Changes in the Trace Fossil Biota Across the Proterozoic-Phanerozoic Boundary

Total Page:16

File Type:pdf, Size:1020Kb

Changes in the Trace Fossil Biota Across the Proterozoic-Phanerozoic Boundary Journal of the Geological Society. London, Vol. 149, 1992, pp. 631-646, 3 figs, 1 table. Printed in Northern Ireland Changes in the trace fossil biota across the Proterozoic-Phanerozoic boundary T. P. CRIMES Department of Earth Sciences, University of Liverpool, L49 3BX, UK Abstract: Tracefossils became relatively diverse in shallow-water clastic seas in the late Proterozoic (Vendian), with a further significant increase in abundance, diversity and complexity in the Tommotian and Atdabanian. Little change followed in the remainder of the Lower Palaeozoic. Traces typical of deeper- water facies evolved in shallow water during the Vendian and early Cambrian, and may have slowly migrated into the deep ocean during the remainder of the Lower Palaeozoic. There are a limited number of short-ranging ichnogenera which may be useful for correlation but the first appearance of ichnogenera may be a more satisfactory method. Three trace fossil zones covering the ranges Redkino and Kotlin, Rovno and Tommotian-lower Atdabanian are recognized and may be useful for world-wide correlation. ‘Explosive evolution’ was how Seilacher (1956) described the Platformare partly time-equivalent to the trilobite-bearing changes in thetrace fossil biotaacross the Proterozoic- Talsy Horizon in the East European Platform. Phanerozoic boundary. He compared the dearth andsimplicity The Rovno Horizon has yielded a relatively diverse ich- of trace fossils in upper Precambrian strata with the abundance nofauna,including Gyrolithes,Phycodes, Teichichnus and and complexityof those from the Cambrian. These rapid Treptichnus. It appears, therefore, that part of the ‘explosive changes have led to suggestions that tracefossils may be useful evolution’took place duringthe Vendian (sensulato). De- forcorrelation at theboundary level (Crimes 1975,1987; velopment of more advanced forms such as trilobite furrows Alpert 1977; Narbonne et al. 1987). (Cruziana) and complexspreite (Diplocraterion, Rhizocoral- The evolution of behaviouraldiversity was investigated in- lium,Zoophycos) occurredlater, in theearly Cambrian dependently by Crimes (1974) and Seilacher (1974) who both (Tommotian and Atdabanian). concluded that, while there was a rapid increase in trace fossil The purpose of this paperis briefly to review the evolution abundanceand diversity in shallow-waterCambrian seas, and diversification of trace fossils acrossthe Proterozoic- significant colonization of the deep oceans did not take place Phanerozoic boundary and into the Lower Palaeozoic. until the Ordovician and then blossomed in the Cretaceous. In the absence of formal acceptanceof a type section for the Seilacher (1977,1978, 1986) suggested that the evolutionary Precambrian-Cambrian boundary,the Russian subdivisions changes in trace fossils, particularly those from the deep sea, will be used, since at present they are most widely known. The involved optimization of feeding behaviour, increase in com- base of the Cambrian will therefore informally be taken as the plexity and reduction in size. It has, however, been recognized base of the Tommotian. The tracefossil zones were, however, recently that some trace fossils which are typical of deep seas erected,as far as possible, independently of body fossil throughout much of the Phanerozoic, actually evolved and correlations and on a world-wide basis (Crimes 1987). Selec- reached a high level of complexity,and optimizationof feeding tion of a type section outside the USSR may therefore result in behaviour, in Tommotian to Toyonian andeven ‘late Precam- a different position for the Precambrian-Cambrian boundary brian’ shallow-water (Crimes & Anderson 1985; Crimes 1987, within the Russian sequence, but should notsignificantly affect 1991; Hofmann & Patel 1989) andperhaps upper-slope the utility of trace fossils in future correlations. sequences (Narbonne& Aitken 1990). The timingof these early evolutionary changes is important, both in relation to the de- Late Proterozoic and Early Phanerozoic trace fossils velopment of the metazoa and in the use of the rapid diversifi- cation of trace fossils in correlations at this level. Thelast 20 yearshave seen numerousinvestigations of Recent investigations have led to a reappraisal of corre- sequences of late Proterozoic and/or early Cambrian age in lations of some of the trace fossil-bearing upper Precambrian many parts of the world, principally: and Tommotian to Toyonian strata across the USSR and into Canada(Young 1972; Fritz 1980; Fritz & Crimes eastern Europe. The traditionalview was that the Rovno Hori- 1985; Crimes & Anderson 1985; Nowlan et zon of the Baltic Shield and the Nemakit-Daldyn Horizon of al. 1985; Narbonne & Hofmann 1987; Nar- Siberia were the lowest units of the Cambrian (Savitsky 1959, bonne et al. 1987; Hofmann & Patel 1989; 1975). Later work by Shishkin (1974) showed an assemblage of Narbonne & Aitken 1990) fossils in the top 11 m of the Nemakit-Daldyn Horizon which USA(Alpert 1976; Mount et al. 1983; Gibson also suggested an early Cambrian (Tommotian) age. In con- 1989) trast,Sokolov & Fedonkin (1984) equatedthe Rovno and Argentina (Acefiolaza & Durand 1973; Acefiolaza Nemakit-Daldyn horizons and assigned them to the Vendian, 1978; Acefiolaza & Toselli 1981; Regalia & generally regarded as Precambrian,and thisview is apparently Herrera 1981; Poire et al. 1984) becomingaccepted inthe USSR. However,Moczydiowska Greenland (Cowie & Spencer 1970; Pickerill et al. 1982) (1991) considered the acritarch evidence to demonstrate that Scandinavia(Banks 1970; Bergstrom 1981) the Nemakit-Daldyn may belong to the Cambrian, and that United Kingdom (Crimes 1970a, b; Brasier et al. 1978; Brasier depositsreferred tothe Tommotian Stage in the Siberian & Hewitt 1979; Cope 1977, 1982) 637 Downloaded from http://pubs.geoscienceworld.org/jgs/article-pdf/149/4/637/4892388/gsjgs.149.4.0637.pdf by guest on 03 October 2021 638 T. P. CRIMES Spain (Crimes et al. 1977; Brasier et al. 1979; Legg and simple butwinding and meanderingtraces such asHelmin- 1980; Perejon 1982; Fedonkin et al. 1983; thoida and Helminthopsis are interesting in that such habits are Liiian 1984; Liiian & Palacios 1987) uncommonin post-Cambrian shallow-water deposits. They Poland (OrIowski et al. 1970; Paczeina 1985a, b, appear to provide further examples of the evolution of deep- 1986, 1989; Orlowski 1989) water habits in early shallow-water seas. USSR (Fedonkin 1976, 1977, 1978, 1979, 1980a, b, Only a limited number of traces appear in the Kotlin Hori- 1981,1988; Palij 1976; Palij et al. 1983; zon but they include the screw-like burrow Harlaniella which Keller & Rozanov 1979; Urbanek & may be restrictedto that horizon. In contrast, the Rovno Hori- Rozanov 1983; Sokolov & Fedonkin 1984; zon has four traces so far only recorded from that level and Sokolov & Ivanovskii 1985) also includes the appearance of more complex, Palaeozoic- Namibia (Germs 1972; Crimes & Germs 1982) type traces including Phycodes, Teichichnus and Treptichnus. India (Seilacher 1955; Bhargava & Srikantia 1982, Almostall Vendian traces have been recordedfrom 1985; Kumar et al. 1983; Raina et al. 1983; shallow-water sequences andthey show a wide variety of types, Shah & Sudan 1983; Singh & Rai 1983; Bhar- including simple burrows (e.g. Planolites), winding and mean- gava etal. 1984; Bhargava & Bassi1988; deringtraces (e.g. Gordia,Nereites, Helminthoida), circling Kumar et al. 1984; Brasier 1989) traces (e.g. Circulichnis, Gyrolithes), spirals (Planispiralichnus, China (Jiang Zhiwen et al. 1982; Yang Zunyi et al. Protospiralichnus), branching burrow systems (e.g. Phycodes, 1982; Luo Huilin et al. 1984; Crimes & Jiang Treptichnus), simple spreite burrows (e.g. Teichichnus), resting Zhiwen 1986; Luo Huilin & Zhang Shi-shan traces (e.g. Asterichnus, Bergaueria, Intrites, Lockeia) and 1986) arthropod scratch marks (Monomorphichnus). The main Phan- Australia(Glaessner 1969; Webby 1969,1970, 1982, erozoictrace fossil lineages therefore evolved inlate Pro- 1984; Daily 1972, 1973; Jenkins et al. 1983; terozoic shelf seas. Recently. however, Narbonne & Aitken Walter et al. 1984, 1989) (1990) havedescribed a limited ichnofauna of Aulichnites, Helminthoida,Helminthoidichnites, Helminthopsis, Lockeia, Correlations between these world-wide sections are at best Palaeophycus, Planolites and Torrowangea from the late Pre- difficult. Nevertheless, it is becoming evident that, within the cambrian Blueflower Formation of NW Canada, which they Vendian, the Redkino, Kotlin and Rovno horizons and their interpret as being depositedbelow storm wavebase on the slope suggested correlatives have distinctive ichnofaunas. butpassing upwards into shallow-water dolomites. There The lowest occurrences of tracefossils in these horizons are may, therefore, have been some colonization of intermediate shown below, with asterisks indicating traces which may be water depths as early as the late Precambrian. restricted to that particular horizon. In drawing up such lists, Trace fossils from the overlying Tommotian to pre-trilobite only the most obvioussynonymies have been omitted and some Atdabanian strata include: more complex forms of trilobite forms are included which may not even be trace fossils. traces (Cruziana, Dimorphichnus, Diplichnites, Rusophycus), Redkino Asterichnus,Aulichnites, Bergaueria, Bilinichnus, spreitetraces (Diplocraterion,Rhizocorallium), winding and Buchholzbrunnichnus*, Bunyerichnus*, Cochlichnus, meanderingtraces (Belorhaphe, Cosmorhaphe, Taphrhelmin- G ordia, Helminthoida,Gordia, Helminthoidichnites,
Recommended publications
  • Integrative and Comparative Biology Integrative and Comparative Biology, Volume 58, Number 4, Pp
    Integrative and Comparative Biology Integrative and Comparative Biology, volume 58, number 4, pp. 605–622 doi:10.1093/icb/icy088 Society for Integrative and Comparative Biology SYMPOSIUM INTRODUCTION The Temporal and Environmental Context of Early Animal Evolution: Considering All the Ingredients of an “Explosion” Downloaded from https://academic.oup.com/icb/article-abstract/58/4/605/5056706 by Stanford Medical Center user on 15 October 2018 Erik A. Sperling1 and Richard G. Stockey Department of Geological Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, CA 94305, USA From the symposium “From Small and Squishy to Big and Armored: Genomic, Ecological and Paleontological Insights into the Early Evolution of Animals” presented at the annual meeting of the Society for Integrative and Comparative Biology, January 3–7, 2018 at San Francisco, California. 1E-mail: [email protected] Synopsis Animals originated and evolved during a unique time in Earth history—the Neoproterozoic Era. This paper aims to discuss (1) when landmark events in early animal evolution occurred, and (2) the environmental context of these evolutionary milestones, and how such factors may have affected ecosystems and body plans. With respect to timing, molecular clock studies—utilizing a diversity of methodologies—agree that animal multicellularity had arisen by 800 million years ago (Ma) (Tonian period), the bilaterian body plan by 650 Ma (Cryogenian), and divergences between sister phyla occurred 560–540 Ma (late Ediacaran). Most purported Tonian and Cryogenian animal body fossils are unlikely to be correctly identified, but independent support for the presence of pre-Ediacaran animals is recorded by organic geochemical biomarkers produced by demosponges.
    [Show full text]
  • Download Download
    Dorjnamjaa et al. Mongolian Geoscientist 49 (2019) 41-49 https://doi.org/10.5564/mgs.v0i49.1226 Mongolian Geoscientist Review paper New scientific direction of the bacterial paleontology in Mongolia: an essence of investigation * Dorj Dorjnamjaa , Gundsambuu Altanshagai, Batkhuyag Enkhbaatar Department of Paleontology, Institute of Paleontology, Mongolian Academy of Sciences, Ulaanbaatar 15160, Mongolia *Corresponding author. Email: [email protected] ARTICLE INFO ABSTRACT Article history: We review the initial development of Bacterial Paleontology in Mongolia and Received 10 September 2019 present some electron microscopic images of fossil bacteria in different stages of Accepted 9 October 2019 preservation in sedimentary rocks. Indeed bacterial paleontology is one the youngest branches of paleontology. It has began in the end of 20th century and has developed rapidly in recent years. The main tasks of bacterial paleontology are detailed investigation of fossil microorganisms, in particular their morphology and sizes, conditions of burial and products of habitation that are reflected in lithological and geochemical features of rocks. Bacterial paleontology deals with fossil materials and is useful in analysis of the genesis of sedimentary rocks, and sedimentary mineral resources including oil and gas. The traditional paleontology is especially significant for evolution theory, biostratigraphy, biogeography and paleoecology; however bacterial paleontology is an essential first of all for sedimentology and for theories sedimentary ore genesis or biometallogeny Keywords: microfossils, phosphorite, sedimentary rocks, lagerstatten, biometallogeny INTRODUCTION all the microorganisms had lived and propagated Bacteria or microbes preserved well as fossils in without breakdowns. Bacterial paleontological various rocks, especially in sedimentary rocks data accompanied by the data on the first origin alike natural substances.
    [Show full text]
  • The Geologic Time Scale Is the Eon
    Exploring Geologic Time Poster Illustrated Teacher's Guide #35-1145 Paper #35-1146 Laminated Background Geologic Time Scale Basics The history of the Earth covers a vast expanse of time, so scientists divide it into smaller sections that are associ- ated with particular events that have occurred in the past.The approximate time range of each time span is shown on the poster.The largest time span of the geologic time scale is the eon. It is an indefinitely long period of time that contains at least two eras. Geologic time is divided into two eons.The more ancient eon is called the Precambrian, and the more recent is the Phanerozoic. Each eon is subdivided into smaller spans called eras.The Precambrian eon is divided from most ancient into the Hadean era, Archean era, and Proterozoic era. See Figure 1. Precambrian Eon Proterozoic Era 2500 - 550 million years ago Archaean Era 3800 - 2500 million years ago Hadean Era 4600 - 3800 million years ago Figure 1. Eras of the Precambrian Eon Single-celled and simple multicelled organisms first developed during the Precambrian eon. There are many fos- sils from this time because the sea-dwelling creatures were trapped in sediments and preserved. The Phanerozoic eon is subdivided into three eras – the Paleozoic era, Mesozoic era, and Cenozoic era. An era is often divided into several smaller time spans called periods. For example, the Paleozoic era is divided into the Cambrian, Ordovician, Silurian, Devonian, Carboniferous,and Permian periods. Paleozoic Era Permian Period 300 - 250 million years ago Carboniferous Period 350 - 300 million years ago Devonian Period 400 - 350 million years ago Silurian Period 450 - 400 million years ago Ordovician Period 500 - 450 million years ago Cambrian Period 550 - 500 million years ago Figure 2.
    [Show full text]
  • Gawler Craton: Half a Billion Years Older Than Previously Thought!
    ISSUE 92 Dec 2008 Foundations of South Australia discovered Gawler Craton: half a billion years older than previously thought! Geoff Fraser, Chris Foudoulis, Narelle Neumann, Keith Sircombe (Geoscience Australia) Stacey McAvaney, Anthony Reid, Michael Szpunar (Primary Industries and Resources South Australia) Recent geochronology results obtained using Geoscience Australia’s a billion years older than the Sensitive High Resolution Ion Microprobe (SHRIMP) have identified oldest previously-dated rock from Mesoarchean rocks (about 3150 million years old) in the eastern South Australia, making these Gawler Craton, South Australia. These rocks are approximately half the oldest rocks yet discovered in 136° 137° Australia outside the Pilbara and Port Augusta Yilgarn Craton areas of Western 08GA-G01 Australia. A series of seismic transects are being collected across selected regions of the Australian 33° See Inset below Whyalla continent as part of Geoscience Kimba Australia’s Onshore Energy SOUTH Security Program. One of these AUSTRALIA seismic transects, collected in June 2008, traverses the northern Cowell Eyre Peninsula of South Australia Iron Monarch (figure 1). When processed, the seismic data will provide an east– 23 Mile Wallaroo west cross-section of the eastern 34° margin of the Gawler Craton. Spencer Moonta Gulf This region hosts significant CUMMINS uranium, geothermal, copper- Iron Baron/ TUMBY BAY Iron Prince gold, gold and iron resources. Maitland To assist the interpretation of 08-3449-1 0 50 km the seismic data and the current geological mapping program of Mesoarchean granite NT QLD Primary Industries and Resources WA Seismic survey route SA Road South Australia, a program of NSW VIC Railway geochronology is underway to Mineral occurence TAS Town/locality determine the ages of major rock units crossed by the seismic line.
    [Show full text]
  • Trace Fossils and Substrates of the Terminal Proterozoic–Cambrian Transition: Implications for the Record of Early Bilaterians and Sediment Mixing
    Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: Implications for the record of early bilaterians and sediment mixing Mary L. Droser*†,So¨ ren Jensen*, and James G. Gehling‡ *Department of Earth Sciences, University of California, Riverside, CA 92521; and ‡South Australian Museum, Division of Natural Sciences, North Terrace, Adelaide 5000, South Australia, Australia Edited by James W. Valentine, University of California, Berkeley, CA, and approved August 16, 2002 (received for review May 29, 2002) The trace fossil record is important in determining the timing of the appearance of bilaterian animals. A conservative estimate puts this time at Ϸ555 million years ago. The preservational potential of traces made close to the sediment–water interface is crucial to detecting early benthic activity. Our studies on earliest Cambrian sediments suggest that shallow tiers were preserved to a greater extent than typical for most of the Phanerozoic, which can be attributed both directly and indirectly to the low levels of sediment mixing. The low levels of sediment mixing meant that thin event beds were preserved. The shallow depth of sediment mixing also meant that muddy sediments were firm close to the sediment–water interface, increasing the likelihood of recording shallow-tier trace fossils in muddy sed- iments. Overall, trace fossils can provide a sound record of the onset of bilaterian benthic activity. he appearance and subsequent diversification of bilaterian Tanimals is a topic of current controversy (refs. 1–7; Fig. 1). Three principal sources of evidence exist: body fossils, trace fossils (trails, tracks, and burrows of animal activity recorded in the sedimentary record), and divergence times calculated by means of a molecular ‘‘clock.’’ The body fossil record indicates a geologically rapid diversification of bilaterian animals not much earlier than the Precambrian–Cambrian boundary, the so-called Cambrian explosion.
    [Show full text]
  • A Fundamental Precambrian–Phanerozoic Shift in Earth's Glacial
    Tectonophysics 375 (2003) 353–385 www.elsevier.com/locate/tecto A fundamental Precambrian–Phanerozoic shift in earth’s glacial style? D.A.D. Evans* Department of Geology and Geophysics, Yale University, P.O. Box 208109, 210 Whitney Avenue, New Haven, CT 06520-8109, USA Received 24 May 2002; received in revised form 25 March 2003; accepted 5 June 2003 Abstract It has recently been found that Neoproterozoic glaciogenic sediments were deposited mainly at low paleolatitudes, in marked qualitative contrast to their Pleistocene counterparts. Several competing models vie for explanation of this unusual paleoclimatic record, most notably the high-obliquity hypothesis and varying degrees of the snowball Earth scenario. The present study quantitatively compiles the global distributions of Miocene–Pleistocene glaciogenic deposits and paleomagnetically derived paleolatitudes for Late Devonian–Permian, Ordovician–Silurian, Neoproterozoic, and Paleoproterozoic glaciogenic rocks. Whereas high depositional latitudes dominate all Phanerozoic ice ages, exclusively low paleolatitudes characterize both of the major Precambrian glacial epochs. Transition between these modes occurred within a 100-My interval, precisely coeval with the Neoproterozoic–Cambrian ‘‘explosion’’ of metazoan diversity. Glaciation is much more common since 750 Ma than in the preceding sedimentary record, an observation that cannot be ascribed merely to preservation. These patterns suggest an overall cooling of Earth’s longterm climate, superimposed by developing regulatory feedbacks
    [Show full text]
  • Earth: Atmospheric Evolution of a Habitable Planet
    Earth: Atmospheric Evolution of a Habitable Planet Stephanie L. Olson1,2*, Edward W. Schwieterman1,2, Christopher T. Reinhard1,3, Timothy W. Lyons1,2 1NASA Astrobiology Institute Alternative Earth’s Team 2Department of Earth Sciences, University of California, Riverside 3School of Earth and Atmospheric Science, Georgia Institute of Technology *Correspondence: [email protected] Table of Contents 1. Introduction ............................................................................................................................ 2 2. Oxygen and biological innovation .................................................................................... 3 2.1. Oxygenic photosynthesis on the early Earth .......................................................... 4 2.2. The Great Oxidation Event ......................................................................................... 6 2.3. Oxygen during Earth’s middle chapter ..................................................................... 7 2.4. Neoproterozoic oxygen dynamics and the rise of animals .................................. 9 2.5. Continued oxygen evolution in the Phanerozoic.................................................. 11 3. Carbon dioxide, climate regulation, and enduring habitability ................................. 12 3.1. The faint young Sun paradox ................................................................................... 12 3.2. The silicate weathering thermostat ......................................................................... 12 3.3. Geological
    [Show full text]
  • 38—GEOLOGIC AGE SYMBOL FONT (Stratagemage) REF NO STRATIGRAPHIC AGE SUBDIVISION TYPE AGE SYMBOL KEYBOARD POSITION for Stratagemage FONT
    Federal Geographic Data Committee U.S. Geological Survey Open-File Report 99–430 Public Review Draft - Digital Cartographic Standard for Geologic Map Symbolization PostScript Implementation (filename: of99-430_38-01.eps) 38—GEOLOGIC AGE SYMBOL FONT (StratagemAge) REF NO STRATIGRAPHIC AGE SUBDIVISION TYPE AGE SYMBOL KEYBOARD POSITION FOR StratagemAge FONT 38.1 Archean Eon A Not applicable (use Helvetica instead) 38.2 Cambrian Period _ (underscore = shift-hyphen) 38.3 Carboniferous Period C Not applicable (use Helvetica instead) 38.4 Cenozoic Era { (left curly bracket = shift-left square bracket) 38.5 Cretaceous Period K Not applicable (use Helvetica instead) 38.6 Devonian Period D Not applicable (use Helvetica instead) 38.7 Early Archean (3,800(?)–3,400 Ma) Era U Not applicable (use Helvetica instead) 38.8 Early Early Proterozoic (2,500–2,100 Ma) Era R (capital R = shift-r) 38.9 Early Middle Proterozoic (1,600–1,400 Ma) Era G (capital G = shift-g) 38.10 Early Proterozoic Era X Not applicable (use Helvetica instead) 38.11 Eocene Epoch # (pound sign = shift-3) 38.12 Holocene Epoch H Not applicable (use Helvetica instead) 38.13 Jurassic Period J Not applicable (use Helvetica instead) 38.14 Late Archean (3,000–2,500 Ma) Era W Not applicable (use Helvetica instead) 38.15 Late Early Proterozoic (1,800–1,600 Ma) Era I (capital I = shift-i) 38.16 Late Middle Proterozoic (1,200–900 Ma) Era E (capital E = shift-e) 38.17 Late Proterozoic Era Z Not applicable (use Helvetica instead) 38.18 Mesozoic Era } (right curly bracket = shift-right square bracket) 38.19 Middle Archean (3,400–3,000 Ma) Era V Not applicable (use Helvetica instead) 38.20 Middle Early Proterozoic (2,100–1,800 Ma) Era L (capital L = shift-l) 38.21 Middle Middle Proterozoic (1,400–1,200 Ma) Era F (capital F = shift-f) 38.22 Middle Proterozoic Era Y Not applicable (use Helvetica instead) A–38–1 Federal Geographic Data Committee U.S.
    [Show full text]
  • Geologic Time Lesson Guide Lesson Guide | Description
    Geologic Time Lesson Guide Lesson Guide | Description Instructor: Dr. Michael T. Lewchuk Grade Level: 6 - 12 Subject: Earth & Physical Science Students will investigate the subdivisions of the Geologic Time Scale. Wonder How: Have you ever wondered how scientists and geologists know how old something is? Goal: Students will gather data and use ratios that will help them create a scale model of Geological time using simple materials found at home. Lesson Guide | Lesson Guide Agenda Lesson Guide Agenda: v Vocabulary v Materials List v Geologic Time Scale v Activity Instructions v Challenge! v Additional Resources v Oklahoma Academic Standards Lesson Guide | Vocabulary Eon – An Eon is the fundamental division of time in Geology. The Earth’s 4.6-billion- year history is divided into four Eons: Hadean, Archean, Proterozoic and Phanerozoic. Precambrian Supereon – This is the combination of the Hadean, Archean and Proterozoic Eons. It is subdivided based on the physical properties of the Earth’s surface and atmosphere. Hadean Eon – The Hadean is the oldest Eon. It is generally described as the time when the Earth was so hot that it was all, or mostly all, molten liquid. Archean Eon – The Archean Eon is generally described as the time when solid rock existed on the surface of the Earth, but little or no free oxygen existed in the atmosphere. Proterozoic Eon – The Proterozoic is generally considered the Eon when free oxygen began to appear in the atmosphere. Microscopic life developed during the Proterozoic. Lesson Guide | Vocabulary Phanerozoic Eon – The Phanerozoic Eon is the most recent Eon in geologic history.
    [Show full text]
  • Proterozoic Ocean Chemistry and Evolution: a Bioinorganic Bridge? A
    S CIENCE’ S C OMPASS ● REVIEW REVIEW: GEOCHEMISTRY Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? A. D. Anbar1* and A. H. Knoll2 contrast, weathering under a moderately oxidiz- Recent data imply that for much of the Proterozoic Eon (2500 to 543 million years ing mid-Proterozoic atmosphere would have 2– ago), Earth’s oceans were moderately oxic at the surface and sulfidic at depth. Under enhanced the delivery of SO4 to the anoxic these conditions, biologically important trace metals would have been scarce in most depths. Assuming biologically productive marine environments, potentially restricting the nitrogen cycle, affecting primary oceans, the result would have been higher H2S productivity, and limiting the ecological distribution of eukaryotic algae. Oceanic concentrations during this period than either redox conditions and their bioinorganic consequences may thus help to explain before or since (8). observed patterns of Proterozoic evolution. Is there any evidence for such a world? Canfield and his colleagues have developed an argument based on the S isotopic compo- n the present-day Earth, O2 is abun- es and forms insoluble Fe-oxyhydroxides, sition of biogenic sedimentary sulfides, 2– dant from the upper atmosphere to thus removing Fe and precluding BIF forma- which reflect SO4 availability and redox the bottoms of ocean basins. When tion. This reading of the stratigraphic record conditions at their time of formation (16–18). O 2– life began, however, O2 was at best a trace made sense because independent geochemi- When the availability of SO4 is strongly 2– Ͻϳ constituent of the surface environment. The cal evidence indicates that the partial pressure limited (SO4 concentration 1 mM, ϳ intervening history of ocean redox has been of atmospheric oxygen (PO2) rose substan- 4% of that in present-day seawater), H2S interpreted in terms of two long-lasting tially about 2400 to 2000 Ma (4–7).
    [Show full text]
  • Cambrian Transition in the Southern Great Basin
    The Sedimentary Record 2000; Shen and Schidlowski, 2000). Due to The Precambrian- endemic biotas and facies control, it is diffi- cult to correlate directly between siliciclas- Cambrian Transition in the tic- and carbonate-dominated successions. This is particularly true for the PC-C boundary interval because lowermost Southern Great Basin, USA Cambrian biotas are highly endemic and Frank A. Corsetti James W.Hagadorn individual, globally distributed guide fossils Department of Earth Science Department of Geology are lacking (Landing, 1988; Geyer and University of Southern California Amherst College Shergold, 2000). Los Angeles, CA 90089-0740 Amherst, MA 01002 Determination of a stratigraphic bound- [email protected] [email protected] ary generates a large amount of interest because it provides scientists with an oppor- ABSTRACT:The Precambrian-Cambrian boundary presents an interesting tunity to address a variety of related issues, stratigraphic conundrum: the trace fossil used to mark and correlate the base of the including whether the proposed boundary Cambrian, Treptichnus pedum, is restricted to siliciclastic facies, whereas position marks a major event in Earth histo- biomineralized fossils and chemostratigraphic signals are most commonly obtained ry. Sometimes the larger-scale meaning of from carbonate-dominated sections.Thus, it is difficult to correlate directly between the particular boundary can be lost during many of the Precambrian-Cambrian boundary sections, and to assess details of the the process of characterization. This is timing of evolutionary events that transpired during this interval of time.Thick demonstrated in a plot of PC-C boundary sections in the White-Inyo region of eastern California and western Nevada, USA, papers through time (Fig.
    [Show full text]
  • Proterozoic Paleozoic Cambrian Ordovician Silurian Devonian
    Approximate location of Burley No. 1 well Seismic Stratigraphic Extensional and Thrust Age West Formation or Group Name East Lithology Packages Orogenic Events Sheets Perm. Lower Upper Post-Pottsville rocks, undivided Pottsville Group and Middle post-Pottsville rocks Alleghanian orogeny Penn. Lower Pottsville Group Upper Greenbrier Limestone and Mauch Chunk Group Greenbrier Limestone Miss. Lower Berea Sandstone, Sunbury Shale, and Price Formation Venango Group Venango Group (Formation) Hampshire Formation and Riceville Formation Chagrin Shale Bradford Group Bradford Group Huron Mbr. of Greenland Gap Group the Ohio Shale Upper Salina sheet Acadian orogeny Java Formation Angola Shale Member Devonian West Falls Elk Group Formation Rhinestreet Shale Member Brallier Formation Elk Group Sonyea Formation Genesee Formation Harrell Shale Middle Tully Limestone, Hamilton Group, Marcellus Shale, and Onondaga Limestone Hamilton Group Lower Oriskany Sandstone and Helderberg Group Upper Salina Group (includes salt beds) Salina Group, Tonoloway Limestone, and Wills Creek Formation and Wills Creek Formation Salina Group Paleozoic Lockport Dolomite and Keefer Sandstone McKenzie Limestone and Keefer Sandstone Silurian Rose Hill Formation Lower Reedsville- Tuscarora Sandstone Taconic orogeny Martinsburg Juniata Formation Juniata Formation sheet Oswego Sandstone Upper Reedsville Shale (Utica Shale at base) Reedsville Shale Trenton Limestone Trenton Limestone Black River Limestone Middle Ordovician Knox unconformity Beekmantown Group Beekmantown Group ? Passive continental Lower Rome- margin modified Waynesboro Upper sandstone member of the Copper Ridge Dolomite of the Knox Group by Rome trough sheet Upper extension Copper Ridge Dolomite of the Knox Group Knox Group and Middle pre-Knox rocks Conasauga Group and Rome Formation Cambrian Lower Autochthonous Grenvillian basement Grenvillian Grenvillian basement basement Proterozoic Figure 3.--Correlation chart of Paleozoic and Proterozoic rocks in the study area and associated thrust sheets.
    [Show full text]