Chapter 5206 Department of Labor and Industry Employee Right-To-Know Standards
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sulfur and the Origins of Life
Sulfur and the Origins of Life A thesis submitted in partial fulfilment of the requirements for the degree of Masters of Science in Biochemistry at the University of Canterbury by Jonathan Hill Acknowledgements Firstly, thanks goes to my supervisor, Andy Pratt, for introducing me to some elegant science, and for his enthusiasm in sharing with me some of his broad knowledge regarding metabolism and its origin. Also, thank you to Murray MUllio and Richard Hartshorn for their selfless help and advice at times when my supervisor was unavailable. Thank you to the technical staff, without whose help this thesis would not have been possible. In particular, I would like to thank Rewi and Bruce for carrying out NMR and MS analyses, respectively, and Wayne, Rob and Dave for their "service with a smile". A big thank you to my parents for supporting (both philosophically and financially) my choice to study at postgradute level. Everything I have achieved in this thesis is as a direct result of your support and encouragement, both past and present. And finally, a big thank you to my brother Geoff and friends Diana, Kylie, Marcus, Phil and Carley, for helping me to keep a balanced perspective and reminding me that there is more (much more) to life than Master's theses. Cheers guys. 6 DEC 2000 Abstract Both organic and inorganic sulfur play an important role in fundamental contemporary biochemistry, suggesting that life's common ancestor used sulfur in its metabolism. In support of this idea is the widely held belief that present-day sulfur metabolising thermophilic bacteria are the most primitive organisms within the biosphere. -
United States Patent ‘ Patented Mar
r 2,786,869 United States Patent ‘ Patented Mar. 26, 1957 l 2 tically, mixtures of tert-alkylamine such as are available on the market. Typical mixtures are those containing ‘ 2,786,869 C12H25NH2 to C15H31NH2 or C18H3'INH2 to C24H49NH2 N-TRIALKYLCARBINYL-N-(HYDROXYETHYL or C15H31- to C24H49NH2. These may be represented by POLYOXYETHYL) GLYCINES the formula Peter L. de Benneville and Homer J. Sims, Philadelphia, 31 Pa., assignors to Rohrn & Haas Company, Philadelphia, R’-—-C—NH2 Pa., a corporation of Delaware Rs No Drawing. Application June 16, 1954, 10 As catalysts in the ?rst step of the process of this Serial No. 437,273 invention, wherein the hydroxyethyl group is introduced, 9 Claims.‘ (or. 260-534) there may be used any of the strong acids, such as hy drochloric, hydrobromic, sulfuric, arylsulfonic, alkanesul fonic, or phosphoric. The preferred amount of this cat This invention relatesto-compounds of the structure 15 alyst is 10 to 30 mole percent of the amine. With R1 '(CH2CH2O),.H ‘ , amines from 12 carbon atoms upward it is exceedingly di?icult to introduce more than one hydroxyethyl group in a tert-alkylamine molecule. Such amines‘yicld ?nal 3 \CHrCOOH products which have the desired balance of properties. ' wherein R1, R2, and R3 are alkyl groups containing a 20 The ?rst reaction with ethylene oxide is effected by total of 11 to 23 carbon atoms and n is an integer having bringing together ethylene oxide and tert-alkylamine, a value from 5 to about 50 or more, preferably 5 to 25. usually by passing ethylene oxide into amine and catalyst, These compounds may be called N-(trialkylcarbinyl)-N at temperatures from 0° to 180° C. -
The Formation of the Mixed Morphology of Nickel Sulfide Nanoparticles Derived from Substituted Benzimidazole Dithiocarbamate Nickel (Ii) Complexes
Chalcogenide Letters Vol. 14, No. 9, September 2017, p. 407 - 417 THE FORMATION OF THE MIXED MORPHOLOGY OF NICKEL SULFIDE NANOPARTICLES DERIVED FROM SUBSTITUTED BENZIMIDAZOLE DITHIOCARBAMATE NICKEL (II) COMPLEXES C. S. THANGWANE, T. XABA*, M. J. MOLOTO Department of chemistry, Vaal University of Technology, Private Bag X 021, Vanderbijlpark, 1900, South Africa, The synthesis of nickel sulfide nanoparticles through variation of reaction conditions such concentration and temperature is reported. Benzimidazole dithiocarbamate nickel(II) and 2-methylbenzimidazole dithiocarbamates nickel(II) complexes were prepared and thermolysed in hexadecylamine (HDA) at the temperature of 140, 160 and 180 °C through the single source precursor method. The effect of concentration of the precursor (0.30, 0.35, and 0.40 g) to produce HDA capped Ni3S4 nanoparticles was also investigated. TEM images of the Ni3S4 nanoparticles revealed anisotropic particles when the precursor concentration and temperature was varied. 2-methylbenzimidazole dithiocarbamate nickel(II) complex produced the mixture of spheres, cubes, triangles and rods nickel sulphide nanoparticles at different concentrations. XRD patterns displayed the cubic crystalline structures of Ni3S4 at all temperatures. (Received July 9, 2017; Accepted September 29, 2017) Keywords: Dithiocarbamate complexes (DTC), hexadecylamine (HDA), tri- octylphosphine (TOP), nickel sulfide, nanoparticles 1. Introduction Nickel sulfide nanoparticles are important family members of the transition metal sulphides nanomaterials. -
Agents for Defense Against Chemical Warfare: Reactivators of Acetylcholinesterase Inhibited with Neurotoxic Organophosphorus Compounds **
Mil. Med. Sci. Lett. (Voj. Zdrav. Listy) 2015, vol. 84(3), p. 115-127 ISSN 0372-7025 DOI: 10.31482/mmsl.2015.013 REVIEW ARTICLE AGENTS FOR DEFENSE AGAINST CHEMICAL WARFARE: REACTIVATORS OF ACETYLCHOLINESTERASE INHIBITED WITH NEUROTOXIC ORGANOPHOSPHORUS COMPOUNDS ** Petronilho, E. C., Figueroa-Villar, J. D. Chemistry Engineering Section, Medicinal Chemistry Group, Military Institute of Engineering, Praça General Tibúrcio, 80, Urca, 22290-270, Rio de Janeiro, RJ, Brazil. Received 30 th April 2015. Revised 7 th July 2015. Published 4 th September 2015. Summary The chemical warfare agents and neurotoxic agents are an important threat to people all over the world, and require special attention because they are highly dangerous. Most of these agents are neurotoxic organophosphorus compounds (OP), which inhibit the enzyme acetylcholinesterase (AChE), which is responsible for controlling the transmission of nerve impulses. To be inhibited by these compounds, AChE can sometimes be reactivated using cationic oximes, which are the most used substances for this reactivation. Until today there have not been discovered agents for complete treatment of poisoning by all OPs. For this reason, the treatment of intoxicated people requires the determination of the absorbed OP, in order to select the appropriate activator, a process that usually requires long time and may cause death. Therefore, this study aims to do a review on the OPs used as chemical warfare agents and the process of inhibition and reactivation of AChE, especially to motivate the development of new agents for defense against chemical weapons, a process that is very important for protecting all humanity. Key words: acetylcholinesterase; AChE reactivators; organophosphorus; oximes; warfare agents INTRODUCTION pounds (OP), which are highly toxic, allowing their use with small quantities in order to cause seizures The use of chemical warfare agents is a major and death. -
Nickel Sulfide Nanostructures Prepared by Laser Irradiation for Efficient Electrocatalytic Hydrogen Evolution Reaction and Supercapacitors
Lawrence Berkeley National Laboratory Recent Work Title Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors Permalink https://escholarship.org/uc/item/2035b96c Authors Hung, TF Yin, ZW Betzler, SB et al. Publication Date 2019-07-01 DOI 10.1016/j.cej.2019.02.136 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Accepted Manuscript Nickel sulfide nanostructures prepared by laser irradiation for efficient electro- catalytic hydrogen evolution reaction and supercapacitors Tai-Feng Hung, Zu-Wei Yin, Sophia B. Betzler, Wenjing Zheng, Jiwoong Yang, Haimei Zheng PII: S1385-8947(19)30375-4 DOI: https://doi.org/10.1016/j.cej.2019.02.136 Reference: CEJ 21049 To appear in: Chemical Engineering Journal Received Date: 30 October 2018 Revised Date: 14 February 2019 Accepted Date: 19 February 2019 Please cite this article as: T-F. Hung, Z-W. Yin, S.B. Betzler, W. Zheng, J. Yang, H. Zheng, Nickel sulfide nanostructures prepared by laser irradiation for efficient electrocatalytic hydrogen evolution reaction and supercapacitors, Chemical Engineering Journal (2019), doi: https://doi.org/10.1016/j.cej.2019.02.136 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. -
Hydroxyacetonitrile (HOCH2CN) As a Precursor for Formylcyanide (CHOCN), Ketenimine (CH2CNH), and Cyanogen (NCCN) in Astrophysical Conditions
A&A 549, A93 (2013) Astronomy DOI: 10.1051/0004-6361/201219779 & c ESO 2013 Astrophysics Hydroxyacetonitrile (HOCH2CN) as a precursor for formylcyanide (CHOCN), ketenimine (CH2CNH), and cyanogen (NCCN) in astrophysical conditions G. Danger1, F. Duvernay1, P. Theulé1, F. Borget1, J.-C. Guillemin2, and T. Chiavassa1 1 Aix-Marseille Univ, CNRS, PIIM UMR 7345, 13397 Marseille, France e-mail: [email protected] 2 Institut des Sciences Chimiques de Rennes, École Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, Avenue du Général Leclerc, CS 50837, 35708 Rennes Cedex 7, France Received 8 June 2012 / Accepted 19 November 2012 ABSTRACT Context. The reactivity in astrophysical environments can be investigated in the laboratory through experimental simulations, which provide understanding of the formation of specific molecules detected in the solid phase or in the gas phase of these environments. In this context, the most complex molecules are generally suggested to form at the surface of interstellar grains and to be released into the gas phase through thermal or non-thermal desorption, where they can be detected through rotational spectroscopy. Here, we focus our experiments on the photochemistry of hydroxyacetonitrile (HOCH2CN), whose formation has been shown to compete with aminomethanol (NH2CH2OH), a glycine precursor, through the Strecker synthesis. Aims. We present the first experimental investigation of the ultraviolet (UV) photochemistry of hydroxyacetonitrile (HOCH2CN) as a pure solid or diluted in water ice. Methods. We used Fourier transform infrared (FT-IR) spectroscopy to characterize photoproducts of hydroxyacetonitrile (HOCH2CN) and to determine the different photodegradation pathways of this compound. To improve the photoproduct identifications, irradiations of hydroxyacetonitrile 14N and 15N isotopologues were performed, coupled with theoretical calculations. -
Analysis of Carbamate and Organophosphate Pesticides in Animal Poisoning Cases by GC/MS
Analysis of Carbamate and Organophosphate Pesticides in Animal Poisoning Cases by GC/MS Jessica M Greene, BS Barry Logan, PhD, Stephen Donovan, PhD, Karen Scott, PhD, Alana Balogh, BFA 03/02/17 1 Background 2 Africa • Pesticides are readily available in Africa for legitimate use • Pesticides are thus available for use as poisons • Conflicts between farmers and wildlife • Poachers attempting to hide illicit activities 3 The Poisonings Effect • Lions • Vultures • Elephants • Hyenas • Humans 4 Organophosphate & Carbamate Pesticides • Acetylcholinesterase inhibitors • CNS effects can be varied but poisoning ultimately will lead to muscle contractions followed by paralysis and death due to respiratory failure • Absorption occurs through all routes Figure 1: Organophosphate Figure 2: Carbamate Basic Structure Basic Structure 5 Aims • Develop and optimize a method for OP and carbamates • Create an extraction procedure for the pesticides • Receive authentic samples • Provide reliable and authoritative results to wildlife advocates in Africa 6 Method Development 7 Original Method 8 Finalization of Method GC/MS Parameters GC Agilent 7890A Column HP-4MS Ultra Inert Column Length 30 m Carrier Gas Hydrogen Injection Type/Volume Splitless/ 1 µL Inlet Temperature 250 ⁰C Oven Program 40 ⁰C for 1 minute 15 ⁰C/min to 170 ⁰C, hold for 5 minutes 25 ⁰C/min to 350 ⁰C, hold for 3 minutes Flow 1.1 mL/min MS Agilent 5975C MS Scan Range 35-500 amu 9 Test Mix on Final Method 10 Extraction Optimization 11 In-Field Extraction Add acetone to biological material and -
Quantum Chemical Study of the Thermochemical Properties of Organophosphorous Compounds A
QUANTUM CHEMICAL STUDY OF THE THERMOCHEMICAL PROPERTIES OF ORGANOPHOSPHOROUS COMPOUNDS A. Khalfa, M. Ferrari, R. Fournet, B. Sirjean, L. Verdier, Pierre-Alexandre Glaude To cite this version: A. Khalfa, M. Ferrari, R. Fournet, B. Sirjean, L. Verdier, et al.. QUANTUM CHEMICAL STUDY OF THE THERMOCHEMICAL PROPERTIES OF ORGANOPHOSPHOROUS COMPOUNDS. Journal of Physical Chemistry A, American Chemical Society, 2015, 119 (42), pp.10527-10539. 10.1021/acs.jpca.5b07071. hal-01241498 HAL Id: hal-01241498 https://hal.archives-ouvertes.fr/hal-01241498 Submitted on 10 Dec 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. QUANTUM CHEMICAL STUDY OF THE THERMOCHEMICAL PROPERTIES OF ORGANOPHOSPHOROUS COMPOUNDS A. Khalfa, M. Ferrari1, R. Fournet1, B. Sirjean1, L. Verdier2, P.A. Glaude1 1Laboratoire Réactions et Génie des Procédés, Université de Lorraine, CNRS, 1 rue Grandville, BP 20451, 54001 NANCY Cedex, France, 2DGA Maîtrise NRBC, Site du Bouchet, 5 rue Lavoisier, BP n°3, 91710 Vert le Petit, France Abstract Organophosphorous compounds are involved in many toxic compounds such as fungicides, pesticides, or chemical warfare nerve agents. The understanding of the decomposition chemistry of these compounds in the environment is largely limited by the scarcity of thermochemical data. -
United States Patent Office Patented Jan
2,700,668 United States Patent Office Patented Jan. 25, 1955 1. 2 Glycolonitrile, as is known, is readily prepared by re acting formaldehyde and hydrogen cyanide. Cf. Prepa 2,700,668 ration of Formaldehyde Cyanohydrin, p. 168 in "Prepara PREPARATION OF KETOPPERAZINES tion of Organic Intermediates' by Shirley, John Wiley & 5 Sons, New York, 1951. See also, p. 176 of "Chemistry James S. Strong and W. E. Craig, Philadelphia, and Vin of Organic Cyanogen Compounds,” Migridichian, 1947 cent T. Elkind, Roslyn, Pa., assignors to Rohm & Haas ed. Glycolonitrile may also be prepared in the reaction Company, Philadelphia, Pa., a corporation of Delaware mixture as described in the next example wherein form No Drawing. Application February 8, 1952, aldehyde and hydrogen cyanide are reacted in the pres Serial No. 270,761 O ence of an amine catalyst. 7 Claims. (C. 260-268) Example 2 To 83 parts of a 36.3% aqueous formaldehyde solution there were added a trace of piperidine to serve as catalyst This invention concerns a method for preparing keto 5 and 27 parts of hydrogen cyanide. During addition of piperazines having the formula the hydrogen cyanide the temperature was kept between N. R. 27 and 30° C. by cooling. After the cyanide had been added, the temperature of the mixture was allowed to, cá, Yo4R, rise to 50° C. The mixture was allowed to stand for bH, d-o 20 3.5 hours. This solution was then slowly added to 78 N parts of 76.7% ethylenediamine in water, which was stirred and held at 100° C. -
Environmental Health Criteria 63 ORGANOPHOSPHORUS
Environmental Health Criteria 63 ORGANOPHOSPHORUS INSECTICIDES: A GENERAL INTRODUCTION Please note that the layout and pagination of this web version are not identical with the printed version. Organophophorus insecticides: a general introduction (EHC 63, 1986) INTERNATIONAL PROGRAMME ON CHEMICAL SAFETY ENVIRONMENTAL HEALTH CRITERIA 63 ORGANOPHOSPHORUS INSECTICIDES: A GENERAL INTRODUCTION This report contains the collective views of an international group of experts and does not necessarily represent the decisions or the stated policy of the United Nations Environment Programme, the International Labour Organisation, or the World Health Organization. Published under the joint sponsorship of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization World Health Orgnization Geneva, 1986 The International Programme on Chemical Safety (IPCS) is a joint venture of the United Nations Environment Programme, the International Labour Organisation, and the World Health Organization. The main objective of the IPCS is to carry out and disseminate evaluations of the effects of chemicals on human health and the quality of the environment. Supporting activities include the development of epidemiological, experimental laboratory, and risk-assessment methods that could produce internationally comparable results, and the development of manpower in the field of toxicology. Other activities carried out by the IPCS include the development of know-how for coping with chemical accidents, coordination -
Quantification of Organophosphorus Pesticides by Quechers and LC
HPLC Application ID No.: 20020 Quantification of Organophosphorus Pesticides by QuEchERS and LC/MS/MS Column: Synergi™ 4 µm Fusion-RP 80 Å, LC Column 50 x 2 mm, Ea Dimensions: 50 x 2 mm ID Order No: 00B-4424-B0 Elution Type: Gradient Eluent A: Add 5mL of 1M ammonium formate to 1L Water Eluent B: Add 5mL of 1M ammonium formate to 1L Methanol Gradient Step No. Time (min) Pct A Pct B Profile: 1 -5 95 5 2 0 95 5 3 2 95 5 4 6 50 50 5 12 10 90 6 14 10 90 7 16 95 5 8 17 95 5 Flow Rate: 250 mL/min Col. Temp.: 25 °C Detection: Tandem Mass Spec (MS-MS) @ (ambient) Detector Info: <a target="_blank" href="https://sciex.com/products/mass-spectrometers?utm_campaign=2019%20application%20search&utm_source=phenomenex&utm_medium=referral">SCIEX</a> Analyst Note: SecurityGuard™ Guard Cartridge System extends column lifetime. - SecurityGuard Cartridges, Fusion-RP 4 x 2.0mm ID, 10/Pk Part No.: AJ0-7556 - Holder Part No.: KJ0-4282 ©2021 Phenomenex Inc. All rights reserved. For more information contact your Phenomenex Representative at [email protected] Phenomenex products are available worldwide. www.phenomenex.com [email protected] Page 1 of 2 HPLC Application ID No.: 20020 Quantification of Organophosphorus Pesticides by QuEchERS and LC/MS/MS ANALYTES: 1 Acephate (MRM: 184/142.8) 41 Diazinon (MRM: 305/169) 2 Acephate (MRM: 184/94.9) 42 Diazinon (MRM: 305/153) 3 Demeton-S-methyl sulfone (MRM: 263/169) 43 Fenthion (MRM: 278.9/169) 4 Demeton-S-methyl sulfone (MRM: 263/109) 44 Fenthion (MRM: 278.9/246.9) 5 Parathion-methyl Methyl parathion (MRM: 263.9/232.1)45 -
Lllllllllliillilllllllllllliihiillllllllllllllllllllllllll
llllllllllIIllIllllllllllllIIHIIllllllllllllllllllllllllllllllllllllllllll . US005208363A United States Patent [19] [11] Patent Number: 5,208,363 Crump et al. [45] Date of Patent: May 4, 1993 [54] PREPARATION OF AMINONITRILES 3,907,858 9/1975 Davis et a1. ....................... .. 558/346 3,925,448 12/1975 Tanier ................... .. 558/346 [75] Inv9nt9r$= B11199 K- Crumm Lake Jackson; 3,959,342 5/1976 Homberg et a1. ......... .. 558/346 Band A. W1lson, R1chwood, both of 3,988,360 10/1976 Gaudette et a1. .. 558/346 Tex. 4,022,815 5/1977 Schlecht 61 a1. 558/346 . 4,478,759 10/1984 Diatler C181. .. .558/346 [73] Asslgnee‘ “F D" @e'mcal Cmnpmy, 4,560,516 12/1985 Singer .......... ..' 558/346 M1d1and,M1¢h- 4,661,614 4/1987 M08161 61. .. 558/346 . 4,704,465 11/1987 Tannet et 111. ........ .. 558/346 [21] Appl' N°" 878’572 4,980,471 12/1990 Christiansen e181 ............ .. 544/384 [ 221 Fil e d: M “y 5’ 1992 OTHER PUBLICATIONS Related US. Application Data Stewart, et 81., J. Chem. Soc., pp. 3281-3285, (1940), [ 63 1 553333,?". _.Ma" _ “S” _ N° _ 597 , 625 , 0°‘ _ 15 , 199°’ V01.ChOh-HQO 62. Li, et aL, J. Chem. Soc., pp. 2596-2599, (1937), V01. 59. Céi5 .......................................... .. C07C5§33é2 Stewart, et 31“ J_ chem Soc” pp_ 27824737, (1933), n a O - . 6 . 6 3 . 6 . 0. vol. 60' I [58] Field of Search ....................................... .. 558/ 346 [56]‘ R f Cit‘ d Primary Examiner-Joseph Paul Brust e erences e U.s. PATENT DOCUMENTS :2] _ ‘ABS-“MCI f _ , e present 1nvent1on 1s a process or preparing 2,205,995 6/1940 Ulnch e181.