Revealing Metallic Ink in Herculaneum Papyri
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Textile Printing
TECHNICAL BULLETIN 6399 Weston Parkway, Cary, North Carolina, 27513 • Telephone (919) 678-2220 ISP 1004 TEXTILE PRINTING This report is sponsored by the Importer Support Program and written to address the technical needs of product sourcers. © 2003 Cotton Incorporated. All rights reserved; America’s Cotton Producers and Importers. INTRODUCTION The desire of adding color and design to textile materials is almost as old as mankind. Early civilizations used color and design to distinguish themselves and to set themselves apart from others. Textile printing is the most important and versatile of the techniques used to add design, color, and specialty to textile fabrics. It can be thought of as the coloring technique that combines art, engineering, and dyeing technology to produce textile product images that had previously only existed in the imagination of the textile designer. Textile printing can realistically be considered localized dyeing. In ancient times, man sought these designs and images mainly for clothing or apparel, but in today’s marketplace, textile printing is important for upholstery, domestics (sheets, towels, draperies), floor coverings, and numerous other uses. The exact origin of textile printing is difficult to determine. However, a number of early civilizations developed various techniques for imparting color and design to textile garments. Batik is a modern art form for developing unique dyed patterns on textile fabrics very similar to textile printing. Batik is characterized by unique patterns and color combinations as well as the appearance of fracture lines due to the cracking of the wax during the dyeing process. Batik is derived from the Japanese term, “Ambatik,” which means “dabbing,” “writing,” or “drawing.” In Egypt, records from 23-79 AD describe a hot wax technique similar to batik. -
Leafing Through History
Leafing Through History Leafing Through History Several divisions of the Missouri Botanical Garden shared their expertise and collections for this exhibition: the William L. Brown Center, the Herbarium, the EarthWays Center, Horticulture and the William T. Kemper Center for Home Gardening, Education and Tower Grove House, and the Peter H. Raven Library. Grateful thanks to Nancy and Kenneth Kranzberg for their support of the exhibition and this publication. Special acknowledgments to lenders and collaborators James Lucas, Michael Powell, Megan Singleton, Mimi Phelan of Midland Paper, Packaging + Supplies, Dr. Shirley Graham, Greg Johnson of Johnson Paper, and the Campbell House Museum for their contributions to the exhibition. Many thanks to the artists who have shared their work with the exhibition. Especial thanks to Virginia Harold for the photography and Studiopowell for the design of this publication. This publication was printed by Advertisers Printing, one of only 50 U.S. printing companies to have earned SGP (Sustainability Green Partner) Certification, the industry standard for sustainability performance. Copyright © 2019 Missouri Botanical Garden 2 James Lucas Michael Powell Megan Singleton with Beth Johnson Shuki Kato Robert Lang Cekouat Léon Catherine Liu Isabella Myers Shoko Nakamura Nguyen Quyet Tien Jon Tucker Rob Snyder Curated by Nezka Pfeifer Museum Curator Stephen and Peter Sachs Museum Missouri Botanical Garden Inside Cover: Acapulco Gold rolling papers Hemp paper 1972 Collection of the William L. Brown Center [WLBC00199] Previous Page: Bactrian Camel James Lucas 2017 Courtesy of the artist Evans Gallery Installation view 4 Plants comprise 90% of what we use or make on a daily basis, and yet, we overlook them or take them for granted regularly. -
Revealing Metallic Ink in Herculaneum Papyri
Revealing metallic ink in Herculaneum papyri Emmanuel Bruna,b, Marine Cottec,d, Jonathan Wrightc, Marie Ruatc, Pieter Tacke, Laszlo Vinczee, Claudio Ferreroc, Daniel Delattref,g, and Vito Mocellah,1 aInserm U1216, F-38000 Grenoble, France; bUniversité Grenoble Alpes, Grenoble Institut des Neurosciences, F-38000 Grenoble, France; cThe European Synchrotron, 38043 Grenoble, Cedex, France; dLaboratoire d’Archéologie Moléculaire et Structurale, CNRS-Université Pierre et Marie Curie, UMR 8220, 75005 Paris, France; eDepartment of Analytical Chemistry, Ghent University, B-9000 Ghent, Belgium; fCNRS-Institut de Recherche et d’Histoire des Textes, 75016 Paris, France; gCentro Internazionale per lo Studio dei Papiri Ercolanesi, 80131 Napoli, Italy; and hConsiglio Nazionale delle Ricerche - Istituto per la Microelettronica e Microsistemi (CNR-IMM), Unità di Napoli, 80131 Napoli, Italy Edited by Richard Janko, University of Michigan, Ann Arbor, MI, and accepted by the Editorial Board February 18, 2016 (received for review October 8, 2015) Writing on paper is essential to civilization, as Pliny the Elder remarks more adherent, ink was required. Thereafter, metallic inks in his Natural History, when he describes the various types of papyri, became the standard for parchments in late antiquity and for the method of manufacturing them, and all that concerns writing most of the Middle Ages (4, 7). materials in the mid-first century AD. For this reason, a rigorous In this work, we study the chemical composition of papyrus scientific study of writing is of fundamental importance for the fragments carbonized by Mount Vesuvius’ eruption in 79 AD historical understanding of ancient societies. We show that metallic and found in the Villa dei Papiri at Herculaneum between 1752 ink was used several centuries earlier than previously thought. -
Issue 24 Autumn 2019
News from Herculaneum and the 8th Herculaneum Congress - Bob Fowler p.2 Bronze statue of Hyperspectral Imaging -Kilian Fleischer p.3 dancer found in 1756 between the A New Theological Work by Philodemus - Marzia D’Angelo p.5 portico and the A New Updated Version of Usener’s Glossarium Epicureum - Claudio Vegara p.7 pond of the Villa Retrospective Styles in Roman Artistic Culture - Daniel Healey p.8 of Papyri. MANN News from Professor Brent Seales and his Research Team - Christy Chapman p.10 The Friends Visit to the Getty Exhibition - Roger Macfarlane p.11 Officina Director lectures at Brigham Young University - Roger Macfarlane p.12 herculaneum archaeology herculaneum Review: Buried by Vesuvius - Bob Fowler p.13 Preview: Herculaneum & the House of the Bicentenary - Bob Fowler p.14 the newsletter of the Herculaneum Society - Issue 24 Autumn 2019 Society of the Herculaneum the newsletter Report from Silchester - Professor Mike Fulford p.14 News from Herculaneum The 8th Herculaneum Congress Hyperspectral imaging – a new technique for reading unrolled Herculanean papyri Dr. Kilian Fleischer, head of the DFG-project Philodemus’ History of the Academy, University of Würzburg. Bob Fowler, Chairman of Trustees 11–14 June 2020 In early July I was able to meet with Director Fran- The next Congress—the eighth in the vener- It rarely happens that a classicist’s or papyrologist’s work attracts attention beyond the scholarly commu- cesco Sirano at Herculaneum while I was conduct- able series—offers the usual mix of familiar and nity. For the most part, the media are not interested in new readings or reconstructions of a papyrus. -
NAZDAR 1800 Series UV Screen
Technical Data Sheet Nazdar PowerPrint® Plus 1800 UV Screen Ink Series v 14 EN The multi-purpose PowerPrint® Plus 1800 Series UV Screen Ink has been formulated to meet the processing speeds of the most modern printing equipment including in-line presses, for a wide Ref: v 13 EN range of substrates including treated corrugated polypropylene. PowerPrint® Plus 1800 features include: fast curing, hard ink surface, and high block resistance. Substrates Coverage • Styrene Estimated 2,500 – 3,500 square feet (232 - 325 • Cardstock / Coated paper square meters) per gallon depending upon ink • Matte vinyl deposit. Reference www.nazdar.com for • Rigid vinyl examples of coverage calculations. • Top coated polyester • Pressure sensitive vinyl Printing • Treated polyethylene banner 1800 Series is formulated to be press ready. • Treated polypropylene banner Thoroughly mix the ink prior to printing. Improper • Treated corrugated polypropylene mixing can lead to inconsistent color and ink • Some high density polyethylene sheeting performance. The surface tension for polyethylene and polypropylene Maintain ink temperature at 65°-90°F (18°-32°C) substrates should be at or above 44 dynes/cm. for optimum print and cure performance. Lower Not recommended for highly plasticized vinyl materials such as temperatures increase the ink viscosity, impairing vinyl banner and static cling, and not recommended for flow and increasing film thickness. Elevated container or nameplate applications. temperatures lower the ink viscosity, reducing Substrate recommendations are based on commonly available print definition and film thickness. materials intended for the ink’s specific market when the inks are processed according to this technical data. While technical Pretest to determine optimum printing information and advice on the use of this product is provided parameters for a particular set of ink, substrate, in good faith, the User bears sole responsibility for selecting the appropriate product for their end-use requirements. -
Reducing Paper and Printer Ink Usage
Reducing Paper and Printer Ink Usage Updated: 09/27/2012 PURPOSE This resource provides tips on how to reduce paper and printer ink usage in the office. DISCLAIMER The suggestions in this document are provided as an example of the types of actions you or your organization can implement to reduce usage of paper and printer ink and toner. The information in this resource does not supersede any federal agency’s policies, procedures, guidance, or requirements with respect to printing and publications. The Federal Electronics Challenge (FEC) encourages you to check within your own agency for printing policies, procedures and guidance. INTRODUCTION Executive Order 13514, Federal Leadership in Environmental, Energy, and Economic Performance, requires federal agencies to reduce printing paper use; acquire paper with at least 30% postconsumer recycled content; enable automatic duplexing (double-sided printing); and use other energy-efficient and environmentally preferable features on all eligible agency electronic equipment. This document outlines a number of activities that can be undertaken to meet all of these goals. DOCUMENT OPTIONS FOR REDUCING PAPER USAGE Reduce Margins The standard default margins for documents developed in word processing software (i.e., Microsoft Word®) are 1” on all sides. Reducing the default margins to 0.75” or 0.5” can save a significant amount of paper. When printing on a standard sheet of 8 ½” x 11” piece of paper, there are 93.5 square inches available for typeface. With a 1” margin on all sides, the usable space is reduced to 58.5 square inches; reducing your available print area to 63%. If you change your margins to 0.75”, you increase the print area to 71%, and further reducing your margins to 0.5” increases the print area to 80% of the available space on the paper. -
A Computational Platform for the Virtual Unfolding of Herculaneum Papyri
www.nature.com/scientificreports OPEN A computational platform for the virtual unfolding of Herculaneum Papyri Sara Stabile1,2*, Francesca Palermo1,3, Inna Bukreeva3,4, Daniela Mele5, Vincenzo Formoso1,2, Roberto Bartolino1,2 & Alessia Cedola3 Ancient Herculaneum papyrus scrolls, hopelessly charred in the 79 A.D. Vesuvius eruption, contain valuable writings of the Greek philosophers of the day, including works of the Epicurean Philodemus. X-ray phase contrast tomography has recently begun unlocking their secrets. However, only small portions of the text hidden inside the scroll have been recover. One of the challenging tasks in Herculaneum papyri investigation is their virtual unfolding because of their highly complicated structure and three-dimensional arrangement. Although this procedure is feasible, problems in segmentation and fattening hinder the unrolling of a large portion of papyrus. We propose a computational platform for the virtual unfolding procedure, and we show the results of its application on two Herculaneum papyrus fragments. This work paves the way to a comprehensive survey and to further interpretation of larger portions of text hidden inside the carbonized Herculaneum papyri. Te Herculaneum papyri were discovered in 1752. More than two and a half centuries have passed since this extraordinary fnding brought to light the unique treasure of the ancient library of Villa dei Papiri. Tis is the only great ancient library that remained fundamentally intact, which contains many precious texts not handed down by Medieval manuscript tradition, as it was revealed by the papyri mechanically unrolled (or partially unrolled) in the past. In this light, reading the papyri still rolled up or the fragments, made up of several layers stuck together, could disclose unpublished ancient texts. -
Virtual Unrolling and Deciphering of Herculaneum Papyri by X-Ray Phase-Contrast Tomography I
Virtual unrolling and deciphering of Herculaneum papyri by X-ray phase-contrast tomography I. Bukreeva, A. Mittone, A. Bravin, G. Festa, M. Alessandrelli, P. Coan, V. Formoso, R. G. Agostino, M. Giocondo, F. Ciuchi, et al. To cite this version: I. Bukreeva, A. Mittone, A. Bravin, G. Festa, M. Alessandrelli, et al.. Virtual unrolling and deciphering of Herculaneum papyri by X-ray phase-contrast tomography. Scientific Reports, Nature Publishing Group, 2016, 6, 6 p. 10.1038/srep27227. hal-01572810 HAL Id: hal-01572810 https://hal.archives-ouvertes.fr/hal-01572810 Submitted on 8 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. www.nature.com/scientificreports OPEN Virtual unrolling and deciphering of Herculaneum papyri by X-ray phase-contrast tomography Received: 04 April 2016 I. Bukreeva1,2, A. Mittone3, A. Bravin3, G. Festa4,5,6, M. Alessandrelli7, P. Coan3,8, Accepted: 16 May 2016 V. Formoso9,10, R. G. Agostino9,10, M. Giocondo9, F. Ciuchi9, M. Fratini1, L. Massimi1, Published: 06 June 2016 A. Lamarra7, C. Andreani4,6,11, R. Bartolino9,10,12, G. Gigli13, G. Ranocchia7 & A. Cedola1 A collection of more than 1800 carbonized papyri, discovered in the Roman ‘Villa dei Papiri’ at Herculaneum is the unique classical library survived from antiquity. -
The Writing Surface Papyrus and Its Materials 1. Can the Writing Material Papyrus Tell Us Where It Was Produced? 2
The Writing Surface Papyrus and its Materials 1. Can the writing material papyrus tell us where it was produced? 2. Material study of the inks Ira Rabin - Myriam Krutzsch in Proceedings of the 28th Congress of Papyrology Barcelona 1-6 August 2016 Edited by Alberto Nodar & Sofía Torallas Tovar Coedited by María Jesús Albarrán Martínez, Raquel Martín Hernández, Irene Pajón Leyra, José-Domingo Rodríguez Martín & Marco Antonio Santamaría Scripta Orientalia 3 Barcelona, 2019 Coordinación y edición: Alberto Nodar – Sofía Torallas Tovar Coedición: María Jesús Albarrán Martínez, Raquel Martín Hernández, Irene Pajón Leyra, José Domingo Rodríguez Martín, Marco Antonio Santamaría Diseño de cubierta: Sergio Carro Martín Primera edición, junio 2019 © los editores y los autores 2019 La propiedad de esta edición es de Publicacions de l’Abadia de Montserrat Ausiàs Marc 92-98 – 08013 Barcelona ISBN 978-84-9191-079-4 (Pamsa) ISBN 978-84-88042-89-7 (UPF) Edición digital http://hdl.handle.net/10230/41902 TABLE OF CONTENTS Foreword i Program of the congress vi Photograph of participants xxi PART I: Papyrology: methods and instruments 1 Archives for the History of Papyrology ANDREA JÖRDENS, Die Papyrologie in einer Welt der Umbrüche 3-14 ROBERTA MAZZA, Papyrology and Ethics 15-27 PETER ARZT-GRABNER, How to Abbreviate a Papyrological Volume? Principles, 28-55 Inconsistencies, and Solutions PAOLA BOFFULA, Memorie dal sottosuolo di Tebtynis a ... Roma e a Venezia! 56-67 ELISABETH R. O’CONNELL, Greek and Coptic manuscripts from First Millennium 68-80 CE Egypt (still) in the British Museum NATASCIA PELLÉ, Lettere di B. P. Grenfell e A. S. -
Review of Display Technologies Focusing on Power Consumption
Sustainability 2015, 7, 10854-10875; doi:10.3390/su70810854 OPEN ACCESS sustainability ISSN 2071-1050 www.mdpi.com/journal/sustainability Review Review of Display Technologies Focusing on Power Consumption María Rodríguez Fernández 1,†, Eduardo Zalama Casanova 2,* and Ignacio González Alonso 3,† 1 Department of Systems Engineering and Automatic Control, University of Valladolid, Paseo del Cauce S/N, 47011 Valladolid, Spain; E-Mail: [email protected] 2 Instituto de las Tecnologías Avanzadas de la Producción, University of Valladolid, Paseo del Cauce S/N, 47011 Valladolid, Spain 3 Department of Computer Science, University of Oviedo, C/González Gutiérrez Quirós, 33600 Mieres, Spain; E-Mail: [email protected] † These authors contributed equally to this work. * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +34-659-782-534. Academic Editor: Marc A. Rosen Received: 16 June 2015 / Accepted: 4 August 2015 / Published: 11 August 2015 Abstract: This paper provides an overview of the main manufacturing technologies of displays, focusing on those with low and ultra-low levels of power consumption, which make them suitable for current societal needs. Considering the typified value obtained from the manufacturer’s specifications, four technologies—Liquid Crystal Displays, electronic paper, Organic Light-Emitting Display and Electroluminescent Displays—were selected in a first iteration. For each of them, several features, including size and brightness, were assessed in order to ascertain possible proportional relationships with the rate of consumption. To normalize the comparison between different display types, relative units such as the surface power density and the display frontal intensity efficiency were proposed. -
Now You See Me… a History of Erasing
Now You See Me, Now You Don’t A History of Erasing or as long as there has been writing there have been errors and the need to erase them. Logically, the erasure of writing can be done in one of three ways: namely the removal of the writing from the page, the hiding of the Fwords on the page, and lastly the covering of the words on the page. The first writing implements and surfaces were made for mistakes, as the wet clay used in tablets could simply be smoothed over and new letters formed with the stylus. It is likely that the complexity of the glyphs used in the first written languages seen in Egypt and Sumer (now in southern Iraq) resulted in many mistakes being made as each glyph would be formed individually. It is estimated that Sumerian cuneiform had approximately 1000 different glyphs in its infancy with its instruction being the main focus of lessons in the very first schools that began in Sumer. Cuneiform script The Sumerians established tablet houses that were located in the courtyard of the city temple and its pupils were boys from the wealthiest families. These educational establishments were so named because of the clay tablets upon which lessons were carefully copied from one half to the other by pupils. The learning and recitation of these texts was the primary focus of the school day and upon completion of their education, pupils were employed as scribes. Editing on Papyrus The transition from clay tablets to papyrus is significant not only in terms of its transportability, but also its cost and availability, both of which had implications for the writer’s ability to make and correct errors. -
From Invisibility to Readability: Recovering the Ink of Herculaneum Clifford Seth Parker University of Kentucky, [email protected]
University of Kentucky UKnowledge Computer Science Faculty Publications Computer Science 5-8-2019 From Invisibility to Readability: Recovering the Ink of Herculaneum Clifford Seth Parker University of Kentucky, [email protected] Stephen Parsons University of Kentucky, [email protected] Jack Bandy University of Kentucky Christy Chapman University of Kentucky, [email protected] Frederik Coppens Bruker Micro-CT, Belgium See next page for additional authors Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/cs_facpub Part of the Computer Sciences Commons Repository Citation Parker, Clifford Seth; Parsons, Stephen; Bandy, Jack; Chapman, Christy; Coppens, Frederik; and Seales, William Brent, "From Invisibility to Readability: Recovering the Ink of Herculaneum" (2019). Computer Science Faculty Publications. 23. https://uknowledge.uky.edu/cs_facpub/23 This Article is brought to you for free and open access by the Computer Science at UKnowledge. It has been accepted for inclusion in Computer Science Faculty Publications by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Authors Clifford Seth Parker, Stephen Parsons, Jack Bandy, Christy Chapman, Frederik Coppens, and William Brent Seales From Invisibility to Readability: Recovering the Ink of Herculaneum Notes/Citation Information Published in PLOS One, v. 14, no. 5, p. 1-17. © 2019 Parker et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.