Hydroxyacetonitrile (HOCH2CN) As a Precursor for Formylcyanide (CHOCN), Ketenimine (CH2CNH), and Cyanogen (NCCN) in Astrophysical Conditions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
From Acrolein Cyanohydrin
Agric. Biol. Chem., 52 (2), 589-591, 1988 589 Note carried out at iuu~zuirc under an increased pressure/' Here, we present a novel single-step synthesis of 5-(/?- methylthioethyl)hydantoin (2), in which we employed Single-step Synthesis of 5-(j6- single-step reactions of acrolein cyanohydrin (AC, 4), Methylthioethyl)hydantoin methyl mercaptan and ammoniumcarbonate in polar solvents (the AC method), and of acrolein (AL, 1), from Acrolein Cyanohydrin hydrogen cyanide, methyl mercaptan and ammonium and Acrolein carbonate (the ALmethod), accompanied with the for- mation of a-ureido-y-methylthiobutyramide (UMA, 5). Chisei Shibuya and Shunji Ouchi* By an alkaline hydrolysis of these products, dl- methionine (MT, 3) was obtained in an 85%yield on the Food Products & Pharmaceuticals Plant, bases of acrolein cyanohydrin and of acrolein. Asahi Chemical Industry Co., Ltd., Whenthe single-step hydantoination was carried out 6-2700 Asahimachi, Nobeoka, from ACor AL, a mixture of 2 and 5 was obtained. Miyazaki 882, Japan Approximately 12mol% of 5 was formed in each case of *Analytical Research Center, using AL and AC. Asahi Chemical Industry Co., Ltd., These new reactions are summarized in the following 1-3-1 Yako, Kawasaki-ku, Kawasaki-shi, equations: Kanagawa 210, Japan According to this procedure, acrolein and acrolein Received July 27, 1987 cyanohydrin, which are unstable to alkali, were not polymerized by the presence of excess ammoniumcar- bonate,-and the desired reaction proceeded in high yields. Single-step hydantoination of ACusing methanol as the A number of methods for DL-methionine synthesis solvent was carried out, and the effect of quantities of through the hydantoin intermediate have been reported methyl mercaptan, hydrogen cyanide and ammonium since Pierson1* obtained methionine in a 50%yield starting carbonate on the yield of MTwas investigated. -
United States Patent ‘ Patented Mar
r 2,786,869 United States Patent ‘ Patented Mar. 26, 1957 l 2 tically, mixtures of tert-alkylamine such as are available on the market. Typical mixtures are those containing ‘ 2,786,869 C12H25NH2 to C15H31NH2 or C18H3'INH2 to C24H49NH2 N-TRIALKYLCARBINYL-N-(HYDROXYETHYL or C15H31- to C24H49NH2. These may be represented by POLYOXYETHYL) GLYCINES the formula Peter L. de Benneville and Homer J. Sims, Philadelphia, 31 Pa., assignors to Rohrn & Haas Company, Philadelphia, R’-—-C—NH2 Pa., a corporation of Delaware Rs No Drawing. Application June 16, 1954, 10 As catalysts in the ?rst step of the process of this Serial No. 437,273 invention, wherein the hydroxyethyl group is introduced, 9 Claims.‘ (or. 260-534) there may be used any of the strong acids, such as hy drochloric, hydrobromic, sulfuric, arylsulfonic, alkanesul fonic, or phosphoric. The preferred amount of this cat This invention relatesto-compounds of the structure 15 alyst is 10 to 30 mole percent of the amine. With R1 '(CH2CH2O),.H ‘ , amines from 12 carbon atoms upward it is exceedingly di?icult to introduce more than one hydroxyethyl group in a tert-alkylamine molecule. Such amines‘yicld ?nal 3 \CHrCOOH products which have the desired balance of properties. ' wherein R1, R2, and R3 are alkyl groups containing a 20 The ?rst reaction with ethylene oxide is effected by total of 11 to 23 carbon atoms and n is an integer having bringing together ethylene oxide and tert-alkylamine, a value from 5 to about 50 or more, preferably 5 to 25. usually by passing ethylene oxide into amine and catalyst, These compounds may be called N-(trialkylcarbinyl)-N at temperatures from 0° to 180° C. -
Cyanide Poisoning and How to Treat It Using CYANOKIT (Hydroxocobalamin for Injection) 5G
Cyanide Poisoning and How to Treat It Using CYANOKIT (hydroxocobalamin for injection) 5g 1. CYANOKIT (single 5-g vial) [package insert]. Columbia, MD: Meridian Medical Technologies, Inc.; 2011. Please see Important Safety Information on slides 3-4 and full Prescribing Information for CYANOKIT starting on slide 33. CYANOKIT is a registered trademark of SERB Sarl, licensed by Meridian Medical Technologies, Inc., a Pfizer company. Copyright © 2015 Meridian Medical Technologies, Inc., a Pfizer company. All rights reserved. CYK783109-01 November/2015. Indication and Important Safety Information……………………………………………………………………………….………..…..3 . Identifying Cyanide Poisoning……………………………………………………………………………………………………………….…………….….5 . How CYANOKIT (hydroxocobalamin for injection) Works……………………………………………………………….12 . The Specifics of CYANOKIT…………………………………………………………………………………………………………………………….………17 . Administering CYANOKIT………………………………………………………………………………………………………………………………..……….21 . Storage and Disposal of CYANOKIT…................................................................................................................................26 . Grant Information for CYANOKIT……………………………………………………………………………………………………………………....30 . Full Prescribing Information………………………………………………………………………………………………….………………………………33 Please see Important Safety Information on slides 3-4 and full Prescribing Information for CYANOKIT starting on slide 33. CYANOKIT (hydroxocobalamin for injection) 5 g for intravenous infusion is indicated for the treatment of known or suspected cyanide poisoning. -
Accurate Enthalpies of Formation of Astromolecules: Energy, Stability and Abundance
Accurate Enthalpies of Formation of Astromolecules: Energy, Stability and Abundance Emmanuel E. Etim and Elangannan Arunan* Inorganic and Physical Chemistry Department, Indian Institute of Science Bangalore, India-560012 *email: [email protected] ABSTRACT: Accurate enthalpies of formation are reported for known and potential astromolecules using high level ab initio quantum chemical calculations. A total of 130 molecules comprising of 31 isomeric groups and 24 cyanide/isocyanide pairs with atoms ranging from 3 to 12 have been considered. The results show an interesting, surprisingly not well explored, relationship between energy, stability and abundance (ESA) existing among these molecules. Among the isomeric species, isomers with lower enthalpies of formation are more easily observed in the interstellar medium compared to their counterparts with higher enthalpies of formation. Available data in literature confirm the high abundance of the most stable isomer over other isomers in the different groups considered. Potential for interstellar hydrogen bonding accounts for the few exceptions observed. Thus, in general, it suffices to say that the interstellar abundances of related species are directly proportional to their stabilities. The immediate consequences of this relationship in addressing some of the whys and wherefores among astromolecules and in predicting some possible candidates for future astronomical observations are discussed. Our comprehensive results on 130 molecules indicate that the available experimental enthalpy -
Hazardous Chemicals in Secondhand Marijuana Smoke
Hazardous Chemicals in Secondhand Marijuana Smoke “The following 33 marijuana smoke constituents included in Table 1 are listed under 33 Chemicals Proposition 65 as causing cancer: acetaldehyde, acetamide, acrylonitrile, 4- aminobiphenyl, arsenic, benz[a]anthracene, benzene, benzo[a]pyrene, That Can benzo[b]fluoranthene, benzo[j]fluoranthene, benzo[k]fluoranthene, benzofuran, 1,3- butadiene, cadmium, carbazole, catechol, chromium (hexavalent compounds), Cancer chrysene, dibenz[a,h]anthracene, dibenz[a,i]pyrene, dibenzo[a,e]pyrene, “Many of the chemical diethylnitrosamine, dimethylnitrosamine, formaldehyde, indeno[1,2,3,-c,d]pyrene, constituents that have been isoprene, lead, mercury, 5-methylchrysene, naphthalene, nickel, pyridine, and identified in marijuana smoke quinoline.” are carcinogens.” 2009 OEHHA document, Evidence on the Carcinogenicity of Marijuana Smoke Hydrogen Cyanide interferes with the normal use of oxygen by nearly every organ of Hydrogen the body. Exposure to hydrogen cyanide (AC) can be rapidly fatal. It has whole-body (systemic) effects, particularly affecting those organ systems most sensitive to low Cyanide oxygen levels: the central nervous system (brain), the cardiovascular system (heart Is the same chemical used for and blood vessels), and the pulmonary system (lungs). Hydrogen cyanide (AC) is a chemical weapons. chemical warfare agent (military designation, AC). Ammonia gas is a severe respiratory tract irritant. Can cause severe irritation of the Ammonia nose and throat. Can cause life-threatening accumulation of fluid in the lungs Household cleaner used on (pulmonary edema). Symptoms may include coughing, shortness of breath, difficult floors and toilets. There is 3 breathing and tightness in the chest. Symptoms may develop hours after exposure times more in secondhand and are made worse by physical effort. -
Possible Gas-Phase Syntheses for Seven Neutral Molecules Studied Recently with the Green Bank Telescope
A&A 474, 521–527 (2007) Astronomy DOI: 10.1051/0004-6361:20078246 & c ESO 2007 Astrophysics Possible gas-phase syntheses for seven neutral molecules studied recently with the Green Bank Telescope D. Quan1 and E. Herbst2 1 Chemical Physics Program, The Ohio State University, Columbus, Ohio 43210, USA e-mail: [email protected] 2 Departments of Physics, Chemistry and Astronomy, The Ohio State University, Columbus, OH 43210, USA Received 9 July 2007 / Accepted 17 August 2007 ABSTRACT Aims. With the Green Bank telescope (GBT), seven neutral molecules have been newly detected or confirmed towards either the cold interstellar core TMC-1 or the hot core source Sgr B2(N) within the last 1–2 years. Towards TMC-1, the new molecules seen are cyanoallene (CH2CCHCN) and methyl triacetylene (CH3C6H) while methyl cyanoacetylene (CH3CCCN) and methyl cyanodiacety- lene (CH3C5N) were confirmed. Towards Sgr B2(N), the three newly detected molecules are cyclopropenone (c-C3H2O), ketenimine (CH2CNH), and acetamide (CH3CONH2); these are mainly seen in absorption and are primarily located in an envelope around the hot core. In this work, we report a detailed study of the gas-phase chemistry of all seven molecules. Methods. Starting with our updated gas-phase chemical reaction network osu.01.2007, we added formation and depletion reactions to treat the chemistry of each of the seven molecules. Some of these were already in our network but with incomplete chemistry, while most were not in the network at all prior to this work. We assumed the standard physical conditions for TMC-1 and assumed that these also hold for the envelope around Sgr B2(N). -
The Detoxification of Gold-Mill Tailings with Hydrogen Peroxide by A
J. S. At,. Inst. Min. Metal/., vol. 87, no. 9. Sap. 1987. pp. 279-283. The detoxification of gold-mill tailings with hydrogen peroxide by A. GRIFFITHS., H. KNORRE**, S. GOS:I:,and R. HIGGINS§ SYNOPSIS Hydrogen peroxide is gaining acceptance as a reagent for the treatment of.mining effluents c?ntaininQ cyanide. In this paper some of the chemical and environmental aspects of treatment with hydrogen peroxide are discussed, and one way of improving the economics of the process is described. This is known as selective detoxification, which involves the oxidation of the less stable (cyanide) complexes while not affecting the more stable complexes, which contribute very little to the concentration of free cyanide or to the toxicity of the treated water. SAMEVATTING Waterstofperoksied word al hoe meer aanvaar as 'n reagens vir die behandeling van mynuitvl?eisels w~t si~ni~d bevat. Sommige van die chemiese en omgewingsaspekte van behandeling met waterstofperoks,led word In hlerdle referaat bespreek en een manier om die ekonomie van die proses te verbeter word beskryf. Dlt s~aan bekend. as selektiewe ontgifting en behels die oksidasie van die minder stabiele (sianied) komplekse sonder om die meer stablele komplekse wat baie min tot die konsentrasie van vry sianied, of tot die giftigheid van die behandelde water bydra, te be"invloed. Introduction The detoxification plant supplied by Degussa for use Oxidation of CN- at the gold mine of Ok Tedi Mining Ltd in Papua New CN~ + HP2 CNO- + H2O Guinea represents the first large-scale application of - Hydrolysis of CNO- hydrogen peroxide for the detoxification of tailings from CNO- + 2 H+ a cyanidation plant. -
Solubility and Solution-Phase Chemistry of Isocyanic Acid, Methyl Isocyanate, 2 and Cyanogen Halides 3 4 5 6 James M
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1160 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 9 November 2018 c Author(s) 2018. CC BY 4.0 License. 1 Solubility and Solution-phase Chemistry of Isocyanic Acid, Methyl Isocyanate, 2 and Cyanogen Halides 3 4 5 6 James M. Roberts1, and Yong Liu2 7 8 1. NOAA/ESRL Chemical Sciences Division, Boulder, Colorado, 80305 9 2. Department of Chemistry, University of Colorado, Denver, Denver, Colorado, 80217 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1160 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 9 November 2018 c Author(s) 2018. CC BY 4.0 License. 52 Abstract 53 54 Condensed phase uptake and reaction are important atmospheric removal processes for reduced nitrogen 55 species, isocyanic acid (HNCO), methyl isocyanate (CH3NCO) and cyanogen halides (XCN, X =Cl, Br, I), yet many 56 of the fundamental quantities that govern this chemistry have not been measured or are understudied. Solubilities 57 and first-order reaction rates of these species were measured for a variety of solutions using a bubble flow reactor 58 method with total reactive nitrogen (Nr) detection. The aqueous solubility of HNCO was measured as a function of 59 pH, and exhibited the classic behavior of a weak acid, with an intrinsic Henry’s law solubility of 20 (±2) M/atm, and -4 60 a Ka of 2.0 (±0.28) ×10 M (which corresponds to pKa = 3.7 ±0.06) at 298K. -
Gouvernement Du Canada
50-1443-eng-cov.qxd 5/18/00 19:56 Page 1 Environment Environnement Canada Canada Health Santé Canada Canada Canadian Environmental Protection Act, 1999 PRIORITY SUBSTANCES LIST ASSESSMENT REPORT Acrylonitrile Canada 50-1443-eng-cov.qxd 5/18/00 19:56 Page 2 Canadian Cataloguing in Publication Data Priority substances list assessment report: acrylonitrile (Priority substances list assessment report) Issued also in French under title: Liste des substances d'intérêt prioritaire, rapport d'évalua- tion, acrylonitrile. Canadian Environmental Protection Act. Includes bibliographical references. Co-published by Health Canada. Issued also on the Internet. ISBN 0-662-28587-5 Cat. no. En40-215/49E 1. Acrylonitrile -- Toxicity testing -- Canada. 2. Acrylonitrile -- Environmental aspects -- Canada. 3. Environmental monitoring -- Canada. I. Canada. Environment Canada. II. Canada. Health Canada. III. Series. TD887.A37P74 2000 363.738'4 C00-980073-5 Additional information can be obtained at Environment Canadas Web site at www.ec.gc.ca or from the Inquiry Centre at 1-800-668-6767. © Minister of Public Works and Government Services 2000 50-1443-eng-cov.qxd 5/18/00 19:56 Page 3 Canadian Environmental Protection Act, 1999 PRIORITY SUBSTANCES LIST ASSESSMENT REPORT Acrylonitrile Environment Canada Health Canada May 2000 50-1443-eng.qxd 5/29/00 14:48 Page 1 TABLE OF CONTENTS SYNOPSIS .................................................................................................................... 1 1.0 INTRODUCTION ............................................................................................... -
39. Acrylonitrile アクリロニトリル
IPCS UNEP//ILO//WHO 国際化学物質簡潔評価文書 Concise International Chemical Assessment Document No.39 Acrylonitrile(2002) アクリロニトリル 世界保健機関 国際化学物質安全性計画 国立医薬品食品衛生研究所 安全情報部 2007 目 次 序 言 1. 要 約 ------------------------------------------------------------------------------------------- 5 2. 物質の特定および物理的・化学的性質 ----------------------------------------------- 7 3. 分析方法 -------------------------------------------------------------------------------------- 8 4. ヒトおよび環境の暴露源 ----------------------------------------------------------------- 10 4.1 自然界での発生源 ------------------------------------------------------------------------- 10 4.2 人為的発生源 ------------------------------------------------------------------------------- 10 4.3 生産と用途 ---------------------------------------------------------------------------------- 10 5. 環境中の移動・分布・変換 -------------------------------------------------------------- 11 5.1 大 気 ------------------------------------------------------------------------------------------ 11 5.2 水 ---------------------------------------------------------------------------------------------- 11 5.3 土壌と底質 ---------------------------------------------------------------------------------- 12 5.4 生物相 ---------------------------------------------------------------------------------------- 12 5.5 環境中分配 ---------------------------------------------------------------------------------- 13 6. 環境中の濃度とヒトの暴露量 ------------------------------------------------------------ 14 6.1 環境中の濃度 ------------------------------------------------------------------------------- 14 6.1.1 -
The Prebiotic Molecular Inventory of Serpens SMM1
Astronomy & Astrophysics manuscript no. SMM1_C2H3NO_isomers ©ESO 2021 January 1, 2021 The prebiotic molecular inventory of Serpens SMM1 I. An investigation of the isomers CH3NCO and HOCH2CN N.F.W. Ligterink1, A. Ahmadi2, A. Coutens3, Ł. Tychoniec2 H. Calcutt4; 5, E.F. van Dishoeck2; 6, H. Linnartz7, J.K. Jørgensen8, R.T. Garrod9, and J. Bouwman7 1 Physics Institute, University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland e-mail: [email protected] 2 Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands 3 Laboratoire d’Astrophysique de Bordeaux, Univ. Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France 4 Department of Space, Earth and Environment, Chalmers University of Technology, 41296, Gothenburg, Sweden 5 Institute of Astronomy, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Grudziadzka 5, 87-100 Torun, Poland 6 Max-Planck Institut für Extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748 Garching, Germany 7 Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands 8 Centre for Star and Planet Formation, Niels Bohr Institute & Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen K., Denmark 9 Departments of Chemistry and Astronomy, University of Virginia, Charlottesville, VA 22904, USA Received October 8, 2020; accepted December 22, 2020 ABSTRACT Aims. Methyl isocyanate (CH3NCO) and glycolonitrile (HOCH2CN) are isomers and prebiotic molecules that are involved in the formation of peptide structures and the nucleobase adenine, respectively. These two species are investigated to study the interstellar chemistry of cyanides (CN) and isocyanates (NCO) and to gain insight into the reservoir of interstellar prebiotic molecules. -
SAFETY DATA SHEET Nonflammable Gas Mixture: Cyanogen Chloride 1-999Ppm / Nitrogen 99%
SAFETY DATA SHEET Nonflammable Gas Mixture: Cyanogen Chloride 1-999ppm / Nitrogen 99% Section 1. Identification GHS product identifier : Nonflammable Gas Mixture: Cyanogen Chloride 1-999ppm / Nitrogen 99% Other means of : Not available. identification Product use : Synthetic/Analytical chemistry. SDS # : 012226 Supplier's details : Airgas USA, LLC and its affiliates 259 North Radnor-Chester Road Suite 100 Radnor, PA 19087-5283 1-610-687-5253 24-hour telephone : 1-866-734-3438 Section 2. Hazards identification OSHA/HCS status : This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Classification of the : GASES UNDER PRESSURE - Compressed gas substance or mixture GHS label elements Hazard pictograms : Signal word : Warning Hazard statements : Contains gas under pressure; may explode if heated. May displace oxygen and cause rapid suffocation. Precautionary statements General : Read and follow all Safety Data Sheets (SDS’S) before use. Read label before use. Keep out of reach of children. If medical advice is needed, have product container or label at hand. Close valve after each use and when empty. Use equipment rated for cylinder pressure. Do not open valve until connected to equipment prepared for use. Use a back flow preventative device in the piping. Use only equipment of compatible materials of construction. Prevention : Not applicable. Response : Not applicable. Storage : Protect from sunlight when ambient temperature exceeds 52°C/125°F. Store in a well- ventilated place. Disposal : Not applicable. Hazards not otherwise : In addition to any other important health or physical hazards, this product may displace classified oxygen and cause rapid suffocation. Section 3. Composition/information on ingredients Substance/mixture : Mixture Other means of : Not available.