UK News from CERN Issue 17: 26 March 2013

Total Page:16

File Type:pdf, Size:1020Kb

UK News from CERN Issue 17: 26 March 2013 UK news from CERN Issue 17: 26 March 2013 In this issue: LHCb’s extra dimension – seeing data in a different way An holistic approach to improving accelerator performance Educating the united nations – maintaining continuity and broadening horizons Northern Ireland Assembly visits CERN Dates for the diary LHCb’s extra dimension Precision is key. LHCb provides the opportunity Predictability can be both reassuring, and a bit for unprecedented precision – it is a detector dull. For physicists at CERN, the Standard especially built for exploiting the vast number of Model of particle physics is like a jigsaw into b and c quarks (heavy cousins of the ‘everyday’ which they are gradually fitting pieces. Some quarks you find inside protons and neutrons) pieces seem to be fitting – measurements of the produced at the LHC, which are ideal for these Higgs boson seem to be pointing towards a precision measurements. Higgs that fits beautifully. But most physicists prefer living life on the edge, and they are The b and c quarks produced in LHCb collisions hoping to find pieces that just won’t fit. This associate with other quarks to form various would mean that the Standard Model isn’t right. types of short-lived particles that decay in a And it would force a radical (and exciting) number of ways; two-body, three-body or four- rethink; one that could lead to a theory that body, with the name relating to the number of answers questions that the Standard Model pieces of particle debris produced in the leaves open. For example, why there is only explosion. LHCb seeks to reconstruct these matter in the Universe. decays by tracking the paths of the debris. Analysing the decays is a complex process. Jonas Rademacker (University of Bristol) is one of those hoping to shake things up a bit. But for One of the most precise tools to measure Jonas, it is not a question of stumbling upon a matter:antimatter asymmetries in these data are new particle that overturns current thinking. He Dalitz plots, named after the British scientist, has developed a new way of analysing data Richard Dalitz. These are scatter plots that from LHCb that offers an unprecedented level of beautifully represent all the weird and wonderful detail and precision, “We’re hoping to find the quantum-mechanical interference effects that go jigsaw piece that looks like it should fit, but when on in decays, and Jonas and his colleagues use you look very closely, the pattern isn’t quite them at LHCb as a precision tool to measure CP right.” violation. Importantly, Jonas has added a new tool to LHCb’s toolbox that generalises these LHCb is focussed on the matter:antimatter analyses to four-body decays. This requires conundrum; if matter and antimatter were analysing a scatter plot in five dimensions, created in equal amounts at the Big Bang, what rather than two - considerably more happened to all the antimatter? Tiny deviations complicated, but worth the effort because it from the Standard Model predictions in LHCb’s significantly increases the precision of the measurements could reveal spectacular new measurement. Higher precision is the key to insights into the nature of matter, antimatter and success if you are looking for tiny deviations. the creation of the Universe. Page 1 Written and edited by Stephanie Hills, UK Communications and Innovation Officer @ CERN [email protected] or [email protected] In fact, the precision expected from these measurements is so spectacular that traditional Jonas’ project is funded by a recent €1.4M grant mathematical models describing the quantum from the European Research Council. Once his mechanical interference effects are no longer team is complete, it will include a post-doc and sufficiently accurate. The limitations in the three PhD students. models produce a small measurement uncertainty that, for the high precision Jonas An holistic approach and his team are aiming at, is simply unacceptable. It takes a range of skills and technologies to improve the performance of a particle accelerator but often different research areas © CERN/LHCb/J discover that they have been working towards a Rademacker common goal when it is too late to share resources, swap ideas or collaborate, simply because there has been no mechanism to bring the different activities together. A new network is taking a more holistic approach. The oPAC network is seeking to improve the performance of current and future particle Typical LHCb Dalitz plot of decay. It's a short-lived neutral Kaon accelerators including the LHC and CLIC. Like (‘K-short’) LA3NET (featured in UKNFC 14), oPAC is a Marie Curie Initial Training Network (ITN) for young researchers. Each fellow works on their own project (normally leading to a PhD) but also participates in a number of schools and workshops to share knowledge and expertise. © CERN/LHCb/J With a project budget of 6 M€, the network is Rademacker one of the biggest of the EC-funded ITNs. oPAC has 22 fellows five of whom are based at CERN, three at the Cockcroft Institute/University of Liverpool and two at Royal Holloway University of London. The same decay, but now with ‘special’ D mesons at CLEO-c (CP- odd ones, an equal superposition of D and anti-D). It looks remarkably different (the symmetry around the diagonal is a “oPAC has a very broad remit – the fellows are consequence of it being a superposition of D and anti-D) - and looking at all aspects of accelerator that's the trick, you really get different, additional information out, which, when combined with LHCb data, is helping measure optimisation, including beam dynamics, beam gamma. instrumentation, control systems and numerical studies.” says coordinator Carsten Welsch By systematically analysing data from CLEO-c, (University of Liverpool). “But we also have a a previous experiment at Cornell University, very practical focus and aim to implement the USA, Jonas and his colleagues have been able results of the fellows’ projects. to replace the input from the insufficient models with measurements directly from CLEO-c’s “For example, one of the beam instrumentation special data. “We are in an excellent position to projects is to develop a beam halo monitor. The reach unprecedented sensitivity to physics halo is the outer part of the beam and it’s beyond the Standard Model – we have difficult to measure because that part of the developed new precision methods, we have beam only contains a few particles. overcome the limitation of the method with Nevertheless, it is very important to the overall CLEO-c data, and we have fantastic new LHCb performance of the accelerator. The fellow, data – with more to come. We might be the Blaine Lomberg (University of Liverpool), is team that breaks the Standard Model!” building a prototype in close collaboration with Page 2 Written and edited by Stephanie Hills, UK Communications and Innovation Officer @ CERN [email protected] or [email protected] the University of Maryland (USA), experts from the discussions or the poster session. More Thermo Fisher Scientific (USA), ViALUX information is available on the oPAC web site. (Germany) and CERN which will be tested on the ALICE and EMMA accelerators at STFC Educating the united nations Daresbury Laboratory." Uprooting your family from the UK to take up a As with the other ITNs, industry involvement is job at CERN is a big decision, particularly if your very important, and Carsten and his colleagues children are already at school. The obvious on the steering group consulted industry advantages are the opportunity to become representatives when they were developing proficient, or even fluent, in a second language plans for the network. “The training that we and to broaden their horizons. But making sure provide must be relevant, so we asked industry that this is not at the cost of their overall what skills graduate recruits are missing when education is vital. they leave university, and what companies have to spend time and money teaching them. The When CERN extended across the Franco-Swiss list included project management, presentation border some 40 years ago, the laboratory and communication skills.” So, alongside their worked with the French authorities to ensure individual research projects and regular that good local schooling that also recognised technical workshops, the fellows also get the cultural diversity of the region, would be together for skills training. available for the children of international personnel. This led to the creation of the This focus on producing highly-skilled young International Collège and Lycée in Ferney researchers undoubtedly pays off. All the Voltaire, with an associated International fellows from Ditanet (oPAC’s predecessor Primary Programme. Today, the school has network, also coordinated by Carsten) are still more than 2000 students from 70 different working in R&D, mostly in industry, but some in countries. Within the school, there are six academia. national sections, one of which is the English National Programme (ENP) with over 800 “Our approach is to make sure that the skills students enrolled. training is directly relevant. We don’t use fictitious scenarios in the training courses – for Managed by the Association de Langue example, project management training is Anglaise - English Language Programme (ALA- focussed on the requirements of the fellows’ ELP), the ENP provides 6-8 hours of teaching own PhDs and they leave the course with a plan per week in English at Collège and Lycée, in the that they can implement immediately.” key subjects of English, English literature, history-geography and maths, for students Carsten is convinced that the Marie Curie ITNs whose English is already very good or is of provide the best research and training mother-tongue standard.
Recommended publications
  • Nucleon Resonances and Quark Structure
    Nucleon Resonances and Quark Structure J.T. Londergan Physics Dept and Nuclear Theory Center, Indiana University, Bloomington, IN 47405, USA. [email protected] (Dated: October 25, 2018) A pedagogical review of the past 50 years of study of resonances, leading to our understanding of the quark content of baryons and mesons. The level of this review is intended for undergraduates or first-year graduate students. Topics covered include: the quark structure of the proton as revealed through deep inelastic scattering; structure functions and what they reveal about proton structure; and prospects for further studies with new and upgraded facilities, particularly a proposed electron- ion collider. Keywords: I. INTRODUCTION These lectures were given at Aligarh Muslim University, Aligarh India, at a nuclear physics workshop attended by Indian graduate students and postdocs. These lectures provide a pedagogical review of the past 50 years of experimental and theoretical studies of the quark and gluon structure of the nucleon. Since many speakers at this workshop will discuss structure functions extracted from deep inelastic scattering reactions, we define these quantities and review what can be extracted from them. We hope that specialists in this field will tolerate our brief and superficial summary of many years' study of strongly-interacting systems. FIG. 1: Richard H. Dalitz, 1925-2006. arXiv:0907.3431v1 [hep-ph] 20 Jul 2009 These lectures are dedicated to my mentor, Richard Dalitz, who was from 1963-2000 Royal Society Professor of Physics at Oxford University and who made seminal contributions in particle phenomenology. Dalitz pairs (electron- positron pairs from decay of a high-energy photon) and the Dalitz plot were named after him.
    [Show full text]
  • Fellowships for US Lab Directors
    CCEMarFACES33-38 14/2/06 12:21 Page 33 FACES AND PLACES AWARDS Fellowships for US lab directors Two associate directors of US particle-physics laboratories were among the members of the American Association for the Advancement of Science (AAAS) to receive awards as new fellows at the 2006 AAAS Annual Meeting in St Louis, Missouri, on 18 February. They join other leading figures in US particle physics and related fields that were elected as new fellows by the AAAS Council during 2005. Swapan Chattopadhyay, associate director for accelerators at the Thomas Jefferson National Accelerator Facility (Jefferson Lab), was awarded the distinction of fellow for his “fundamental contributions to accelerator science, including phase-space cooling, innovative collider designs and pioneering Swapan Chattopadhyay, left, and Samuel Aronson, received AAAS fellowships in February. femto-sources, and for mentoring accelerator scientists at facilities worldwide, especially in Accelerator Department, the Physics professor at the University of Chicago, was developing countries”. He is responsible for Department, the Superconducting Magnet honoured “for his exceptional research in the all aspects of Jefferson Lab’s accelerator and Division, the Instrumentation Division and the evolution of the earliest universe, explaining Free-Electron Laser (FEL) programmes, Center for Accelerator Physics. its significance to the public, and for including R&D and operations, maintenance Neil V Baggett, advisor for planning and co-founding the interdisciplinary field of and upgrades of the Continuous Electron communication in the high-energy physics particle physics and cosmology”. Beam Accelerator Facility and the FEL. programme of the Office of Science of the US Lastly, C W Francis Everitt, research professor Samuel Aronson, associate laboratory Department of Energy, was also elected as a at the Hansen Experimental Physics Laboratory director for high-energy and nuclear physics fellow.
    [Show full text]
  • People and Things
    People and things Jean-Pierre Gourber will be Leader of the Miguel Virasoro becomes Director of the CERN's new LHC Division for three years from International Centre for Theoretical Physics 1 January 1996. (ICTP), Trieste. CERN elections and appointments A t its meeting on 23 June, XI CERN's governing body, the Council, decided to create an LHC Division as from 1 January 1996. The LHC Division will focus on the core activities related to the construction of the machine, namely supercon­ ducting magnets, cryogenics and vacuum together with supporting activities. Jean-Pierre Gourber was appointed Leader of the new LHC Division for three years from 1 January 1996. Council also appointed Bo Angerth as Leader of Personnel Division for three years from 1 January 1996, succeeding Willem Middelkoop. Jiri Niederle (Czech Republic) was elected Vice-President of Council for one year from 1 July 1995. tion, demonstrated that the gluons of EPS Prizes the strong interactions were a physi­ cal reality. The prestigious High Energy and The existence of such three-jet Particle Physics Prize of the Euro­ events in electron-positron collisions pean Physical Society for 1995 goes had been predicted in a pioneer to Paul Soding, Bjorn Wiik and ICTP Trieste Director CERN Theory Division paper by John Gunter Wolf of DESY and Sau Lan Ellis, Mary K. Gaillard and Graham Distinguished theorist Miguel Wu of Wisconsin for their milestone Ross. work in providing 'first evidence for Virasoro becomes Director of the There has always been keen rivalry three-jet events in electron-positron International Centre for Theoretical between the four 1979 PETRA colla­ collisions at PETRA' (DESY's elec­ Physics (ICTP), Trieste, succeeding borations - JADE, MARK-J, PLUTO tron-positron collider).
    [Show full text]
  • Dalitz Analyses: a Tool for Physics Within and Beyond the Standard
    DCPT/06/112 IPPP/06/56 DALITZ ANALYSES: A TOOL FOR PHYSICS WITHIN AND BEYOND THE STANDARD MODEL M.R. PENNINGTON Institute for Particle Physics Phenomenology, Durham University, Durham DH1 3LE, United Kingdom Abstract Dalitz analyses are introduced as the method for studying hadronic decays. An accurate description of hadron final states is critical not only to an understanding of the strong coupling regime of QCD, but also to the precision extraction of CKM matrix elements. The relation of such final state interactions to scattering processes is discussed. 1 Motivation This serves as the introduction to following talks on Dalitz plot analyses. I will first remind arXiv:hep-ph/0608016v1 2 Aug 2006 you of the motivation for such analyses and discuss some aspects of how to perform them and I leave it to others to describe detailed results. We know that there is physics beyond the Standard Model but we do not yet know what this is. Insight is provided by precision measurements of the CKM matrix elements, and in particular the length of the sides and the angles of the CKM Unitarity triangle. Such measurements in heavy flavour decays probe the structure of the weak interaction at distance scales of 0.01fm. However, the detector centimetres away records mainly pions and kaons as the outcome of a typical process like B → D(→ Kππ)K decay. Consequently, the very short distance interaction we wish to study is only seen through a fog of strong interactions, in which the quarks that are created exchange gluons, bind to form hadrons and then these hadrons interact for times a 100 times longer than the basic weak interaction.
    [Show full text]
  • Dalitz Plot Analysis of the Decay B ! K
    PHYSICAL REVIEW D 74, 032003 (2006) Dalitz plot analysis of the decay B ! KKK B. Aubert,1 R. Barate,1 M. Bona,1 D. Boutigny,1 F. Couderc,1 Y. Karyotakis,1 J. P. Lees,1 V. Poireau,1 V. Tisserand,1 A. Zghiche,1 E. Grauges,2 A. Palano,3 M. Pappagallo,3 J. C. Chen,4 N. D. Qi,4 G. Rong,4 P. Wang,4 Y.S. Zhu,4 G. Eigen,5 I. Ofte,5 B. Stugu,5 G. S. Abrams,6 M. Battaglia,6 D. N. Brown,6 J. Button-Shafer,6 R. N. Cahn,6 E. Charles,6 C. T. Day,6 M. S. Gill,6 Y. Groysman,6 R. G. Jacobsen,6 J. A. Kadyk,6 L. T. Kerth,6 Yu. G. Kolomensky,6 G. Kukartsev,6 G. Lynch,6 L. M. Mir,6 P.J. Oddone,6 T. J. Orimoto,6 M. Pripstein,6 N. A. Roe,6 M. T. Ronan,6 W. A. Wenzel,6 M. Barrett,7 K. E. Ford,7 T. J. Harrison,7 A. J. Hart,7 C. M. Hawkes,7 S. E. Morgan,7 A. T. Watson,7 K. Goetzen,8 T. Held,8 H. Koch,8 B. Lewandowski,8 M. Pelizaeus,8 K. Peters,8 T. Schroeder,8 M. Steinke,8 J. T. Boyd,9 J. P. Burke,9 W. N. Cottingham,9 D. Walker,9 T. Cuhadar-Donszelmann,10 B. G. Fulsom,10 C. Hearty,10 N. S. Knecht,10 T. S. Mattison,10 J. A. McKenna,10 A. Khan,11 P. Kyberd,11 M. Saleem,11 L.
    [Show full text]
  • The Dalitz Plot
    Geometrical Methods for Data Analysis I: Dalitz Plots and Their Uses • History of the Dalitz Plot • Dalitz’s original “plot” non-relativistic; in terms of kinetic energies applied to the “τ-θ puzzle” • Modern-day Dalitz Plot • Identification of resonances spectroscopy -- masses, spins • Interference Effects in Dalitz Plots Tim Londergan Dept of Physics and CEEM, Indiana University Int’l Summer School on Reaction Theory Indiana University June 8, 2015 Supported by NSF PHY- 1205019 Thanks to Vincent Mathieu The Dalitz Plot: Origin and Uses Named after Richard Dalitz (1925-2006), professor at Chicago and Oxford (and my thesis advisor) Phil. Mag. 44, 1058 (1953) Visual representation of phase space decay of a particle to various final particles -- initially only 3-body decays of spin-0 particles, but often now refers to more general decay modes • Dalitz used it to study the “τ-θ puzzle” • strange particles that decay to 2 or 3 pions; now understood as different decay modes of kaons • Dalitz: “I visualize geometry better than numbers” Richard Dalitz Contributed to a wide range of scattering phenomena, spectroscopy, elementary particle physics Scientific biography: Aitchison, Close, Gal, Millener, Nucl. Phys. A771, 8 (2006). • “Dalitz pairs” – [electron-positron pair from neutral pion decay] • The Dalitz Plot • physics of Hypernuclei • Constituent quark model baryon & meson spectra •“CDD poles” [Castillejo-Dalitz-Dyson] Types of Reactions/Facilities Nuclear Reactions involving exclusive final states; Few-body final states (3,4, … particles)
    [Show full text]
  • Feynman's Sunshine Numbers
    Feynman’s sunshine numbers David Broadhurst1 22 April 2010 Abstract: This is an expansion of a talk for mathematics and physics students of the Manchester Grammar and Manchester High Schools. It deals with numbers such as 3 the Riemann zeta value ζ(3) = n>0 1/n . Zeta values appear in the description of sunshine and of relics from the BigP Bang. They also result from Feynman diagrams, which occur in the quantum field theory of fundamental particles such as photons, electrons and positrons. My talk included 7 reasonably simple problems, for which I here add solutions, with further details of their context. 1 Numbers 1.1 Sum of the first 136 cubes 13 = 1=12 13 +23 = 9 = (1+2)2 13 +23 +33 = 36 = (1+2+3)2 13 +23 +33 + ... + 1363 =? (68 137)2 = (1+2+3+ ... + 136)2 × It is rather easy to prove, by induction, that N−1 1 n3 = N 2(N 1)2 (1) n=1 4 − X for every integer N 2. ≥ Assume that formula (1) is true for one particular integer, say N = M. Then M 1 1 n3 = M 2(M 1)2 + M 3 = M 2(M + 1)2 arXiv:1004.4238v1 [physics.pop-ph] 23 Apr 2010 n=1 4 − 4 X and (1) is true for N = M + 1. It is true, by inspection, for N = 2, and hence for every integer N > 1. 1.1.1 Problem 1: proof by induction Prove that, for every integer N > 1, N−1 1 n4 = N(N 1)(2N 1)(3N 2 3N 1).
    [Show full text]
  • Murray Gell-Mann (1929–2019) and the Story of Strong Interactions∗
    GENERAL ARTICLE Murray Gell-Mann (1929–2019) and the Story of Strong Interactions∗ G Rajasekaran Murray Gell-Mann, who passed away at the age of 90 years was a giant of modern particle physics. His most well-known contribution is the proposal that protons and neutrons are not indivisible but are made up of smaller particles called ‘quarks’. The complete story of strong interactions of which the discovery of quarks is only a part and which is intimately connected to Gell-Mann’s work is presented here in an ele- G Rajasekaran, a theoretical mentary manner. physicist is Professor Emeritus at the Institute of After Ernest Rutherford discovered the proton in 1917 and James Mathematical Sciences, Chadwick discovered the neutron in 1932, physicists began to Chennai. He specializes in recognise the existence of a new force of nature called the ‘strong quantum field theory and force’ that binds the protons and neutrons to form the atomic nu- high energy physics. cleus. Sometime after the discovery of the neutron, the German physi- cist Werner Heisenberg introduced a concept called ‘isospin sym- metry’ to make sense of the fact that they (proton and neutron) are so similar in many respects. This symmetry is now called the ‘SU(2) symmetry’ because it concerns two objects – the pro- ton and the neutron. The mathematical object SU(2) is called a ‘group’. In 1935, the Japanese physicist Hideki Yukawa propounded a now-famous theory that the protons and neutrons were bound to- gether inside the nucleus because they exchanged particles, later Keywords called ‘mesons’. Further studies with cosmic rays confirmed the Quarks, mesons, pions, strong in- existence of these particles.
    [Show full text]
  • NATURE|Vol 440|9 March 2006
    9.3 News & Views MH NEW 6/3/06 9:42 AM Page 162 NEWS & VIEWS NATURE|Vol 440|9 March 2006 OBITUARY Richard Dalitz (1925–2006) Particle physicist and creator of the Dalitz plot. Richard Henry Dalitz was a giant in the field it decayed into two pions, whereas the tau of particle physics. A theorist who always decayed into three. Using his plot, he was endeavoured to work close to experiment, able to establish that the tau, like the theta, his contributions over 60 years shed vital has zero spin, so that the two particles light on the nature of the fundamental could not be identical if parity holds. forces and the constituents of matter. (Parity is the idea that reactions proceed Born in the small wheat-belt town the same way when all spatial coordinates of Dimboola, northwest of Melbourne, are reversed.) Indeed, this ‘tau–theta’ puzzle Australia, Dalitz gained degrees in both was the first indication that parity did not mathematics and physics at the University of hold for interactions involving the weak Melbourne. Awarded a travelling scholarship, nuclear force. The subsequent realization he moved in 1946 with his wife Valda to by T. D. Lee and C. N. Yang that this could England, to study for a PhD under Nicholas indeed be the case won them the 1957 Kemmer at Trinity College, Cambridge. Nobel Prize in Physics. There he benefited from the teaching of After brief periods at Cornell University in Paul Dirac, whose lecture course on quantum Ithaca, New York, and back at Birmingham, mechanics he attended twice.
    [Show full text]
  • John Ward: Memoir of a Theoretical Physicist
    Submitted to Biographical Memoirs of the Royal Society John Ward: Memoir of a Theoretical Physicist Norman Dombey De partment of Physics and Astronomy University of Sussex Brighton UK BN1 9QH August 4 2020 To the Memory of Kate Pyne and Freeman Dyson who encouraged me to write this memoir of John Ward but were not able to see it. Abstract A scientific biography of John Ward, who was responsible for the Ward Identity in quantum electrodynamics; the first detailed calculation of the quantum entanglement of two photons in electron-positron annihilation with Maurice Pryce; the prediction of neutral weak currents in electroweak theory with Sheldon Glashow and Abdus Salam, and many other major calculations in theoretical physics. 1 2 SECTION HEADINGS Page 1. Introduction 3 2. Early Years 4 3. Oxford and Quantum Entanglement 5 4. Quantum Electrodynamics and the Ward Identity 9 5. Salam and Gauge Theories 14 6. An Itinerant Physicist and Statistical Physics 19 7. Macquarie 20 8. Fermi, Ulam and Teller 22 9. Epilogue 37 10. Acknowledgements 41 3 1) Introduction John Clive Ward was a theoretical physicist who made important contributions to two of the principal subjects in twentieth century elementary particle physics, namely QED (quantum electrodynamics) and electroweak theory. He was an early proponent of the importance of gauge theories in quantum field theory and their use in showing the renormalisation of those theories: that is to remove apparent infinities in calculations. He showed that gauge invariance implies the equality of two seemingly different renormalised quantities in QED, a relationship now called the Ward Identity.
    [Show full text]
  • Iterview with Valentine L. Telegdi
    VALENTINE L. TELEGDI (1922 – 2006) INTERVIEWED BY SARA LIPPINCOTT March 4 and 9, 2002 ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Physics Abstract Valentine Louis Telegdi was born in Budapest in 1922 and grew up in Bulgaria. He took his Master of Science degree in chemical engineering at Lausanne University in 1946 and received his PhD in 1950 from the ETH (Eidgenössische Technische Hochschule), the Swiss Federal Institute of Technology. Victor Weisskopf and Gregor Wentzel were instrumental in his appointment as an instructor at the University of Chicago in 1951, where he worked with Murray Gell-Mann. In 1954, after Enrico Fermi’s death, Telegdi became the head of Fermi’s Nuclear Emulsion Group there. In 1956, he went to the Institute for Advanced Study for three months. Later that year, back in Chicago, he and Jerome I. Friedman found parity violation in muon decay, in parallel with the work of Chien-Shiung Wu at Columbia and her collaborators at the National Bureau of Standards, and that of Richard L. Garwin, Leon M. Lederman, and Marcel Weinrich at Columbia. In 1959-1960, on leave from Chicago, Telegdi worked with Garwin at CERN on the anomalous magnetic moment of the muon. In 1966, again on leave from Chicago, he had a visiting lectureship at Harvard. In 1968, Telegdi was elected to the National Academy of Sciences and in 1972 he http://resolver.caltech.edu/CaltechOH:OH_Telegdi_V became the Enrico Fermi Distinguished Service Professor of Physics at Chicago. He left the university four years later—discouraged at what he called the “decay” of the Enrico Fermi Institute since Fermi’s death and the increasingly cumbersome grants process—and returned to Switzerland, where he headed a group at the ETH doing atomic physics; he also took up a joint appointment at CERN, heading a particle physics group.
    [Show full text]
  • Virginia Outstanding Scientist of 2004
    February/March 2004 THOMAS JEFFERSON NATIONAL ACCELERATOR FACILITY • A DEPARTMENT OF ENERGY FACILITY Virginia Outstanding Scientist of 2004 From the Director Physics Division’s Anatoly Radyushkin 12 GeV Upgrade offers challenge, reason to celebrate wins honor with GPDs work natoly Radyushkin, a jointly In recognition of his work, the Aappointed Jefferson Lab senior sci- Science Museum of Virginia and the entist and physics professor at Old Office of the Governor named Information Resources Dominion University, has been named Radyushkin one of the recipients of offers three new online services a Virginia Outstanding Scientist of Virginia's 2004 Outstanding Scientist 2004. and Industrialist Awards. The award recognizes scientists Radyushkin’s work falls in the field who have made a recent contribution to of quantum chromodynamics (QCD). basic scientific research that extends QCD is a fundamental theory that In their own words the boundaries of a field of science. addresses the underlying structure of with mechanical engineer Radyushkin is an internationally nucleons — the protons and neutrons Celia Whitlatch recognized nuclear theorist and a pio- that makeup the nucleus of the atom — neer in the development of generalized in terms of their more elementary con- parton distributions or GPDs. GPDs are stituents. Nucleons are made up of a set of mathematical functions that are quarks and gluons, elementary particles allowing physicists to, for the first referred to as partons. Generalized par- In their own words time, obtain a 3-dimensional snapshot ton distributions are functions that with FEL electro-optical engineer of the inner structure of the particles physicists can use to map the location Chris Behre that make up the nucleus of the atom.
    [Show full text]