Traditions and Transformations in the History of Quantum Physics Max Planck Research Library for the History and Development of Knowledge

Total Page:16

File Type:pdf, Size:1020Kb

Traditions and Transformations in the History of Quantum Physics Max Planck Research Library for the History and Development of Knowledge Traditions and Transformations in the History of Quantum Physics Max Planck Research Library for the History and Development of Knowledge Series Editors Jürgen Renn, Robert Schlögl, Bernard F. Schutz. Edition Open Access Development Team Lindy Divarci, Jörg Kantel, Nina Ruge, Matthias Schemmel, Kai Surendorf. Scientific Board Markus Antonietti, Ian Baldwin, Antonio Becchi, Fabio Bevilacqua, William G. Boltz, Jens Braarvik, Horst Bredekamp, Jed Z. Buchwald, Olivier Darrigol, Thomas Duve, Mike Edmunds, Yehuda Elkana†, Fynn Ole Engler, Robert K. Englund, Mordechai Feingold, Rivka Feldhay, Gideon Freudenthal, Paolo Gal- luzzi, Kostas Gavroglu, Mark Geller, Domenico Giulini, Günther Görz, Gerd Graßhoff, James Hough, Manfred Laubichler, Glenn Most, Klaus Müllen, Pier Daniele Napolitani, Alessandro Nova, Hermann Parzinger, Dan Potts, Sabine Schmidtke, Circe Silva da Silva, Ana Simões, Dieter Stein, Richard Stephenson, Mark Stitt, Noel M. Swerdlow, Liba Taub, Martin Vingron, Scott Walter, Norton Wise, Gerhard Wolf, Rüdiger Wolfrum, Gereon Wolters, Zhang Baichun. Proceedings 5 Edition Open Access 2017 Traditions and Transformations in the History of Quantum Physics HQ–3: Third International Conference on the History of Quantum Physics, Berlin, June 28 – July 2, 2010 Shaul Katzir, Christoph Lehner, Jürgen Renn (eds.) Edition Open Access 2017 Max Planck Research Library for the History and Development of Knowledge Proceedings 5 Communicated by: Olivier Darrigol Edited by: Shaul Katzir, Christoph Lehner, Jürgen Renn Editorial Coordination: Nina Ruge Copyedited by: Heidi Henrickson, Oksana Kuruts, Jonathan Ludwig, Marius Schneider Cover image: From Robert W. Wood (1923), Physical Optics, New York: Macmillan ISBN 978-3-945561-22-5 Published 2017 by Edition Open Access, Max Planck Institute for the History of Science Reprint of the 2013 edition Printed and distributed by PRO BUSINESS digital printing Deutschland GmbH, Berlin Edition Open Access http://www.edition-open-access.de Published under Creative Commons by-nc-sa 3.0 Germany Licence http://creativecommons.org/licenses/by-nc-sa/3.0/de/ The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available in the Internet at http://dnb.d-nb.de. The Max Planck Research Library for the History and Development of Knowl- edge comprises four subseries, Studies, Proceedings, Sources and Textbooks. They present research results and the relevant sources in a new format, combining the advantages of traditional publications and the digital medium. The volumes are available both as printed books and as online open access publications. They present original scientific work submitted under the scholarly responsibility of members of the Scientific Board and their academic peers. The volumes of the four subseries and their electronic counterparts are directed at scholars and students of various disciplines, as well as at a broader public inter- ested in how science shapes our world. They provide rapid access to knowledge at low cost. Moreover, by combining print with digital publication, the four series offer a new way of publishing research in flux and of studying historical topics or current issues in relation to primary materials that are otherwise not easily avail- able. The initiative is supported, for the time being, by research departments of three Max Planck Institutes, the MPI for the History of Science, the Fritz Haber Institute of the MPG, and the MPI for Gravitational Physics (Albert Einstein Institute). This is in line with the Berlin Declaration on Open Access to Knowledge in the Sciences and Humanities, launched by the Max Planck Society in 2003. Each volume of the Studies series is dedicated to a key subject in the history and development of knowledge, bringing together perspectives from different fields and combining source-based empirical research with theoretically guided approaches. The studies are typically working group volumes presenting integra- tive approaches to problems ranging from the globalization of knowledge to the nature of spatial thinking. Each volume of the Proceedings series presents the results of a scientific meeting on current issues and supports, at the same time, further cooperation on these issues by offering an electronic platform with further resources and the possibility for comments and interactions. Each volume of the Sources series typically presents a primary source—relevant for the history and development of knowledge—in facsimile, transcription, or translation. The original sources are complemented by an introduction and by commentaries reflecting original scholarly work. The sources reproduced in this series may be rare books, manuscripts, documents or data that are not readily accessible in libraries and archives. Each volume of the Textbooks series presents concise and synthetic information on a wide range of current research topics, both introductory and advanced. They use the new publication channel to offer students affordable access to high-level scientific and scholarly overviews. The textbooks are prepared and updated by experts in the relevant fields and supplemented by additional online materials. On the basis of scholarly expertise the publication of the four series brings to- gether traditional books produced by print-on-demand techniques with modern information technology. Based on and extending the functionalities of the ex- isting open access repository European Cultural Heritage Online (ECHO), this initiative aims at a model for an unprecedented, Web-based scientific working environment integrating access to information with interactive features. Contents Contributors .. .............................................. 1 Introduction ................................................. 3 From Classical to Quantum Physics 9 1 Theoretical Challenges by Experimental Physics: Radiation and Its Interaction with Matter Shaul Katzir .................................................. 11 1.1 The Nature of X- and 훾-Rays. 14 1.2 Photoelectricity and the Triggering Hypothesis. 16 1.3 Visible Light and X-rays . 20 1.4 Later Theoretical Accounts . 22 1.5 Conclusion . 24 References . 25 2 Challenging the Boundaries between Classical and Quantum Physics: The Case of Optical Dispersion Marta Jordi Taltavull .......................................... 29 2.1 The Classical Theory of Optical Dispersion. 30 2.2 Bohr’s Model of the Atom and the Optical Dispersion of Molecules . 34 2.3 Debye and the First Theory of Optical Dispersion According to Bohr’s Model . 36 2.4 Sommerfeld and Optical Dispersion in 1915 . 37 2.5 Reactions to Debye-Sommerfeld’s Hybrid Theory . 40 2.6 Sommerfeld’s Counterattack . 46 2.7 From the Hybrid Theory to the Light Quantum. 48 2.8 A New Thread of the Story . 51 2.9 Conclusion . 53 Abbreviations and Archives . 54 Acknowledgements . 54 References . 55 viii Contents 3 Putting the Quantum to Work: Otto Sackur’s Pioneering Exploits in the Quantum Theory of Gases Massimiliano Badino and Bretislav Friedrich .................... 61 3.1 Biographical Overview . 63 3.2 The Problem of Chemical Equilibrium . 65 3.3 The Beginnings of the Quantum Theory of Gases . 69 3.4 Sackur’s “Elementary Regions” . 73 3.5 The Generalization of Sackur’s Statistical Theory . 75 3.6 Conclusion . 80 References . 81 Quantum Mechanics in the Making 87 4 The Concepts of Light Atoms and Light Molecules and Their Final Interpretation Dieter Fick and Horst Kant .................................... 89 4.1 First Corpuscular Concepts of Light . 90 4.2 Light Molecules, Static Concepts . 95 4.3 Dynamical Treatments of Light Multiples . 98 4.4 Obituary . 112 Appendix . 115 Abbreviations and Archives . 119 Acknowledgements . 119 References . 120 5 Early Interactions of Quantum Statistics and Quantum Mechanics Daniela Monaldi.............................................. 125 5.1 The Birth of Quantum Statistics . 126 5.2 Heisenberg’s Many-body Problem and Quantum Resonance. 129 5.3 Dirac’s “On the Theory of Quantum Mechanics” . 137 5.4 Conclusion . 144 Abbreviations and Archives . 145 References . 145 6 Pourparlers for Amalgamation: Some Early Sources of Quantum Gravity Research Dean Rickles ................................................. 149 6.1 The Torch of Unification: Mie, Hilbert, Weyl and Haas . 152 6.2 Einstein on the Relationship between Gravity and Quantum . 156 6.3 Quantum Meets Gravity in the Pages of Nature . 159 Contents ix 6.4 On the Way to Quantum Geometry . 172 6.5 Conclusion . 174 Abbreviations and Archives . 175 Acknowledgements . 175 References . 175 Extending the Framework of Quantum Physics 181 7 Superposing Dynamos and Electrons: Electrical Engineering and Quantum Physics in the Case of Nishina Yoshio Kenji Ito ..................................................... 183 7.1 Engineering in Japan . 185 7.2 Nishina Yoshio as an Engineering Student . 187 7.3 The Klein-Nishina Formula . 196 7.4 Superposition of States in the Klein-Nishina Paper . 201 7.5 Conclusion . 205 Acknowledgements . 205 References . 206 8 The Origins of Maria Göppert’s Dissertation on Two-Photon Quantum Transitions at Göttingen’s Institutes of Physics 1920-1933 Barry R. Masters ............................................. 209 8.1 Physics in Germany at the Beginning of the Twentieth Century and the Development of the Institutes of Physics at the University of Göttingen . 210 8.2 Göppert as a University and Doctoral Student . 212 8.3 What Was the Role of Paul Dirac in Göppert’s Dissertation Research? . 215 8.4 Reconstruction of Göppert’s Göttingen Dissertation . 218 8.5 What Was Known and What Did Göppert Contribute in Her Dissertation Research? . 222 8.6 Conclusion . 225 Acknowledgements . 226 References . 227 9 An Act of Creation: The Meitner-Frisch Interpretation of Nuclear Fission Roger H. Stuewer ............................................. 231 9.1 The Birth of the Liquid-Drop Model . ..
Recommended publications
  • Dear Fellow Quantum Mechanics;
    Dear Fellow Quantum Mechanics Jeremy Bernstein Abstract: This is a letter of inquiry about the nature of quantum mechanics. I have been reflecting on the sociology of our little group and as is my wont here are a few notes. I see our community divided up into various subgroups. I will try to describe them beginning with a small group of elderly but distinguished physicist who either believe that there is no problem with the quantum theory and that the young are wasting their time or that there is a problem and that they have solved it. In the former category is Rudolf Peierls and in the latter Phil Anderson. I will begin with Peierls. In the January 1991 issue of Physics World Peierls published a paper entitled “In defence of ‘measurement’”. It was one of the last papers he wrote. It was in response to his former pupil John Bell’s essay “Against measurement” which he had published in the same journal in August of 1990. Bell, who had died before Peierls’ paper was published, had tried to explain some of the difficulties of quantum mechanics. Peierls would have none of it.” But I do not agree with John Bell,” he wrote,” that these problems are very difficult. I think it is easy to give an acceptable account…” In the rest of his short paper this is what he sets out to do. He begins, “In my view the most fundamental statement of quantum mechanics is that the wave function or more generally the density matrix represents our knowledge of the system we are trying to describe.” Of course the wave function collapses when this knowledge is altered.
    [Show full text]
  • Einstein Solid 1 / 36 the Results 2
    Specific Heats of Ideal Gases 1 Assume that a pure, ideal gas is made of tiny particles that bounce into each other and the walls of their cubic container of side `. Show the average pressure P exerted by this gas is 1 N 35 P = mv 2 3 V total SO 30 2 7 7 (J/K-mole) R = NAkB Use the ideal gas law (PV = NkB T = V 2 2 CO2 C H O CH nRT )and the conservation of energy 25 2 4 Cl2 (∆Eint = CV ∆T ) to calculate the specific 5 5 20 2 R = 2 NAkB heat of an ideal gas and show the following. H2 N2 O2 CO 3 3 15 CV = NAkB = R 3 3 R = NAkB 2 2 He Ar Ne Kr 2 2 10 Is this right? 5 3 N - number of particles V = ` 0 Molecule kB - Boltzmann constant m - atomic mass NA - Avogadro's number vtotal - atom's speed Jerry Gilfoyle Einstein Solid 1 / 36 The Results 2 1 N 2 2 N 7 P = mv = hEkini 2 NAkB 3 V total 3 V 35 30 SO2 3 (J/K-mole) V 5 CO2 C N k hEkini = NkB T H O CH 2 A B 2 25 2 4 Cl2 20 H N O CO 3 3 2 2 2 3 CV = NAkB = R 2 NAkB 2 2 15 He Ar Ne Kr 10 5 0 Molecule Jerry Gilfoyle Einstein Solid 2 / 36 Quantum mechanically 2 E qm = `(` + 1) ~ rot 2I where l is the angular momen- tum quantum number.
    [Show full text]
  • Multi-Dimensional Entanglement Transport Through Single-Mode Fibre
    Multi-dimensional entanglement transport through single-mode fibre Jun Liu,1, ∗ Isaac Nape,2, ∗ Qianke Wang,1 Adam Vall´es,2 Jian Wang,1 and Andrew Forbes2 1Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China. 2School of Physics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa (Dated: April 8, 2019) The global quantum network requires the distribution of entangled states over long distances, with significant advances already demonstrated using entangled polarisation states, reaching approxi- mately 1200 km in free space and 100 km in optical fibre. Packing more information into each photon requires Hilbert spaces with higher dimensionality, for example, that of spatial modes of light. However spatial mode entanglement transport requires custom multimode fibre and is lim- ited by decoherence induced mode coupling. Here we transport multi-dimensional entangled states down conventional single-mode fibre (SMF). We achieve this by entangling the spin-orbit degrees of freedom of a bi-photon pair, passing the polarisation (spin) photon down the SMF while ac- cessing multi-dimensional orbital angular momentum (orbital) subspaces with the other. We show high fidelity hybrid entanglement preservation down 250 m of SMF across multiple 2 × 2 dimen- sions, demonstrating quantum key distribution protocols, quantum state tomographies and quantum erasers. This work offers an alternative approach to spatial mode entanglement transport that fa- cilitates deployment in legacy networks across conventional fibre. Entanglement is an intriguing aspect of quantum me- chanics with well-known quantum paradoxes such as those of Einstein-Podolsky-Rosen (EPR) [1], Hardy [2], and Leggett [3].
    [Show full text]
  • Philosophia Scientiæ, 13-2 | 2009 [En Ligne], Mis En Ligne Le 01 Octobre 2009, Consulté Le 15 Janvier 2021
    Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences 13-2 | 2009 Varia Édition électronique URL : http://journals.openedition.org/philosophiascientiae/224 DOI : 10.4000/philosophiascientiae.224 ISSN : 1775-4283 Éditeur Éditions Kimé Édition imprimée Date de publication : 1 octobre 2009 ISBN : 978-2-84174-504-3 ISSN : 1281-2463 Référence électronique Philosophia Scientiæ, 13-2 | 2009 [En ligne], mis en ligne le 01 octobre 2009, consulté le 15 janvier 2021. URL : http://journals.openedition.org/philosophiascientiae/224 ; DOI : https://doi.org/10.4000/ philosophiascientiae.224 Ce document a été généré automatiquement le 15 janvier 2021. Tous droits réservés 1 SOMMAIRE Actes de la 17e Novembertagung d'histoire des mathématiques (2006) 3-5 novembre 2006 (University of Edinburgh, Royaume-Uni) An Examination of Counterexamples in Proofs and Refutations Samet Bağçe et Can Başkent Formalizability and Knowledge Ascriptions in Mathematical Practice Eva Müller-Hill Conceptions of Continuity: William Kingdon Clifford’s Empirical Conception of Continuity in Mathematics (1868-1879) Josipa Gordana Petrunić Husserlian and Fichtean Leanings: Weyl on Logicism, Intuitionism, and Formalism Norman Sieroka Les journaux de mathématiques dans la première moitié du XIXe siècle en Europe Norbert Verdier Varia Le concept d’espace chez Veronese Une comparaison avec la conception de Helmholtz et Poincaré Paola Cantù Sur le statut des diagrammes de Feynman en théorie quantique des champs Alexis Rosenbaum Why Quarks Are Unobservable Tobias Fox Philosophia Scientiæ, 13-2 | 2009 2 Actes de la 17e Novembertagung d'histoire des mathématiques (2006) 3-5 novembre 2006 (University of Edinburgh, Royaume-Uni) Philosophia Scientiæ, 13-2 | 2009 3 An Examination of Counterexamples in Proofs and Refutations Samet Bağçe and Can Başkent Acknowledgements Partially based on a talk given in 17th Novembertagung in Edinburgh, Scotland in November 2006 by the second author.
    [Show full text]
  • Samuel Goudsmit
    NATIONAL ACADEMY OF SCIENCES SAMUEL ABRAHAM GOUDSMIT 1 9 0 2 — 1 9 7 8 A Biographical Memoir by BENJAMIN BEDERSON Any opinions expressed in this memoir are those of the author and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 2008 NATIONAL ACADEMY OF SCIENCES WASHINGTON, D.C. Photograph courtesy Brookhaven National Laboratory. SAMUEL ABRAHAM GOUDSMIT July 11, 1902–December 4, 1978 BY BENJAMIN BEDERSON AM GOUDSMIT LED A CAREER that touched many aspects of S20th-century physics and its impact on society. He started his professional life in Holland during the earliest days of quantum mechanics as a student of Paul Ehrenfest. In 1925 together with his fellow graduate student George Uhlenbeck he postulated that in addition to mass and charge the electron possessed a further intrinsic property, internal angular mo- mentum, that is, spin. This inspiration furnished the missing link that explained the existence of multiple spectroscopic lines in atomic spectra, resulting in the final triumph of the then struggling birth of quantum mechanics. In 1927 he and Uhlenbeck together moved to the United States where they continued their physics careers until death. In a rough way Goudsmit’s career can be divided into several separate parts: first in Holland, strictly as a theorist, where he achieved very early success, and then at the University of Michigan, where he worked in the thriving field of preci- sion spectroscopy, concerning himself with the influence of nuclear magnetism on atomic spectra. In 1944 he became the scientific leader of the Alsos Mission, whose aim was to determine the progress Germans had made in the development of nuclear weapons during World War II.
    [Show full text]
  • Otto Sackur's Pioneering Exploits in the Quantum Theory Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Catalogo dei prodotti della ricerca Chapter 3 Putting the Quantum to Work: Otto Sackur’s Pioneering Exploits in the Quantum Theory of Gases Massimiliano Badino and Bretislav Friedrich After its appearance in the context of radiation theory, the quantum hypothesis rapidly diffused into other fields. By 1910, the crisis of classical traditions of physics and chemistry—while taking the quantum into account—became increas- ingly evident. The First Solvay Conference in 1911 pushed quantum theory to the fore, and many leading physicists responded by embracing the quantum hypoth- esis as a way to solve outstanding problems in the theory of matter. Until about 1910, quantum physics had drawn much of its inspiration from two sources. The first was the complex formal machinery connected with Max Planck’s theory of radiation and, above all, its close relationship with probabilis- tic arguments and statistical mechanics. The fledgling 1900–1901 version of this theory hinged on the application of Ludwig Boltzmann’s 1877 combinatorial pro- cedure to determine the state of maximum probability for a set of oscillators. In his 1906 book on heat radiation, Planck made the connection with gas theory even tighter. To illustrate the use of the procedure Boltzmann originally developed for an ideal gas, Planck showed how to extend the analysis of the phase space, com- monplace among practitioners of statistical mechanics, to electromagnetic oscil- lators (Planck 1906, 140–148). In doing so, Planck identified a crucial difference between the phase space of the gas molecules and that of oscillators used in quan- tum theory.
    [Show full text]
  • Redalyc.On the Sackur-Tetrode Equation in an Expanding Universe
    Revista Mexicana de Física ISSN: 0035-001X [email protected] Sociedad Mexicana de Física A.C. México Pereira, S.H. On the Sackur-Tetrode equation in an expanding universe Revista Mexicana de Física, vol. 57, núm. 1, junio, 2011, pp. 11-15 Sociedad Mexicana de Física A.C. Distrito Federal, México Available in: http://www.redalyc.org/articulo.oa?id=57024209002 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative ENSENANZA˜ REVISTA MEXICANA DE FISICA´ E 57 (1) 11–15 JUNIO 2011 On the Sackur-Tetrode equation in an expanding universe S.H. Pereira Universidade Federal de Itajuba,´ Campus Itabira, Rua Sao˜ Paulo, 377 – 35900-373, Itabira, MG, Brazil, e-mail: [email protected] Recibido el 5 de abril de 2010; aceptado el 2 de febrero de 2011 In this work we investigate the thermodynamic properties satisfied by an expanding universe filled with a monoatomic ideal gas. We show that the equations for the energy density, entropy density and chemical potential remain the same of an ideal gas confined to a constant volume V . In particular the Sackur-Tetrode equation for the entropy of the ideal gas is also valid in the case of an expanding universe, provided that the constant value that represents the current entropy of the universe is appropriately chosen. Keywords: Expanding universe; ideal gas; Sackur-Tetrode equation. En el presente trabajo investigamos las propriedades termodinamicas´ que son satisfechas por un universo en expansion,´ el cual es lleno por un gas ideal monoatomico.´ Se prueba que las ecuaciones para la densidad de la energ´ıa, la densidad de la entrop´ıa y el potencial qu´ımico son las mismas que las de un gas ideal, el cual se encuentra confinado en un volumen V.
    [Show full text]
  • Sterns Lebensdaten Und Chronologie Seines Wirkens
    Sterns Lebensdaten und Chronologie seines Wirkens Diese Chronologie von Otto Sterns Wirken basiert auf folgenden Quellen: 1. Otto Sterns selbst verfassten Lebensläufen, 2. Sterns Briefen und Sterns Publikationen, 3. Sterns Reisepässen 4. Sterns Züricher Interview 1961 5. Dokumenten der Hochschularchive (17.2.1888 bis 17.8.1969) 1888 Geb. 17.2.1888 als Otto Stern in Sohrau/Oberschlesien In allen Lebensläufen und Dokumenten findet man immer nur den VornamenOt- to. Im polizeilichen Führungszeugnis ausgestellt am 12.7.1912 vom königlichen Polizeipräsidium Abt. IV in Breslau wird bei Stern ebenfalls nur der Vorname Otto erwähnt. Nur im Emeritierungsdokument des Carnegie Institutes of Tech- nology wird ein zweiter Vorname Otto M. Stern erwähnt. Vater: Mühlenbesitzer Oskar Stern (*1850–1919) und Mutter Eugenie Stern geb. Rosenthal (*1863–1907) Nach Angabe von Diana Templeton-Killan, der Enkeltochter von Berta Kamm und somit Großnichte von Otto Stern (E-Mail vom 3.12.2015 an Horst Schmidt- Böcking) war Ottos Großvater Abraham Stern. Abraham hatte 5 Kinder mit seiner ersten Frau Nanni Freund. Nanni starb kurz nach der Geburt des fünften Kindes. Bald danach heiratete Abraham Berta Ben- der, mit der er 6 weitere Kinder hatte. Ottos Vater Oskar war das dritte Kind von Berta. Abraham und Nannis erstes Kind war Heinrich Stern (1833–1908). Heinrich hatte 4 Kinder. Das erste Kind war Richard Stern (1865–1911), der Toni Asch © Springer-Verlag GmbH Deutschland 2018 325 H. Schmidt-Böcking, A. Templeton, W. Trageser (Hrsg.), Otto Sterns gesammelte Briefe – Band 1, https://doi.org/10.1007/978-3-662-55735-8 326 Sterns Lebensdaten und Chronologie seines Wirkens heiratete.
    [Show full text]
  • August/September 2009
    August-September 2009 Volume 18, No. 8 TM www.aps.org/publications/apsnews PhysicsQuest APS NEWS Goes to Kenya A PublicAtion of the AmericAn PhysicAl society • www.aps.org/PublicAtions/apsnews See page 5 APS Awards Three Hildred Blewett Scholarships Presidents Two This year APS has announced electrical properties. three women as recipients of the “It was amazing how many ses- M. Hildred Blewett scholarship. sions there were on graphene at the Chosen by the Committee on March Meeting,” Guikema said. the Status of Women in Physics, She plans to use funds from the three are Janice Guikema at the Blewett Scholarship to further Johns Hopkins University, Marija research the feasibility of using Nikolic-Jaric at the University of graphene as a sensitive magnetic Manitoba, and Klejda Bega at Co- detector. She said that graphene has lumbia University. a lot of potential for use as a Hall Each year the committee se- effect detector to detect nanoscale lects women who are returning to particles and map out magnetic their research careers that had been Janice guikema structures. Currently she is continu- interrupted for family or other rea- ing to look for ways to make the sons. The scholarship is a one-year as a second-time recipient of the material as sensitive as possible. grant of up to $45,000 that can be Blewett Scholarship. She currently In addition she will use scanning used towards a wide range of ne- has a part-time research position at probe microscopy to further ex- cessities, including equipment pro- Johns Hopkins University, where plore the nature of graphene.
    [Show full text]
  • 1 WKB Wavefunctions for Simple Harmonics Masatsugu
    WKB wavefunctions for simple harmonics Masatsugu Sei Suzuki Department of Physics, SUNY at Binmghamton (Date: November 19, 2011) _________________________________________________________________________ Gregor Wentzel (February 17, 1898, in Düsseldorf, Germany – August 12, 1978, in Ascona, Switzerland) was a German physicist known for development of quantum mechanics. Wentzel, Hendrik Kramers, and Léon Brillouin developed the Wentzel– Kramers–Brillouin approximation in 1926. In his early years, he contributed to X-ray spectroscopy, but then broadened out to make contributions to quantum mechanics, quantum electrodynamics, and meson theory. http://en.wikipedia.org/wiki/Gregor_Wentzel _________________________________________________________________________ Hendrik Anthony "Hans" Kramers (Rotterdam, February 2, 1894 – Oegstgeest, April 24, 1952) was a Dutch physicist. http://en.wikipedia.org/wiki/Hendrik_Anthony_Kramers _________________________________________________________________________ Léon Nicolas Brillouin (August 7, 1889 – October 4, 1969) was a French physicist. He made contributions to quantum mechanics, radio wave propagation in the atmosphere, solid state physics, and information theory. http://en.wikipedia.org/wiki/L%C3%A9on_Brillouin _______________________________________________________________________ 1. Determination of wave functions using the WKB Approximation 1 In order to determine the eave function of the simple harmonics, we use the connection formula of the WKB approximation. V x E III II I x b O a The potential energy is expressed by 1 V (x) m 2 x 2 . 2 0 The x-coordinates a and b (the classical turning points) are obtained as 2 2 a 2 , b 2 , m0 m0 from the equation 1 V (x) m 2 x2 , 2 0 or 1 1 m 2a 2 m 2b2 , 2 0 2 0 where is the constant total energy. Here we apply the connection formula (I, upward) at x = a.
    [Show full text]
  • Cosmopolitan Normalisation? the Culture of Remembrance of World War II and the Holocaust in Unified Germany
    臺大歷史學報第 53 期 BIBLID1012-8514(2014)53p.181-227 2014 年 6 月,頁 181-227 2014.1.13 收稿,2014.5.23 通過刊登 DOI: 10.6253/ntuhistory.2014.53.04 Cosmopolitan Normalisation? The Culture of Remembrance of World War II and the Holocaust in Unified Germany Christoph Thonfeld* Abstract Since the 1990s, Germany has dealt with the difficult integration of collective and individual memories from East and West Germany. Alongside the publicly more prominent remembrances of perpetration has occurred an upsurge in the memories of German suffering. At the same time, Europe has increasingly become a point of reference for national cultures of remembrance. These developments have been influenced by post-national factors such as Europeanisation and transnationalisation along with the emergence of a more multicultural society. However, there have also been strong trends toward renationalisation and normalisation. The last twenty years have witnessed a type of interaction with the ‘other’ as constructively recognised; while at the same time it is also excluded by renationalising trends. Researchers have described the combination of the latter two trends as the cosmopolitanisation of memory. This article adopts the diachronic perspective to assess the preliminary results since 1990 of the actual working of this cosmopolitanisation process within the culture of remembrance of World War II and its aftermath in Germany. Keywords: culture of remembrance, World War II, cosmopolitanisation, Europeanization, renationalization. * Assistant Professor at National ChengChi University, Dept. of European Languages and Cultures. Rm. 407, 4F., No.117, Sec. 2, Zhinan Rd., Wenshan Dist., Taipei City 11605, Taiwan (R.O.C.); E-mail: [email protected].
    [Show full text]
  • Ginling College, the University of Michigan and the Barbour Scholarship
    Ginling College, the University of Michigan and the Barbour Scholarship Rosalinda Xiong United World College of Southeast Asia Singapore, 528704 Abstract Ginling College (“Ginling”) was the first institution of higher learning in China to grant bachelor’s degrees to women. Located in Nanking (now Nanjing) and founded in 1915 by western missionaries, Ginling had already graduated nearly 1,000 women when it merged with the University of Nanking in 1951 to become National Ginling University. The University of Michigan (“Michigan”) has had a long history of exchange with Ginling. During Ginling’s first 36 years of operation, Michigan graduates and faculty taught Chinese women at Ginling, and Ginlingers furthered their studies at Michigan through the Barbour Scholarship. This paper highlights the connection between Ginling and Michigan by profiling some of the significant people and events that shaped this unique relationship. It begins by introducing six Michigan graduates and faculty who taught at Ginling. Next we look at the 21 Ginlingers who studied at Michigan through the Barbour Scholarship (including 8 Barbour Scholars from Ginling who were awarded doctorate degrees), and their status after returning to China. Finally, we consider the lives of prominent Chinese women scholars from Ginling who changed China, such as Dr. Wu Yi-fang, a member of Ginling’s first graduating class and, later, its second president; and Miss Wu Ching-yi, who witnessed the brutality of the Rape of Nanking and later worked with Miss Minnie Vautrin to help refugees in Ginling Refugee Camp. Between 2015 and 2017, Ginling College celebrates the centennial anniversary of its founding; and the University of Michigan marks both its bicentennial and the hundredth anniversary of the Barbour Gift, the source of the Barbour Scholarship.
    [Show full text]