effect of Human Activities on Community Organization Patterns Tsenka CHASSOVNIKAROVA, Roumiana METCHEVA and Krastio DIMITROV 135 Microtus guentheri (Danford & Alston) (Rodentia, Mammalia) : A Bioindicator Species for Estimation of the Influence of Polymetal Dust Emissions Rainer FROESE, Stefan GARTHE, Uwe PIATKOWSKI and Daniel PAULY 139 Trophic signatures of marine organisms in the Mediterranean as compared with other ecosystems AN INTERNATIONAL JOURNAL PUBLISHED BY Giorgos GIANNATOS, Yiannis MARINOS, Panagiota MARAGOU and Giorgos CATSADORAKIS 145 The status of the Golden Jackal (Canis aureus L.) in Greece THE ROYAL BELGIAN SOCIETY FOR ZOOLOGY Marianna GIANNOULAKI, Athanasios MACHIAS, Stylianos SOMARAKIS and Nikolaos TSIMENIDES 151 The spatial distribution
    [Show full text]
  • Orangutans in Perspective 291
    290 PARTTWO ThePrimates Knott, C.D., and Kahlenberg,S. (2007).In Primatesin Perspective,S. Bearder. C.J.Campbell, A. Fuentes,K.C. MacKinnon and M. Panger,eds. Oxford: Oxford University Press,pp. 290-305. 4*? ad Orangutansin Perspective ForcedCopulations and Female Mating Resistance CherylD, Knott and Sonya M. Kohlenberg INTRODUCTION Though intriguing, this suite of features has proven dif- ficult for researchersto fully understand.The semi-solitary Orangutans (genus Pongo) represent the extreme of many lifestyle of orangutanscombined with their slow life histor- biological para"rneters.Among mammals they have the ies and large ranges means that data accumulate slowly. longest interbirth interval (up to 9 years) and are the largest Also, rapid habitat destruction and political instability in of those that are primarily arboreal. They are the most soli- SoutheastAsia have left only a handful of field sites cur- tary of the diurnal primates and the most sexually dimorphic rently in operation (Fig. 17.1). Despite these difficulties, of the great apes. They range over large areas and do not long-term behavioral studies and recent genetic and hor- have obviously distinct communities. Additionally, adult monal data enable us to begin answering some of the most male orangutanscome in two morphologically distinct types, theoretically interesting questions about this endangered an unusual phenomenonknown as bimaturisnt The smaller great ape. In this chapter, we summarize what is currently of the two male morphs also pursue a mating strategythat is known about the taxonomy and distribution, ecology, social rare among mammals: they obtain a large proportion of organization, reproductive parameters,and conservation of copulations by force.
    [Show full text]