De Tweede Gouden Eeuw

Total Page:16

File Type:pdf, Size:1020Kb

De Tweede Gouden Eeuw De tweede Gouden Eeuw Nederland en de Nobelprijzen voor natuurwetenschappen 1870-1940 Bastiaan Willink bron Bastiaan Willink, De tweede Gouden Eeuw. Bert Bakker, Amsterdam 1998 Zie voor verantwoording: http://www.dbnl.org/tekst/will078twee01_01/colofon.php © 2007 dbnl / Bastiaan Willink 9 Dankwoord In juni 1996 wandelde ik over de begraafplaats van Montparnasse in Parijs, op zoek naar het graf van Henri Poincaré. Na enige omzwervingen vond ik het, verscholen achter graven van onbekenden, tegen de grote muur. Opluchting over de vondst mengde zich met verontwaardiging. Dit is geen passende plaats voor de grootste Franse wiskundige van de Belle Epoque. Hij hoort in het Pantheon! Meteen zag ik in dat zo'n reactie bij een Nederlander geen pas geeft. In ons land is er geen erebegraafplaats voor personen die grote prestaties leverden. Het is al een wonder, gelukkig minder zeldzaam dan vroeger, als er een biografie verschijnt van een Nederlandse wetenschappelijke coryfee. Dat motiveerde me om het plan voor dit boek definitief door te zetten. Het zou geen biografie worden, maar een mini-Pantheon van de Nederlandse wetenschap rond 1900. Er zijn eerder vergelijkbare boeken verschenen, maar een recent overzicht dat bovendien speciale aandacht schenkt aan oorzaken en gevolgen van bloei is er niet. Toen de tekst vorm begon te krijgen, sloeg de onzekerheid toe. Wie ben ik om al die verschillende specialisten te karakteriseren? Veel deskundige vrienden en vriendelijke deskundigen hebben me geholpen om de ergste omissies en fouten weg te werken. Ik ben de volgende hoog- en zeergeleerden erkentelijk voor literatuursuggesties en soms zeer indringend commentaar: A. Blaauw, H.B.G. Casimir, D. van Dalen, A. Jolink, N.G. van Kampen, J.K. Katgert-Merkelijn, A.J. Kox, W. Ophelders, H.A.M. Snelders, B. Theunissen, A.S. Troelstra, N. Wilterdink, en ook Carmen Heijmerink, Martine Kramers, L. Laceulle, Willy Tiekstra, J. de Vos Bastiaan Willink, De tweede Gouden Eeuw 10 en Erik Zevenhuizen. Bij het beschrijven van het ontstaan van het onderzoek bij Shell en Heemaf ben ik vriendelijk geholpen door J.H. Schweppe, M. Pot, J. Tuik, A. Willink, J.F. en H.A.W. Klinkhamer. Mijn oude vrienden André Abeling en Jan Guichelaar hebben voor leek gespeeld, grote delen van de tekst gelezen, en me niet van allerlei eigenzinnigheden kunnen weerhouden. Andries van Helden en Adelheid Feryn, en indirect de Nederlandse staat, ben ik dankbaar dat ze me hun appartement in Parijs ter beschikking stelden en mij zo de gelegenheid gaven de beslissende stap naar het schrijven te zetten. Bastiaan Willink, De tweede Gouden Eeuw 11 Proloog. Nederlandse koppen boven het maaiveld ‘Zijn aanpak van dit moeilijke probleem is zo bekwaam en zo dapper, dat hij ongetwijfeld een duidelijk merkbare impuls zal geven aan de moleculaire wetenschap. Dit werk heeft zeker meer dan één onderzoeker gebracht tot het bestuderen van de Nederlandse taal waarin het geschreven is.’ Toen James Clerk Maxwell deze regels in 1875 in Nature publiceerde,1 was hij de meest vooraanstaande natuurkundige ter wereld. Met zijn commentaar, en natuurlijk het proefschrift van Van der Waals waarop het betrekking had, begint een bijzondere periode in de Nederlandse wetenschapsgeschiedenis. Er is veel voor te zeggen als we die periode laten eindigen met het optreden van een andere wereldster. Het lukte in 1912 niet om Albert Einstein als opvolger van Lorentz in Leiden te benoemen, maar hij werd daar in 1920 wel bijzonder hoogleraar. Tot in de jaren dertig verscheen hij regelmatig om college te geven en samen te werken met figuren als Lorentz en De Sitter. De laatste heeft er met de Amsterdamse natuurkundige Zeeman in belangrijke mate toe bijgedragen dat de relativiteitstheorie in natuur- en sterrenkunde de centrale plaats kreeg die ze sindsdien behouden heeft. Met het vertrek van Einstein naar Amerika in 1933 werd ook het begin van het einde ingeluid van een bloeiperiode, zoals we in Nederland lang niet gekend hadden. Rond 1700 eindigde de Gouden Eeuw, waar we in Nederland al honderden jaren trots op zijn. Een omvangrijke toeristenindustrie is gebaseerd op onze schilderkunst en architectuur uit die tijd. Behalve de toeristen hebben ook wetenschappelijke onderzoekers tot op heden altijd veel belangstelling gehad voor de periode 1600-1700. Die interesse is niet tanende, noch in de diepte, noch in de Bastiaan Willink, De tweede Gouden Eeuw 12 breedte. De erkenning van de excellentie van Het land van Rembrandt (Busken Huet) gaat ook op voor Het land van Stevin en Huygens (Struik).2 En behalve de culturele bovenbouw is ook het sociaal-economisch fundament nog steeds onderwerp van intensieve studie. Recent verscheen een belangrijke nieuwe visie.3 Als we een enkele mogelijke uitzondering, zoals Boerhaave, ter zijde laten, valt elke vergelijking van onze Gouden met onze Zilveren Eeuw, de achttiende, voor de laatste negatief uit. Wie Troost zet naast Rembrandt, Van Slingelandt en Van de Spiegel naast Van Oldenbarnevelt en De Witt, en 's Gravesande en de Van Musschenbroeks naast Stevin en Huygens, zal erkennen dat er een groot kwaliteitsverschil bestaat. De lage landen bleven welvarend, maar teerden economisch en cultureel in. Sinds het tweede kwart van de negentiende eeuw, toen Potgieter in Het Rijksmuseum te Amsterdam en later De Stuers in Holland op zijn smalst, voor het eerst in brede kring de aandacht vestigden op bloei en verval in de Nederlandse cultuur tussen 1600 en 1850, is er veel over dit onderwerp geschreven, de laatste decennia vaak ook door buitenlanders, zoals door Simon Schama en Jonathan Israel. Terwijl de namen van achttiende- en vroegnegentiende-eeuwers weinig triomfantelijke gevoelens weten op te roepen, lijkt dat anders te zijn met de schilders, architecten en wetenschappers die rond 1900 actief waren. In de wetenschap zijn de namen van onze eerste Nobelprijswinnaars nog steeds bekend - Van 't Hoff, Lorentz, Zeeman, Van der Waals, Kamerlingh Onnes. Recent is er daarnaast ‘opeens’ veel aandacht voor tijdgenoten als Korteweg en Dubois. Voor de schilderkunst en de architectuur is de belangstelling nog groter. Natuurlijk moet de wetenschap het, waar het tijdloosheid betreft, afleggen tegen de kunst, en ook in kunstzinnig opzicht is de periode na 1870 een bijzondere geweest. Van onze vier beroemdste schilders leefden Rembrandt en Vermeer in de zeventiende eeuw, en Van Gogh en Mondriaan rond 1900. Het land van Rembrandt, Vermeer, de grachtengordels, de buitenhuizen en het Paleis op de Dam werd tweehonderd jaar later ook het land van de Haagse School, Van Gogh, Mondriaan, Berlage, de Stijlgroep en de vele andere groepjes en figuren van belang. Bastiaan Willink, De tweede Gouden Eeuw 13 Daarom spreek ik graag van de ‘Tweede Gouden Eeuw’.4 Die had, evenals de eerste, vooral betrekking op schilderkunst, bouwkunst en wetenschap. Ik zal geen discussies aangaan met de (schaarse) verdedigers van het internationale belang - want daar gaat het bij Gouden Eeuwen om - van Nederlandse schrijvers en componisten. Hoewel niemand om Multatuli heen kan, lijkt pas in onze tijd sprake van brede internationale interesse voor de Nederlandse letterkunde - men denke aan Nooteboom en Mulisch in Duitsland (de laatste ook in Amerika) of Brouwers in Frankrijk. Ook de Nederlandse muziek was rond 1900 vooral een nationaal fenomeen, als we Mengelberg en zijn orkest buiten beschouwing laten. Julius Röntgen was bevriend met Grieg en Brahms (die ook vriendschappelijk contact had met de Utrechtse hoogleraar Engelmann), maar zijn composities zijn op een enkele uitzondering na epigonenwerk. Diepenbrock was bevriend met Mahler, maar zijn oeuvre is, hoewel belangrijker dan dat van Röntgen, niet te vergelijken met dat van Mengelbergs idool. Behalve de bloei van schilderkunst, bouwkunst en wetenschap lijkt er ook na 1900 eveneens een opvallende toename van de internationale economische en politieke macht van Nederland te hebben plaatsgevonden. De opkomst en consolidatie van Shell, Philips en Unilever zou gezet kunnen worden tegenover de Oost- en West-Indische Compagnieën. Iets verder gezocht, maar zeker interessant, is het om het Europese optreden van stadhouder-koning Willem III te vergelijken met de Haagse vredesconferenties, waarmee de Nobelprijs van Tobias Asser verband hield, en de komst van het Internationale Hof van Justitie. Na Willem III's dood in 1702 kon Heinsius nog enige tijd invloed uitoefenen in Europa, maar daarna was het afgelopen met de internationale rol van de Republiek. Na de Tweede Wereldoorlog had ons land nog een flinke internationale invloed, blijkend uit de clustering van benoemingen van hoge Nederlandse functionarissen bij internationale organisaties: Van Kleffens, Stikker, Van Lennep, Witteveen, Boerma en Luns. Kan uit de Nederlandse deconfitures bij het naar voren schuiven van Ruding, Lubbers en Braks eenzelfde verval als na 1700 worden afgeleid? Natuurlijk was Nederland in 1650 een echte Bastiaan Willink, De tweede Gouden Eeuw 14 wereldmacht en dat is na 1870 nooit het geval geweest. ‘Gouden Eeuw’ is een historische term met een sterk cultuurhistorische nadruk. De Gouden Eeuw van de Atheense stadsstaat is weliswaar ‘de Eeuw van Pericles’ en die van Florence het tijdperk van Lorenzo il Magnifico, maar we meten het belang ervan vooral af aan de grote creatieve figuren uit het tijdperk, aan Plato, Aristoteles en Sophocles, of Leonardo, Michelangelo en Rafaël. Dat ontkracht ook de tegenwerping dat een periode geen Gouden Eeuw is, als er oorlogen hebben gewoed of als er armoede werd geleden. De Tweede Gouden Eeuw heeft een economische depressie en een wereldoorlog gekend (Nederland had geluk in 1914-1918). Gedurende de Eerste Gouden Eeuw was het echter ook vrijwel continu oorlog, waarbij het grootste gevaar kwam van achtereenvolgens Spanje, Engeland en Frankrijk. In 1672 hield de Republiek zelfs bijna op te bestaan. Dat deed niets af aan het belang van Huygens en Rembrandt. Ik beperk de term ‘Tweede Gouden Eeuw’ in dit boek tot de bloei van de exacte wetenschappen, dat wil zeggen wiskunde en natuurwetenschappen. Opkomst, bloei en verval van die wetenschappen vormen een complex onderwerp, dat een aparte behandeling verdient, waarin een zwaartepunt ligt bij de politieke en sociale achtergronden.
Recommended publications
  • 1 WKB Wavefunctions for Simple Harmonics Masatsugu
    WKB wavefunctions for simple harmonics Masatsugu Sei Suzuki Department of Physics, SUNY at Binmghamton (Date: November 19, 2011) _________________________________________________________________________ Gregor Wentzel (February 17, 1898, in Düsseldorf, Germany – August 12, 1978, in Ascona, Switzerland) was a German physicist known for development of quantum mechanics. Wentzel, Hendrik Kramers, and Léon Brillouin developed the Wentzel– Kramers–Brillouin approximation in 1926. In his early years, he contributed to X-ray spectroscopy, but then broadened out to make contributions to quantum mechanics, quantum electrodynamics, and meson theory. http://en.wikipedia.org/wiki/Gregor_Wentzel _________________________________________________________________________ Hendrik Anthony "Hans" Kramers (Rotterdam, February 2, 1894 – Oegstgeest, April 24, 1952) was a Dutch physicist. http://en.wikipedia.org/wiki/Hendrik_Anthony_Kramers _________________________________________________________________________ Léon Nicolas Brillouin (August 7, 1889 – October 4, 1969) was a French physicist. He made contributions to quantum mechanics, radio wave propagation in the atmosphere, solid state physics, and information theory. http://en.wikipedia.org/wiki/L%C3%A9on_Brillouin _______________________________________________________________________ 1. Determination of wave functions using the WKB Approximation 1 In order to determine the eave function of the simple harmonics, we use the connection formula of the WKB approximation. V x E III II I x b O a The potential energy is expressed by 1 V (x) m 2 x 2 . 2 0 The x-coordinates a and b (the classical turning points) are obtained as 2 2 a 2 , b 2 , m0 m0 from the equation 1 V (x) m 2 x2 , 2 0 or 1 1 m 2a 2 m 2b2 , 2 0 2 0 where is the constant total energy. Here we apply the connection formula (I, upward) at x = a.
    [Show full text]
  • Download Chapter 90KB
    Memorial Tributes: Volume 12 Copyright National Academy of Sciences. All rights reserved. Memorial Tributes: Volume 12 H E N D R I C K K R A M E R S 1917–2006 Elected in 1978 “For leadership in Dutch industry, education, and professional societies and research on chemical reactor design, separation processes, and process control.” BY R. BYRON BIRD AND BOUDEWIJN VAN NEDERVEEN HENDRIK KRAMERS (usually called Hans), formerly a member of the Governing Board of Koninklijke Zout Organon, later Akzo, and presently Akzo Nobel, passed away on September 17, 2006, at the age of 89. He became a foreign associate of the National Academy of Engineering in 1980. Hans was born on January 16, 1917, in Constantinople, Turkey, the son of a celebrated scholar of Islamic studies at the Univer- sity of Leiden (Prof. J.H. Kramers, 1891-1951) and nephew of the famous theoretical physicist at the same university (Prof. H.A. Kramers). He pursued the science preparatory curriculum at a Gymnasium (high-level high school) in Leiden from 1928 to 1934. Then, from 1934 to 1941, he was a student in engineering physics at the Technische Hogeschool in Delft (Netherlands), where he got his engineer’s degree (roughly equivalent to or slightly higher than an M.S. in the United States). From 1941 to 1944, Hans was employed as a research physi- cist in the Engineering Physics Section at TNO (Organization for Applied Scientific Research) associated with the Tech- nische Hogeschool in Delft. From 1944 to 1948, he worked at the Bataafsche Petroleum Maatschappij (BPM) (Royal Dutch Shell) in Amsterdam.
    [Show full text]
  • Rethinking Antiparticles. Hermann Weyl's Contribution to Neutrino Physics
    Studies in History and Philosophy of Modern Physics 61 (2018) 68e79 Contents lists available at ScienceDirect Studies in History and Philosophy of Modern Physics journal homepage: www.elsevier.com/locate/shpsb Rethinking antiparticles. Hermann Weyl’s contribution to neutrino physics Silvia De Bianchi Department of Philosophy, Building B - Campus UAB, Universitat Autonoma de Barcelona 08193, Bellaterra Barcelona, Spain article info abstract Article history: This paper focuses on Hermann Weyl’s two-component theory and frames it within the early devel- Received 18 February 2016 opment of different theories of spinors and the history of the discovery of parity violation in weak in- Received in revised form teractions. In order to show the implications of Weyl’s theory, the paper discusses the case study of Ettore 29 March 2017 Majorana’s symmetric theory of electron and positron (1937), as well as its role in inspiring Case’s Accepted 31 March 2017 formulation of parity violation for massive neutrinos in 1957. In doing so, this paper clarifies the rele- Available online 9 May 2017 vance of Weyl’s and Majorana’s theories for the foundations of neutrino physics and emphasizes which conceptual aspects of Weyl’s approach led to Lee’s and Yang’s works on neutrino physics and to the Keywords: “ ” Weyl solution of the theta-tau puzzle in 1957. This contribution thus sheds a light on the alleged re-discovery ’ ’ Majorana of Weyl s and Majorana s theories in 1957, by showing that this did not happen all of a sudden. On the two-component theory contrary, the scientific community was well versed in applying these theories in the 1950s on the ground neutrino physics of previous studies that involved important actors in both Europe and United States.
    [Show full text]
  • In Memoriam Nico Van Kampen
    In memoriam Nico van Kampen 1 Nicolaas Godfried van Kampen was born on June 22, 1921 at Leyden, the Netherlands, where his father held a chair in zoology at the university. He deceased on October 6, 2013 in the Dutch town Nieuwegein. His long life was dedicated to physics. Science was his passion until the last day. After finishing his secondary school education at the Stedelijk Gymnasium Leiden he started studying mathematics and physics at Leyden University in September 1939. After this university was closed by the Germans in November 1940 he moved to Groningen, where his uncle Frits Zernike held the chair of theoretical physics. He finished his studies there in 1947, and started working on his PhD thesis with Kramers at Leyden. Zernike and Kramers were his role models, and he always talked about them with deep appreciation. In 1948 and 1950, while working under Kramers, he wrote two articles on diffraction in optics[1],[2], based on his work with Zernike, recipient of the 1953 Nobel prize for the invention of the phase contrast microscope. In his dissertation Van Kampen treated the quantum mechanical interaction of an elec- tron with the electromagnetic field, elaborating Kramers' ideas on renormalization. During his PhD studies he spent a year at Niels Bohr's institute in Copenhagen, and in 1952 he graduated cum laude at the university of Leyden, only a few months before Kramers died. The title of his thesis was "Contribution to the quantum theory of light scattering"[3]. In 1952/1953 he worked as a research associate at the Institute of Advanced Study in Princeton, continuing his work on quantum mechanical scattering theory.
    [Show full text]
  • SELECTED PAPERS of J. M. BURGERS Selected Papers of J
    SELECTED PAPERS OF J. M. BURGERS Selected Papers of J. M. Burgers Edited by F. T. M. Nieuwstadt Department of Mechanical Engineering and Maritime Technology, Delft University of Technology, The Netherlands and J. A. Steketee Department of Aero and Space Engineering, Delft University of Technology, The Netherlands SPRINGER SCIENCE+BUSINESS MEDIA, B.V. A CLP. Catalogue record for this book is available from the Library of Congress. ISBN 978-94-010-4088-4 ISBN 978-94-011-0195-0 (eBook) DOI 10.1007/978-94-011-0195-0 Printed on acid-free paper All Rights Reserved © 1995 Springer Science+Business Media Dordrecht Originally published by Kluwer Academic Publishers in 1995 Softcover reprint of the hardcover 1st edition 1995 No part of the material protected by this copyright notice may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording or by any information storage and retrieval system, without written permission from the copyright owner. Preface By the beginning of this century, the vital role of fluid mechanics in engineering science and technological progress was clearly recognised. In 1918, following an international trend, the University of Technology in Delft established a chair in fluid dynamics, and we can still admire the wisdom of the committee which appointed the young theoretical physicist, J.M. Burgers, at the age of 23, to this position within the department of Mechanical Engineering, Naval architecture and Electrical Engineering. The consequences of this appointment were to be far-reaching. J .M. Burgers went on to become one of the leading figures in the field of fluid mechanics: a giant on whose shoulders the Dutch fluid mechanics community still stands.
    [Show full text]
  • Statistical Mechanics of Branched Polymers Physical Virology ICTP Trieste, July 20, 2017
    Statistical Mechanics of Branched Polymers Physical Virology ICTP Trieste, July 20, 2017 Alexander Grosberg Center for Soft Matter Research Department of Physics, New York University My question to an anonymous referee: why do you think this is a perpetual motion machine? First part based on this image never published… From RNA to branched polymer Drawing by Joshua Kelly and Robijn Bruinsma To view RNA as a branched polymer is an imperfect approximation, with limited applicability … but let us explore it. Drawing by Angelo Rosa What is known about branched polymers? Classics 1: Main result: gyration radius 1/4 Rg ~ N Excluded volume becomes very important, because Bruno Zimm N/R 3~N1/4 grows with N Walter Stockmayer 1920-2005 g 1914-2004 “Chemical diameter” other people call it MLD Zimm-Stockmayer result: “typical” chemical diameter ~N1/2 Then its size in space is (N1/2)1/2=N1/4 Interesting: similar measures used to characterize dendritic arbors as well as vasculature in a human body or in a plant leave… Two ways to swell Always May or may not possible be possible Quenched Annealed Flory theory: old work and recent review Flory theory Highly Even less nontrivial trivial Quenched Annealed Kramers matrix comment Already a prediction J.Kelly developed algorithm to compute the right L Kramers theorem J.Kelly developed algorithm to compute the right L Quenched Qkm = ±K(k)M(m) 2 Trace(Qkm) = Rg (see Ben Shaul lecture yesterday) Maximal eigenvalue of Qkm gives the right L Hendrik (Hans) Kramers (1894-1952) Prediction works reasonably well Other predictions are also OK Green – single macromolecule in a good solvent; Magenta – single macromolecule in Q-solvent; Blue – one macromolecule among similar ones in a melt.
    [Show full text]
  • Quantization Conditions, 1900–1927
    Quantization Conditions, 1900–1927 Anthony Duncan and Michel Janssen March 9, 2020 1 Overview We trace the evolution of quantization conditions from Max Planck’s intro- duction of a new fundamental constant (h) in his treatment of blackbody radiation in 1900 to Werner Heisenberg’s interpretation of the commutation relations of modern quantum mechanics in terms of his uncertainty principle in 1927. In the most general sense, quantum conditions are relations between classical theory and quantum theory that enable us to construct a quantum theory from a classical theory. We can distinguish two stages in the use of such conditions. In the first stage, the idea was to take classical mechanics and modify it with an additional quantum structure. This was done by cut- ting up classical phase space. This idea first arose in the period 1900–1910 in the context of new theories for black-body radiation and specific heats that involved the statistics of large collections of simple harmonic oscillators. In this context, the structure added to classical phase space was used to select equiprobable states in phase space. With the arrival of Bohr’s model of the atom in 1913, the main focus in the development of quantum theory shifted from the statistics of large numbers of oscillators or modes of the electro- magnetic field to the detailed structure of individual atoms and molecules and the spectra they produce. In that context, the additional structure of phase space was used to select a discrete subset of classically possible motions. In the second stage, after the transition to modern quantum quan- tum mechanics in 1925–1926, quantum theory was completely divorced from its classical substratum and quantum conditions became a means of con- trolling the symbolic translation of classical relations into relations between quantum-theoretical quantities, represented by matrices or operators and no longer referring to orbits in classical phase space.1 More specifically, the development we trace in this essay can be summa- rized as follows.
    [Show full text]
  • Levensbericht N.G. Van Kampen
    Nicolaas Godfried van Kampen 22 juni 1921 – 6 oktober 2013 levensberichten en herdenkingen 2014 22 L&H_2014.indd 22 10/22/2014 3:20:10 PM Levensbericht door G. ’t Hooft Na een kort ziekbed, overleed op 6 oktober 2013 Nicolaas Godfried van Kampen, lid van de Koninklijke Nederlandse Akademie van Wetenschappen sinds 1973. Nico was 92 jaar, en tot nog onlangs bleef hij een trouw bezoeker van de vergaderingen van de Afdeling Natuurkunde, waar zijn aanwezigheid zelden onopgemerkt bleef. Nico’s vader, Pieter Nicolaas van Kampen, was hoogleraar zoölogie in Leiden en zijn moeder, Lize, was van de familie Zernike, die opmerkelijke personages telde, zoals haar broer, Frits Zernike, die in 1953 de Nobelprijs voor Natuurkunde kreeg toegekend voor de uitvinding van de fasecontrast- microscoop, een voor die tijd revolutionaire techniek die het mogelijk maakte om bijvoorbeeld het celdelingsproces in levende cellen waar te nemen. Een andere broer, Johannes Zernike, was hoogleraar in de scheikunde en schrijver van een boek over ‘Entropie’. Een zuster, Elisabeth Zernike, werd een bekend schrijfster, en een andere zuster, Nico’s tante Annie, werd de eerste Neder- landse vrouwelijke predikante, in Bovenknijpe. Zij huwde met de schilder Jan Mankes. Nico deed in 1939 eindexamen als beste van zijn klas in het gymnasium te Leiden. Hij was nog maar net begonnen met de natuurkundestudie in Leiden, toen de universiteit daar door de bezetters werd gesloten. Nico vertrok in 1941 naar Groningen waar zijn oom Frits Zernike hoogleraar theoretische natuurkunde was en waar hij in 1947 zijn doctoraal behaalde. Met Zernike werkte hij aan diffractie van licht.
    [Show full text]
  • Kramers Theory of Reaction Kinetics
    Kramers theory of reaction kinetics Winter School for Theoretical Chemistry and Spectroscopy Han-sur-Lesse, 7-11 December 2015 Hans Kramers Hendrik Anthony Kramers 1894 – 1952 1911 HBS, 1912 staatsexamen, 1916 doctoraal wis- en natuurkunde 1916 Arrived unannounced in Kopenhagen to do PhD with Niels Bohr 1919 promotion in Leiden (Ehrenfest), married in 1920 Lector in Kopenhagen 1926 Professor theoretical physics in Utrecht 1934 Professor in Leiden (chair of Ehrenfest), professor in TU-Delft Physics 7(4), April 1940, Pages 284-304 - 8 references Outline • Intro Kramers theory • Transition State Theory • The Langevin equation • The Fokker-Planck equation • Kramers reaction kinetics • high-friction vs low-friction limit • memory, Grote-Hynes theory • Bennet-Chandler approach • Reactive Flux • Transmission coefficient calculation • Free energy methods • Summary • Bibliography Molecular Transitions are Rare Events chemical reactions phase transitions protein folding defect diffusion self-assembly stock exchange crash Rare Events • Molecular transitions are not rare in every day life • They are only rare events with respect to the femto- second timescale of atomic motions • Modeling activated transitions by straightforward simulation would be extremely costly (takes forever) • Advanced methods: Transition state theory (TST), Bennet-Chandler (Reactive Flux) approach, Transition Path Sampling (TPS), Free energy methods, Parallel Tempering, String Method,.... A very long trajectory • A and B are (meta-)stable states, i.e. A B attractive basins • transitions between A and B are rare • transitions can happen fast • system looses memory in A and B Free energy landscape Rare Events Transition State The free energy has local minima separated by barriers Many possible transition paths via meta-stable states Projection on reaction coordinate shows FE profile P.G.
    [Show full text]
  • On the Verge of Umdeutung in Minnesota: Van Vleck and the Correspondence Principle. Part One. ?
    On the verge of Umdeutung in Minnesota: Van Vleck and the correspondence principle. Part One. ? Anthony Duncan a, Michel Janssen b,∗ aDepartment of Physics and Astronomy, University of Pittsburgh bProgram in the History of Science, Technology, and Medicine, University of Minnesota Abstract In October 1924, The Physical Review, a relatively minor journal at the time, pub- lished a remarkable two-part paper by John H. Van Vleck, working in virtual iso- lation at the University of Minnesota. Using Bohr’s correspondence principle and Einstein’s quantum theory of radiation along with advanced techniques from classi- cal mechanics, Van Vleck showed that quantum formulae for emission, absorption, and dispersion of radiation merge with their classical counterparts in the limit of high quantum numbers. For modern readers Van Vleck’s paper is much easier to follow than the famous paper by Kramers and Heisenberg on dispersion theory, which covers similar terrain and is widely credited to have led directly to Heisen- berg’s Umdeutung paper. This makes Van Vleck’s paper extremely valuable for the reconstruction of the genesis of matrix mechanics. It also makes it tempting to ask why Van Vleck did not take the next step and develop matrix mechanics himself. Key words: Dispersion theory, John H. Van Vleck, Correspondence Principle, Bohr-Kramers-Slater (BKS) theory, Virtual oscillators, Matrix mechanics ? This paper was written as part of a joint project in the history of quantum physics of the Max Planck Institut f¨ur Wissenschaftsgeschichte and the Fritz-Haber-Institut in Berlin. ∗ Corresponding author. Address: Tate Laboratory of Physics, 116 Church St.
    [Show full text]
  • Physics Celebrity #24 (Neil's Bohr)
    Niels Bohr (Danish) 1885 – 1962) made foundational contributions to understanding atomic structure and quantum mechanics, for which he received Neils Bohr (1885 - 1962) the Nobel Prize in Physics in 1922. Bohr was also a philosopher and a promoter of scientific research. He developed the Bohr model of the atom with the atomic nucleus at the centre and electrons in orbit around it, which he compared to the planets orbiting the Sun. He helped develop quantum mechanics, in which electrons move from one energy level to another in discrete steps, instead of continuously. He founded the Institute of Theoretical Physics at the University of Copenhagen, now known as the Niels Bohr Institute, which opened in 1920. Bohr mentored and collaborated with physicists including Hans Kramers, Oskar Klein, George de Hevesy and Werner Heisenberg. He predicted the existence of a new zirconium-like element, which was named hafnium, after Copenhagen, when it was discovered. Later, the element bohrium was named after him. He conceived the principle of complementarity: that items could be separately analysed as having contradictory properties, like behaving as a wave or a stream of particles. The notion of complementarity dominated his thinking on both science and philosophy. During the 1930s, Bohr gave refugees from Nazism temporary jobs at the Institute, provided them with financial support, arranged for them to be awarded fellowships from the Rockefeller Foundation, and ultimately found them places at various institutions around the world. After Denmark was occupied by the Germans, he had a dramatic meeting in Copenhagen with Heisenberg, who had become the head of the German nuclear energy project.
    [Show full text]
  • Download Introduction to Renormalization Group Methods In
    INTRODUCTION TO RENORMALIZATION GROUP METHODS IN PHYSICS: SECOND EDITION DOWNLOAD FREE BOOK R. J. Creswick | 432 pages | 15 Aug 2018 | Dover Publications Inc. | 9780486793450 | English | New York, United States Quantum Field Theory - Franz Mandl · Graham Shaw - 2nd edition Bibcode : PhRvD. After canceling out these terms with the contributions from cutoff-dependent counterterms, the cutoff is taken to infinity and finite physical results recovered. A pedagogical explanation of this technique is showed in reference [26]. And despite the comparative success of renormalisation theory, the feeling remains that there ought to be a more satisfactory way of doing things. A term in this Lagrangian, for example, the electron-photon interaction pictured in Figure 1, can then be written. This early work was the inspiration for later attempts at regularization and renormalization in quantum field theory. In order to regularize these integrals one needs a regulator, for the case of multi-loop integrals, these regulator can be taken as. When developing quantum electrodynamics in the s, Max BornWerner HeisenbergPascual Jordanand Paul Dirac discovered that in perturbative corrections many integrals were divergent see The problem of infinities. Of course, the best idea is to iterate until there is only one very big block. In contrast to the ultraviolet divergence, the infrared divergence does not require the renormalization of a parameter in the Introduction to Renormalization Group Methods in Physics: Second Edition involved. Note that Introduction to Renormalization Group Methods in Physics: Second Edition uses "bare actions" whereas the other uses effective average actions. So, the effective average action interpolates between the "bare action" and the effective action.
    [Show full text]