1 WKB Wavefunctions for Simple Harmonics Masatsugu

Total Page:16

File Type:pdf, Size:1020Kb

1 WKB Wavefunctions for Simple Harmonics Masatsugu WKB wavefunctions for simple harmonics Masatsugu Sei Suzuki Department of Physics, SUNY at Binmghamton (Date: November 19, 2011) _________________________________________________________________________ Gregor Wentzel (February 17, 1898, in Düsseldorf, Germany – August 12, 1978, in Ascona, Switzerland) was a German physicist known for development of quantum mechanics. Wentzel, Hendrik Kramers, and Léon Brillouin developed the Wentzel– Kramers–Brillouin approximation in 1926. In his early years, he contributed to X-ray spectroscopy, but then broadened out to make contributions to quantum mechanics, quantum electrodynamics, and meson theory. http://en.wikipedia.org/wiki/Gregor_Wentzel _________________________________________________________________________ Hendrik Anthony "Hans" Kramers (Rotterdam, February 2, 1894 – Oegstgeest, April 24, 1952) was a Dutch physicist. http://en.wikipedia.org/wiki/Hendrik_Anthony_Kramers _________________________________________________________________________ Léon Nicolas Brillouin (August 7, 1889 – October 4, 1969) was a French physicist. He made contributions to quantum mechanics, radio wave propagation in the atmosphere, solid state physics, and information theory. http://en.wikipedia.org/wiki/L%C3%A9on_Brillouin _______________________________________________________________________ 1. Determination of wave functions using the WKB Approximation 1 In order to determine the eave function of the simple harmonics, we use the connection formula of the WKB approximation. V x E III II I x b O a The potential energy is expressed by 1 V (x) m 2 x 2 . 2 0 The x-coordinates a and b (the classical turning points) are obtained as 2 2 a 2 , b 2 , m0 m0 from the equation 1 V (x) m 2 x2 , 2 0 or 1 1 m 2a 2 m 2b2 , 2 0 2 0 where is the constant total energy. Here we apply the connection formula (I, upward) at x = a. 2 Connection formula-I (upward): 2A a B a cos( k(x)dx ) sin( k(x)dx )] II k(x) x 4 k(x) x 4 A x B x exp( (x)dx) exp( (x)dx)] I (x) a (x) a In I , B should be equal to zero: B = 0. Then we have A x exp( (x)dx) , I (x) a for x>b. The wave function II is obtained as 2A a cos( k(x)dx ) II k(x) x 4 2A b a cos( k(x)dx k(x)dx ) k(x) x b 4 2A x a cos( k(x)dx k(x)dx ) k(x) b b 2 4 2A a x sin{ k(x)dx [ k(x)dx ]} k(x) b b 4 2A a x a x [sin( k(x)dx)cos( k(x)dx ) cos( k(x)dx)sin( k(x)dx )] k(x) b b 4 b b 4 Next we use the connection formula (II, downward) at x = b. Connection formula-II 3 C b D b exp( (x)dx) exp( (x)dx)] III 2 (x) x 2 (x) x C x D x cos( k(x)dx ) sin( k(x)dx )] II k(x) b 4 2 k(x) b 4 The comparison of this equation with 2A a x 2A a x sin( k(x)dx)cos( k(x)dx ) cos( k(x)dx)sin( k(x)dx )] , II k(x) b b 4 k(x) b b 4 yields the relation between C, D, and A, 2A a a C sin( k(x)dx) , and D 4Acos( k(x)dx) , k(x) b b In III , D should be equal to zero: D = 0. This means that a a D 4Acos( k(x)dx) 0 , cos( k(x)dx) 0 , b b or a 1 k(x)dx (n ) , b 2 where n is a positive integer. This integral can be calculated as 4 a 2m a 1 k(x)dx m 2 (a 2 x 2 )dx 0 b a 2 m a 0 a 2 x 2 dx a m a 2 1 0 (n ) 2 2 which means that 1 2 2 1 2 2 1 1 m0 a m0 (n ) 0 (n ) 2 2 m0 2 2 In other words, the energy is quantized. This is amazing. Noting that a 1 sin[ k(x)dx] sin[(n ) ] cos(n ) (1)n , b 2 we have the final forms of the wave functions A a b sin( k(x)dx)exp( (x)dx) III k(x) b x A(1)n b exp((x)dx) k(x) x for x<b and 2A a x sin( k(x)dx)cos( k(x)dx ) II k(x) 4 b b 2A(1)n x cos( k(x)dx ) k(x) b 4 for b<x<a. 5 2. WKB wave functions for simple harmonics We introduce a new variable (dimensionless) as, x , with m 0 . The parameters a and b are rewritten as 1 2(n )0 2 2 (2n 1) 2n 1 a 2 2 , m0 m0 m0 and 2n 1 b . We also note that (x) and k(x) are expressed by 2m 1 (x) V (x) 0 (n ) 2 2m 1 2 2 1 m0 x 0 (n ) 2 2 2 (2n 1) 6 2m 1 k(x) 0 (n ) V (x) 2 2m 1 1 2 2 0 (n ) m0 x 2 2 (2n 1) 2 Using these parameters, we have x (x)dx s 2 (2n 1)ds , a 2n1 x k(x)dx s 2 (2n 1)ds . b 2n1 The wavefunction in the region II; 2A(1)n x cos( k(x)dx ) II k(x) b 4 A 2(1)n cos[ s 2 (2n 1)ds ] 2 1/ 4 [(2n 1) ] 2n1 4 ____________________________________________________________________ The wavefunction in the region I A x exp[ (x)dx] I (x) a A 1 exp[ s 2 (2n 1)ds] 2 1/ 4 [ (2n 1)] 2n1 The wavefunction in the region III 7 A(1)n b exp[ (x)dx] III (x) x A (1)n 2n1 exp[ s 2 (2n 1)ds] 2 1/ 4 [ (2n 1)] We assume that the parameter A/ is determined from the normalization condition of the wave function. 3. Result from Mathematica: n () 6 5 4yn x 3 n=0 2 1 x -4 -2 2 4 Fig. n = 0 (ground state). The blue lines are classical turning points. y4 n x n=1 2 x -6 -4 -2 2 4 6 -2 -4 8 Fig. n = 1. The blue lines are classical turning points. y4 n x 3 n=2 2 1 x -6 -4 -2 2 4 6 -1 Fig. n = 2. The blue lines are classical turning points. y4 n x n=3 2 x -6 -4 -2 2 4 6 -2 -4 Fig. n = 3. The blue lines are classical turning points. 9 y4 n x 3 n=4 2 1 x -6 -4 -2 2 4 6 -1 Fig. n = 4. The blue lines are classical turning points. y4 n x n=5 2 x -6 -4 -2 2 4 6 -2 -4 Fig. n = 5. The blue lines are classical turning points. 10 y4 n x 3 n=6 2 1 x -6 -4 -2 2 4 6 -1 Fig. n = 6. The blue lines are classical turning points. In summary; we see that the WKB solution agrees well with the solutions from the quantum mechanics 2 4. Result from Mathematica: n ( ) 7 6 5 4 2 3yn x n=0 2 1 x -6 -4 -2 2 4 6 11 4 2 3yn x n=3 2 1 x -6 -4 -2 2 4 6 4 2 3yn x n=4 2 1 x -6 -4 -2 2 4 6 2.0 2 1.5yn x n1.0=15 0.5 x -10 -5 5 10 12 2.0 2 1.5yn x n1.0=20 0.5 x -10 -5 5 10 _________________________________________________________________________ REFERENCES 1. David J. Griffiths, Introduction to Quantum Mechanics (Prentice Hall, Englewood Cliff, NJ, 1995). 2. David. Bohm, Quantum Theory (Dover Publication, Inc, New York, 1979). 3. Eugen Merzbacher, Quantum Mechanics, 3rd edition (John Wiley & Sons, New York, 1998). 4. Leonard Schiff, Quantum Mechanics (McGraw-Hill Book Company, Inc, New York, 1955). 5. Richard L. Liboff, Introductory Quantum Mechanics, 4th edition (Addison Wesley, 2002). _________________________________________________________________________ APPENDIX-1: Mathematica program 13 We calculate the following integrals separately, since it takes a quite long time to calculate. Here we use the results. g3 Integrate s2 2n1 1 , s, 1, 2n1 1 Simplify , n1 0, 1 2n1 1 &; g1 Integrate s2 2n1 1 , s, 2n1 1, 1 Simplify, n1 0, 1 2n1 1 &; g2 Integrate 2n11 s2 , s, 2n1 1, 1 Simplify, n1 0, 2n1 1 1 2n1 1 &; 1 g11 2 1 1 2 n1 12 1 2 n1 Log 1 2 n1 2 Log 1 1 2 n1 12 ; 4 1 1 g21 2 n1 2 1 1 2 n1 12 2 4 n1 ArcTan ; 4 1 2 n1 12 g31 1 1 1 2 n1 12 1 2 n1 Log 1 2 n1 2 1 2 n1 Log 1 1 2 n1 12 ; 1 1 Exp g11 ; 12 2 n1 1 1 n1 3 Exp g31 ; 12 2 n1 1 2 1 n1 2 Cos g21 ; 4 12 2 n1 1 14 n_, _ : 3 UnitStep 1 2 n1 1 2 UnitStep 1 2 n1 1 UnitStep 1 2 n1 1 1 UnitStep 1 2 n1 1 . n1 n, 1 Simplify; P n_, s_ : Module h1, h2, h3, n1 , n1 n; h1 Plot n1, , , s, s , PlotStyle Hue 0.1 n1 , Thick , Background LightGray ; h2 Graphics Blue, Thick, Line 2 n1 1, 0 , 2 n1 1, 1 n1 4 , Line 2 n1 1, 0 , 2 n1 1, 4 , Text Style"", Black, 15 , s 0.5, 0 , Text Style " ", Black, 15 , 0.3, 4 , n Text Style "n" ToString n1 , Black, 15 , 3, 3 ; h3 Show h1, h2 , PlotRange All ; Q n_, s_ : Module h1, h2, h3,n1 , n1 n; h1 Plot n1, 2, , s, s, PlotStyle Hue 0.1 n1 , Thick , Background LightGray ; h2 Graphics Blue, Thick, Line 2 n1 1, 0, 2 n1 1, 4 , Line 2 n1 1, 0 , 2 n1 1, 4 , Text Style"", Black, 15 , s 0.5, 0 , 2 TextStyle " n ", Black, 15 , 0.5, 3 , Text Style "n" ToString n1 , Black, 15 , 3, 3 ; h3 Show h1, h2 , PlotRange All ; _________________________________________________________________________ APPENDIX-2: Connection formula 15 16 .
Recommended publications
  • Philosophia Scientiæ, 13-2 | 2009 [En Ligne], Mis En Ligne Le 01 Octobre 2009, Consulté Le 15 Janvier 2021
    Philosophia Scientiæ Travaux d'histoire et de philosophie des sciences 13-2 | 2009 Varia Édition électronique URL : http://journals.openedition.org/philosophiascientiae/224 DOI : 10.4000/philosophiascientiae.224 ISSN : 1775-4283 Éditeur Éditions Kimé Édition imprimée Date de publication : 1 octobre 2009 ISBN : 978-2-84174-504-3 ISSN : 1281-2463 Référence électronique Philosophia Scientiæ, 13-2 | 2009 [En ligne], mis en ligne le 01 octobre 2009, consulté le 15 janvier 2021. URL : http://journals.openedition.org/philosophiascientiae/224 ; DOI : https://doi.org/10.4000/ philosophiascientiae.224 Ce document a été généré automatiquement le 15 janvier 2021. Tous droits réservés 1 SOMMAIRE Actes de la 17e Novembertagung d'histoire des mathématiques (2006) 3-5 novembre 2006 (University of Edinburgh, Royaume-Uni) An Examination of Counterexamples in Proofs and Refutations Samet Bağçe et Can Başkent Formalizability and Knowledge Ascriptions in Mathematical Practice Eva Müller-Hill Conceptions of Continuity: William Kingdon Clifford’s Empirical Conception of Continuity in Mathematics (1868-1879) Josipa Gordana Petrunić Husserlian and Fichtean Leanings: Weyl on Logicism, Intuitionism, and Formalism Norman Sieroka Les journaux de mathématiques dans la première moitié du XIXe siècle en Europe Norbert Verdier Varia Le concept d’espace chez Veronese Une comparaison avec la conception de Helmholtz et Poincaré Paola Cantù Sur le statut des diagrammes de Feynman en théorie quantique des champs Alexis Rosenbaum Why Quarks Are Unobservable Tobias Fox Philosophia Scientiæ, 13-2 | 2009 2 Actes de la 17e Novembertagung d'histoire des mathématiques (2006) 3-5 novembre 2006 (University of Edinburgh, Royaume-Uni) Philosophia Scientiæ, 13-2 | 2009 3 An Examination of Counterexamples in Proofs and Refutations Samet Bağçe and Can Başkent Acknowledgements Partially based on a talk given in 17th Novembertagung in Edinburgh, Scotland in November 2006 by the second author.
    [Show full text]
  • Catalogue 51: Mostly New Acquisitions
    Catalogue 51: Mostly New Acquisitions For the 48th California International Antiquarian Book Fair Oakland Marriott, City Center, Oakland February 6 – 8, 2015 Visit us at Booth 809 HistoryofScience.com Jeremy Norman & Co., Inc. P.O. Box 867 Novato, CA 94948 Voice: (415) 892-3181 Fax: (415) 276-2317 Email: [email protected] Copyright ©2015 by Jeremy Norman & Co., Inc. / Historyofscience.com First Edition of the First English Sex Manual — One of Three Known Complete Copies 1. [Pseudo-Aristotle]. Aristoteles master-piece, or the secrets of generation displayed in all the parts thereof . 12mo. [4, including woodcut frontispiece], 190, [2, blank], [12, including 6 wood- cut illustrations, one a repeat of the frontispiece]pp. Title leaf is a cancel. London: Printed for J. How, 1684. 144 x 85 mm. Early sheep, worn, binding separating from text block; preserved in a cloth box. Occasional worming and staining, edges frayed, woodcuts with holes, tears and chips slightly affecting images, last woodcut with marginal loss affecting a few words of text, a few leaves slightly cropped, but a good, unsophisticated copy of a book that was mostly read out of existence. $65,000 First Edition. Aristotle’s Masterpiece (neither by Aristotle nor a masterpiece) was the first sex manual in English, providing its readers with practical advice on copulation, conception, pregnancy and birth. This anony- mous, inexpensively printed work proved to be enormously popular: At least three editions were issued by J. How in 1684 (see ESTC and below in our description), and it went through well over 100 editions in the following two centuries.Versions even continued to be published into the early twentieth century, with one appearing as late as 1930! Although Aristotle’s Masterpiece was not intended as pornography, its frank discussion of sex and reproduction was seen as unfit for polite society; the book was often issued under false imprints and sold “under the table.” The publication history of the work is discussed in some detail in Roy Porter and Lesley Hall’s The Facts of Life (pp.
    [Show full text]
  • Download Chapter 90KB
    Memorial Tributes: Volume 12 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 12 H E N D R I C K K R A M E R S 1917–2006 Elected in 1978 “For leadership in Dutch industry, education, and professional societies and research on chemical reactor design, separation processes, and process control.” BY R. BYRON BIRD AND BOUDEWIJN VAN NEDERVEEN HENDRIK KRAMERS (usually called Hans), formerly a member of the Governing Board of Koninklijke Zout Organon, later Akzo, and presently Akzo Nobel, passed away on September 17, 2006, at the age of 89. He became a foreign associate of the National Academy of Engineering in 1980. Hans was born on January 16, 1917, in Constantinople, Turkey, the son of a celebrated scholar of Islamic studies at the Univer- sity of Leiden (Prof. J.H. Kramers, 1891-1951) and nephew of the famous theoretical physicist at the same university (Prof. H.A. Kramers). He pursued the science preparatory curriculum at a Gymnasium (high-level high school) in Leiden from 1928 to 1934. Then, from 1934 to 1941, he was a student in engineering physics at the Technische Hogeschool in Delft (Netherlands), where he got his engineer’s degree (roughly equivalent to or slightly higher than an M.S. in the United States). From 1941 to 1944, Hans was employed as a research physi- cist in the Engineering Physics Section at TNO (Organization for Applied Scientific Research) associated with the Tech- nische Hogeschool in Delft. From 1944 to 1948, he worked at the Bataafsche Petroleum Maatschappij (BPM) (Royal Dutch Shell) in Amsterdam.
    [Show full text]
  • Rethinking Antiparticles. Hermann Weyl's Contribution to Neutrino Physics
    Studies in History and Philosophy of Modern Physics 61 (2018) 68e79 Contents lists available at ScienceDirect Studies in History and Philosophy of Modern Physics journal homepage: www.elsevier.com/locate/shpsb Rethinking antiparticles. Hermann Weyl’s contribution to neutrino physics Silvia De Bianchi Department of Philosophy, Building B - Campus UAB, Universitat Autonoma de Barcelona 08193, Bellaterra Barcelona, Spain article info abstract Article history: This paper focuses on Hermann Weyl’s two-component theory and frames it within the early devel- Received 18 February 2016 opment of different theories of spinors and the history of the discovery of parity violation in weak in- Received in revised form teractions. In order to show the implications of Weyl’s theory, the paper discusses the case study of Ettore 29 March 2017 Majorana’s symmetric theory of electron and positron (1937), as well as its role in inspiring Case’s Accepted 31 March 2017 formulation of parity violation for massive neutrinos in 1957. In doing so, this paper clarifies the rele- Available online 9 May 2017 vance of Weyl’s and Majorana’s theories for the foundations of neutrino physics and emphasizes which conceptual aspects of Weyl’s approach led to Lee’s and Yang’s works on neutrino physics and to the Keywords: “ ” Weyl solution of the theta-tau puzzle in 1957. This contribution thus sheds a light on the alleged re-discovery ’ ’ Majorana of Weyl s and Majorana s theories in 1957, by showing that this did not happen all of a sudden. On the two-component theory contrary, the scientific community was well versed in applying these theories in the 1950s on the ground neutrino physics of previous studies that involved important actors in both Europe and United States.
    [Show full text]
  • 5 X-Ray Crystallography
    Introductory biophysics A. Y. 2016-17 5. X-ray crystallography and its applications to the structural problems of biology Edoardo Milotti Dipartimento di Fisica, Università di Trieste The interatomic distance in a metallic crystal can be roughly estimated as follows. Take, e.g., iron • density: 7.874 g/cm3 • atomic weight: 56 3 • molar volume: VM = 7.1 cm /mole then the interatomic distance is roughly VM d ≈ 3 ≈ 2.2nm N A Edoardo Milotti - Introductory biophysics - A.Y. 2016-17 The atomic lattice can be used a sort of diffraction grating for short-wavelength radiation, about 100 times shorter than visible light which is in the range 400-750 nm. Since hc 2·10−25 J m 1.24 eV µm E = ≈ ≈ γ λ λ λ 1 nm radiation corresponds to about 1 keV photon energy. Edoardo Milotti - Introductory biophysics - A.Y. 2016-17 !"#$%&'$(")* S#%/J&T&U2*#<.%&CKET3&VG$GG./"#%G3&W.%-$/; +(."J&AN&>,%()&CTDB3&S.%)(/3&X.1*&W.%-$/; Y#<.)&V%(Z.&(/&V=;1(21&(/&CTCL&[G#%&=(1&"(12#5.%;&#G&*=.& "(GG%$2*(#/&#G&\8%$;1&<;&2%;1*$)1] 9/(*($));&=.&1*:"(."&H(*=&^_/F*./3&$/"&*=./&H(*=&'$`&V)$/2I&(/& S.%)(/3&H=.%.&=.&=$<()(*$*."&(/&CTBD&H(*=&$&*=.1(1&[a<.% "(.& 9/*.%G.%./Z.%12=.(/:/F./ $/&,)$/,$%$)).)./ V)$**./[?& 7=./&=.&H#%I."&$*&*=.&9/1*(*:*.&#G&7=.#%.*(2$)&V=;1(213&=.$"."& <;&>%/#)"&Q#--.%G.)"3&:/*()&=.&H$1&$,,#(/*."&G:))&,%#G.11#%&$*& *=.&4/(5.%1(*;&#G&0%$/IG:%*&(/&CTCL3&H=./&=.&$)1#&%.2.(5."&=(1& Y#<.)&V%(Z.?& !"#$%"#&'()#**(&8 9/*%#":2*#%;&<(#,=;1(21&8 >?@?&ABCD8CE Arnold Sommerfeld (1868-1951) ... Four of Sommerfeld's doctoral students, Werner Heisenberg, Wolfgang Pauli, Peter Debye, and Hans Bethe went on to win Nobel Prizes, while others, most notably, Walter Heitler, Rudolf Peierls, Karl Bechert, Hermann Brück, Paul Peter Ewald, Eugene Feenberg, Herbert Fröhlich, Erwin Fues, Ernst Guillemin, Helmut Hönl, Ludwig Hopf, Adolf KratZer, Otto Laporte, Wilhelm LenZ, Karl Meissner, Rudolf Seeliger, Ernst C.
    [Show full text]
  • SELECTED PAPERS of J. M. BURGERS Selected Papers of J
    SELECTED PAPERS OF J. M. BURGERS Selected Papers of J. M. Burgers Edited by F. T. M. Nieuwstadt Department of Mechanical Engineering and Maritime Technology, Delft University of Technology, The Netherlands and J. A. Steketee Department of Aero and Space Engineering, Delft University of Technology, The Netherlands SPRINGER SCIENCE+BUSINESS MEDIA, B.V. A CLP. Catalogue record for this book is available from the Library of Congress. ISBN 978-94-010-4088-4 ISBN 978-94-011-0195-0 (eBook) DOI 10.1007/978-94-011-0195-0 Printed on acid-free paper All Rights Reserved © 1995 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1995 Softcover reprint of the hardcover 1st edition 1995 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Preface By the beginning of this century, the vital role of fluid mechanics in engineering science and technological progress was clearly recognised. In 1918, following an international trend, the University of Technology in Delft established a chair in fluid dynamics, and we can still admire the wisdom of the committee which appointed the young theoretical physicist, J.M. Burgers, at the age of 23, to this position within the department of Mechanical Engineering, Naval architecture and Electrical Engineering. The consequences of this appointment were to be far-reaching. J .M. Burgers went on to become one of the leading figures in the field of fluid mechanics: a giant on whose shoulders the Dutch fluid mechanics community still stands.
    [Show full text]
  • De Tweede Gouden Eeuw
    De tweede Gouden Eeuw Nederland en de Nobelprijzen voor natuurwetenschappen 1870-1940 Bastiaan Willink bron Bastiaan Willink, De tweede Gouden Eeuw. Bert Bakker, Amsterdam 1998 Zie voor verantwoording: http://www.dbnl.org/tekst/will078twee01_01/colofon.php © 2007 dbnl / Bastiaan Willink 9 Dankwoord In juni 1996 wandelde ik over de begraafplaats van Montparnasse in Parijs, op zoek naar het graf van Henri Poincaré. Na enige omzwervingen vond ik het, verscholen achter graven van onbekenden, tegen de grote muur. Opluchting over de vondst mengde zich met verontwaardiging. Dit is geen passende plaats voor de grootste Franse wiskundige van de Belle Epoque. Hij hoort in het Pantheon! Meteen zag ik in dat zo'n reactie bij een Nederlander geen pas geeft. In ons land is er geen erebegraafplaats voor personen die grote prestaties leverden. Het is al een wonder, gelukkig minder zeldzaam dan vroeger, als er een biografie verschijnt van een Nederlandse wetenschappelijke coryfee. Dat motiveerde me om het plan voor dit boek definitief door te zetten. Het zou geen biografie worden, maar een mini-Pantheon van de Nederlandse wetenschap rond 1900. Er zijn eerder vergelijkbare boeken verschenen, maar een recent overzicht dat bovendien speciale aandacht schenkt aan oorzaken en gevolgen van bloei is er niet. Toen de tekst vorm begon te krijgen, sloeg de onzekerheid toe. Wie ben ik om al die verschillende specialisten te karakteriseren? Veel deskundige vrienden en vriendelijke deskundigen hebben me geholpen om de ergste omissies en fouten weg te werken. Ik ben de volgende hoog- en zeergeleerden erkentelijk voor literatuursuggesties en soms zeer indringend commentaar: A. Blaauw, H.B.G.
    [Show full text]
  • Statistical Mechanics of Branched Polymers Physical Virology ICTP Trieste, July 20, 2017
    Statistical Mechanics of Branched Polymers Physical Virology ICTP Trieste, July 20, 2017 Alexander Grosberg Center for Soft Matter Research Department of Physics, New York University My question to an anonymous referee: why do you think this is a perpetual motion machine? First part based on this image never published… From RNA to branched polymer Drawing by Joshua Kelly and Robijn Bruinsma To view RNA as a branched polymer is an imperfect approximation, with limited applicability … but let us explore it. Drawing by Angelo Rosa What is known about branched polymers? Classics 1: Main result: gyration radius 1/4 Rg ~ N Excluded volume becomes very important, because Bruno Zimm N/R 3~N1/4 grows with N Walter Stockmayer 1920-2005 g 1914-2004 “Chemical diameter” other people call it MLD Zimm-Stockmayer result: “typical” chemical diameter ~N1/2 Then its size in space is (N1/2)1/2=N1/4 Interesting: similar measures used to characterize dendritic arbors as well as vasculature in a human body or in a plant leave… Two ways to swell Always May or may not possible be possible Quenched Annealed Flory theory: old work and recent review Flory theory Highly Even less nontrivial trivial Quenched Annealed Kramers matrix comment Already a prediction J.Kelly developed algorithm to compute the right L Kramers theorem J.Kelly developed algorithm to compute the right L Quenched Qkm = ±K(k)M(m) 2 Trace(Qkm) = Rg (see Ben Shaul lecture yesterday) Maximal eigenvalue of Qkm gives the right L Hendrik (Hans) Kramers (1894-1952) Prediction works reasonably well Other predictions are also OK Green – single macromolecule in a good solvent; Magenta – single macromolecule in Q-solvent; Blue – one macromolecule among similar ones in a melt.
    [Show full text]
  • Quantization Conditions, 1900–1927
    Quantization Conditions, 1900–1927 Anthony Duncan and Michel Janssen March 9, 2020 1 Overview We trace the evolution of quantization conditions from Max Planck’s intro- duction of a new fundamental constant (h) in his treatment of blackbody radiation in 1900 to Werner Heisenberg’s interpretation of the commutation relations of modern quantum mechanics in terms of his uncertainty principle in 1927. In the most general sense, quantum conditions are relations between classical theory and quantum theory that enable us to construct a quantum theory from a classical theory. We can distinguish two stages in the use of such conditions. In the first stage, the idea was to take classical mechanics and modify it with an additional quantum structure. This was done by cut- ting up classical phase space. This idea first arose in the period 1900–1910 in the context of new theories for black-body radiation and specific heats that involved the statistics of large collections of simple harmonic oscillators. In this context, the structure added to classical phase space was used to select equiprobable states in phase space. With the arrival of Bohr’s model of the atom in 1913, the main focus in the development of quantum theory shifted from the statistics of large numbers of oscillators or modes of the electro- magnetic field to the detailed structure of individual atoms and molecules and the spectra they produce. In that context, the additional structure of phase space was used to select a discrete subset of classically possible motions. In the second stage, after the transition to modern quantum quan- tum mechanics in 1925–1926, quantum theory was completely divorced from its classical substratum and quantum conditions became a means of con- trolling the symbolic translation of classical relations into relations between quantum-theoretical quantities, represented by matrices or operators and no longer referring to orbits in classical phase space.1 More specifically, the development we trace in this essay can be summa- rized as follows.
    [Show full text]
  • GREGOR WENTZEL February 17, 1898 - August 12, 1978
    GREGOR WENTZEL February 17, 1898 - August 12, 1978 arXiv:0809.2102v1 [physics.hist-ph] 11 Sep 2008 BY PETER G.O. FREUND, CHARLES J. GOEBEL, YOICHIRO NAMBU AND REINHARD OEHME 1 Biographical sketch The initial of Gregor Wentzel's last name has found a solid place in the language of theoretical physics as the W of the fundamental WKB approxi- mation, which describes the semi-classical limit of any quantum system. Be- yond this fundamental contribution to quantum theory [1], Gregor Wentzel has played an important role in the theoretical physics of the first half of the twentieth century. Born in D¨usseldorfon 17 February, 1898, Gregor benefited from a rich and multi-faceted education. As the greatest events of his youth, Wentzel used to recall the local premi`eresof the symphonies of Gustav Mahler. A lifelong love for music was instilled in the young Gregor. During World War I he served in the army from 1917 to 1918. At the conclusion of that cataclysmic event, he continued his studies, migrating from university to university, as was customary in those days. First, until 1919 we find him at the University of Freiburg, then at the University of Greifswald, and as of 1920, just like Wolfgang Pauli and Werner Heisenberg and then later Hans Bethe among others, studying with the legendary teacher Arnold Sommerfeld at the Ludwig Maximilians University in Munich, where he obtained his Ph.D. with a thesis on Roentgen spectra [2]. Still in Munich he completed his Habilitation in 1922 and became a Privatdozent (roughly the equivalent of what today would be an assistant professor).
    [Show full text]
  • Levensbericht N.G. Van Kampen
    Nicolaas Godfried van Kampen 22 juni 1921 – 6 oktober 2013 levensberichten en herdenkingen 2014 22 L&H_2014.indd 22 10/22/2014 3:20:10 PM Levensbericht door G. ’t Hooft Na een kort ziekbed, overleed op 6 oktober 2013 Nicolaas Godfried van Kampen, lid van de Koninklijke Nederlandse Akademie van Wetenschappen sinds 1973. Nico was 92 jaar, en tot nog onlangs bleef hij een trouw bezoeker van de vergaderingen van de Afdeling Natuurkunde, waar zijn aanwezigheid zelden onopgemerkt bleef. Nico’s vader, Pieter Nicolaas van Kampen, was hoogleraar zoölogie in Leiden en zijn moeder, Lize, was van de familie Zernike, die opmerkelijke personages telde, zoals haar broer, Frits Zernike, die in 1953 de Nobelprijs voor Natuurkunde kreeg toegekend voor de uitvinding van de fasecontrast- microscoop, een voor die tijd revolutionaire techniek die het mogelijk maakte om bijvoorbeeld het celdelingsproces in levende cellen waar te nemen. Een andere broer, Johannes Zernike, was hoogleraar in de scheikunde en schrijver van een boek over ‘Entropie’. Een zuster, Elisabeth Zernike, werd een bekend schrijfster, en een andere zuster, Nico’s tante Annie, werd de eerste Neder- landse vrouwelijke predikante, in Bovenknijpe. Zij huwde met de schilder Jan Mankes. Nico deed in 1939 eindexamen als beste van zijn klas in het gymnasium te Leiden. Hij was nog maar net begonnen met de natuurkundestudie in Leiden, toen de universiteit daar door de bezetters werd gesloten. Nico vertrok in 1941 naar Groningen waar zijn oom Frits Zernike hoogleraar theoretische natuurkunde was en waar hij in 1947 zijn doctoraal behaalde. Met Zernike werkte hij aan diffractie van licht.
    [Show full text]
  • Kramers Theory of Reaction Kinetics
    Kramers theory of reaction kinetics Winter School for Theoretical Chemistry and Spectroscopy Han-sur-Lesse, 7-11 December 2015 Hans Kramers Hendrik Anthony Kramers 1894 – 1952 1911 HBS, 1912 staatsexamen, 1916 doctoraal wis- en natuurkunde 1916 Arrived unannounced in Kopenhagen to do PhD with Niels Bohr 1919 promotion in Leiden (Ehrenfest), married in 1920 Lector in Kopenhagen 1926 Professor theoretical physics in Utrecht 1934 Professor in Leiden (chair of Ehrenfest), professor in TU-Delft Physics 7(4), April 1940, Pages 284-304 - 8 references Outline • Intro Kramers theory • Transition State Theory • The Langevin equation • The Fokker-Planck equation • Kramers reaction kinetics • high-friction vs low-friction limit • memory, Grote-Hynes theory • Bennet-Chandler approach • Reactive Flux • Transmission coefficient calculation • Free energy methods • Summary • Bibliography Molecular Transitions are Rare Events chemical reactions phase transitions protein folding defect diffusion self-assembly stock exchange crash Rare Events • Molecular transitions are not rare in every day life • They are only rare events with respect to the femto- second timescale of atomic motions • Modeling activated transitions by straightforward simulation would be extremely costly (takes forever) • Advanced methods: Transition state theory (TST), Bennet-Chandler (Reactive Flux) approach, Transition Path Sampling (TPS), Free energy methods, Parallel Tempering, String Method,.... A very long trajectory • A and B are (meta-)stable states, i.e. A B attractive basins • transitions between A and B are rare • transitions can happen fast • system looses memory in A and B Free energy landscape Rare Events Transition State The free energy has local minima separated by barriers Many possible transition paths via meta-stable states Projection on reaction coordinate shows FE profile P.G.
    [Show full text]