Imidacloprid As a Contact Arrestant for Larvae of the European Chafer

Total Page:16

File Type:pdf, Size:1020Kb

Imidacloprid As a Contact Arrestant for Larvae of the European Chafer Research Article Received: 29 September 2011 Revised: 30 June 2012 Accepted article published: 3 August 2012 Published online in Wiley Online Library: 28 August 2012 (wileyonlinelibrary.com) DOI 10.1002/ps.3394 Imidacloprid as a contact arrestant for larvae of the European chafer, Amphimallon majale Gengping Zhu,a,b∗ Matthew J Petersen,b Guoqing Liuc and Daniel C Peckb,d Abstract BACKGROUND: Manipulative studies of the behavioral response of soil-dwelling insects to insecticides and other antagonists are stymied by the difficulties of observing and interpreting interactions played out below ground. Six experiments were carried out using X-ray radiography to quantify the movement of the European chafer, Amphimallon majale (Razoumowsky), larvae in response to imidacloprid and how this was affected by host plant cues and cold temperature. RESULTS: The movement of third instars was arrested in imidacloprid-treated soil at ≥0.6 ppm concentration. At ≥0.8 ppm, the arrestant effect of imidacloprid was stronger than the attraction cue posed by germinating grass seed. There was a less disruptive effect on dispersal distance in vertical versus lateral panels. In vertical panels, there was a less disruptive effect on downward movement under a cold temperature treatment that simulated overwintering conditions. CONCLUSION: Larvae of A. majale do not remotely detect imidacloprid in the soil; they neither evade contact, nor are repelled after contact. Imidacloprid thereby acts as a contact arrestant to disrupt grub movement. This finding might help to explain the synergistic effect of imidacloprid in combination with other biological agents for white grub control, and its effects on grub overwintering behavior. c 2012 Society of Chemical Industry Keywords: white grub; European chafer; Amphimallon majale; movement arrestant; imidacloprid; sublethal effect; X-ray radiography 1 INTRODUCTION the outcome of insecticidal interventions against a suite of The interrelated factors that influence insecticidal activity in the root-feeding and soil-inhabiting insect pest complexes that are of soil include chemistry and formulation of the active ingredient, global agricultural and economic concern. A better understanding soil and climatic conditions, susceptibility and behavior of the of how insecticides influence the sublethal behavior of soil insects target species and insect developmental stage.1 Additionally, the will lead to improved soil insect management via better targeting, presence of both synthetic insecticides and biological control greater efficacy and novel application approaches. agents can significantly influence the behavior of taxa from Imidacloprid is a versatile insecticide that is used for systemic fo- major soil insect pest complexes. Understanding how insecticides liar and soil drench applications and as seed dressing, film coating, and neurotoxicants modify insect behaviors, including mating, pelleting and multilayer coating, allowing for relatively safe and 11,12 host-finding and feeding, may offer new avenues for effective efficacious protection of young plants against insect attack. pest management.2 Among soil-inhabiting arthropod pests, It has a relatively broad spectrum of activity and a long-lasting repellence behavior has been widely tested and is highly relevant effect against early insect developmental stages. Sublethal ef- to insect susceptibility and control product efficacy.3–10 Larvae fects after exposure to imidacloprid have been documented for of the wireworms (Coleoptera: Elateridae) Agriotes obscurus L. several insect pests. Disruption of host evaluation behavior was 13 and Limonius canus (LeConte) were repelled by tefluthrin-treated observed in Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae). seeds after feeding for ≤15mininsoilmicrocosms.4,5 Larvae In choice tests, adult B. tabaci and alate morphs of Myzus per- of the weevil (Coleoptera: Curculionidae) Otiorhynchus sulcatus sicae (Sulzer) (Hemiptera: Aphididae) preferred untreated leaves (F.) were significantly deterred by bifenthrin absence of the host plant Picea abies L. Karst. (Pinales: Pinaceae).6 The mole ∗ crickets (Orthoptera: Gryllotalpidae) Scapteriscus borellii Giglio-Tos Correspondence to: Gengping Zhu, College of Environmental Science and and Scapteriscus vicinus Scudder modified their movement Engineering, Nankai University, Tianjin 300071, China. E-mail: [email protected] in response to Metarhizium anisopliae (Metchnikoff) Sorokin (Hypocreales: Clavacipitaceae) and Beauveria bassiana (Balsamo) a College of Environmental Science and Engineering, Nankai University, Tianjin, Vuillemin (Hypocreales: Clavacipitaceae), ultimately reducing China 7,8 their exposure to the entomopathogenic fungi. Among white b Department of Entomology, New York State Agricultural Experiment Station, grubs (Coleoptera: Scarabaeidae), the larvae of Popillia japonica Cornell University, Geneva, NY, USA Newman (Japanese beetle) avoid soil that contains mycelial 9,10 c College of Life Sciences, Nankai University, Tianjin, China particles of M. anisopliae. This suggests that detection of 483 and orientation to soil-borne antagonists are likely to influence d EntomoTech Fundamentals, Geneva, NY, USA Pest Manag Sci 2013; 69: 483–492 www.soci.org c 2012 Society of Chemical Industry www.soci.org G Zhu et al. over systemically treated leaves.14,15 Antifeedant effects were documented in M. persicae.15–17 Reduced fecundity was docu- mented in Diaphorina citri Kuwayama (Hemiptera: Psyllidae),18 Ceutorhynchus obstrictus (Marsham) (Coleoptera: Curculionidae)19 and Nilaparvata lugens (Stål) (Hemiptera: Delphacidae).20 With regard to white grubs, recent studies have shown an impact of imidacloprid on oviposition behavior,21 increased suscepti- bility to infection by entomopathogens22–25 and greater over- wintering mortality of larvae.26 While the alteration of insect behavior after exposure to imidacloprid has been demonstrated for white grubs, repellence behavior has yet to be thoroughly examined under controlled conditions. Because of imidaclo- prid’s widespread use in turf environments, understanding and exploiting potential insect behavioral modifications, such as re- pellence behavior, could be important for management of soil insects, particularly those displaying low susceptibility to contact insecticides. Since its first North American detection in 1940,27 Amphimallon majale (Razoumowsky) (Coleoptera: Scarabaeidae) has become a dominant white grub pest of turfgrass in many areas of Figure 1. Diagrams of the PVC pipe and Plexiglas panel microcosms. New York State. Elsewhere it has caused problems in other (A) PVC pipe with treated soil (106 g, left) and untreated soil (144 g, right); 28 29 evasion before contact with the treated zone would be evidence of remote nursery crops and in winter wheat. The species occurs from repellence; evasion upon contact would be evidence of contact repellence. the northeast United States west to Michigan, with a disjunct (B) Plexiglas panel in a horizontal (left) and vertical (right) position; the five population now established in British Columbia.30 Compared circles indicate grub placement sites. with the three other major species of turf-infesting white grubs in the northeast United States, Asiatic garden beetle [Maladera castanea (Arrow)], Japanese beetle and oriental beetle [Anomala 2 EXPERIMENTAL METHODS 2.1 Source of insects orientalis (Waterhouse)], control of A. majale hasproventobe difficult as it is less susceptible to insecticidal controls31 and to Third-instar A. majale collected from three field sites in New York State were used to conduct all laboratory experiments. Grubs environmental stressors such as drought.32 Behavior modifications were collected on 19 October 2009 in Fulton (Battle Island Golf due to insecticide exposure may help to explain the decreased Course, Oswego County), on 27 October 2009 in Victor (Parkview ability for control of A. majale. Fairways Golf Course, Ontario County) and on 9 November 2009 in To gain a better understanding of the nature of imidacloprid’s Rochester (Park Point at RIT, Monroe County). Larvae were held in sublethal effects on A. majale larval behavior, a series of soil, with a piece of sod from the collection site included as a food experiments was conducted with different combinations of ◦ source, at 4.4 C until 24 h before the start of experiments when antagonists and agonists, namely soil-incorporated imidacloprid ◦ they were transferred to 23 C. and germinating grass seed. Third-instar A. majale were chosen for the following studies not only because of the species’ pest status but also because the developmental stage can be 2.2 Radiographic imaging maintained in the laboratory for several months and is the Non-destructiveradiographicimagesofinsectswithinmicrocosms target of curative control in the field. The first objective of were made with a Faxitron X-ray cabinet (Model 43855B; Hewlett- this study was to determine (1) whether larvae could detect Packard, Palo Alto, CA). This system has been widely used in soil and orient away from imidacloprid, with two kinds of repellence insect behavior studies.7,9,10,32 The voltage was set at 74 kVp. being considered: evading imidacloprid before contact with the A digital X-ray scanner system (Model EZ400; NTB Eletronische treated zone, or evasion upon contact with the insecticides. The Geraete GmbH, Dickel, Germany) was used to capture, read and former would be evidence of remote repellence, while the latter manipulate the images. would be evidence of contact
Recommended publications
  • Popillia Japonica: Procedures for Official Control
    Bulletin OEPP/EPPO Bulletin (2016) 46 (3), 543–555 ISSN 0250-8052. DOI: 10.1111/epp.12345 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 9/21(1) National regulatory control systems Systemes de lutte nationaux reglementaires PM 9/21(1) Popillia japonica: procedures for official control Scope Approval and amendment This Standard describes procedures for official control with First approved in 2016-09 the aim of detecting, containing and eradicating Popillia japonica. NPPOs may draw on this guidance when develop- ing national contingency plans for outbreaks of Popillia japonica. Earlier records are likely to be misidentifications and are 1. Introduction most probably Popillia quadriguttata (F.) (EPPO, 2000). Popillia japonica Newman (EPPO Code: POPIJA) (Coleop- Records of the species in China are regarded as invalid or tera: Rutelidae), commonly known as the Japanese beetle, unreliable records. is a highly polyphagous beetle and an EPPO A2 pest (Pot- Within the EPPO region, P. japonica was first identi- ter & Held, 2002; EPPO, 2006). Popillia japonica is listed fied from the island of Terceira in the Azores (PT) in the in Annex IAII of the Directive 2000/29/EC, so any detec- early 1970s, and has since been recorded from the islands tion on consignments entering European Union (EU) Mem- of Faial, Flores, Pico, S~ao Jorge, Corvo and on the west- ber States would be subject to statutory action. Native to ern part of S~ao Miguel (Simoes~ & Martins, 1985; Martins Japan and the far eastern Russian island of Kuril, & Simoes,~ 1986; Vieira, 2008).
    [Show full text]
  • Grubs / Scarab Beetles Know Thy Enemy: White Grubs / Scarab Beetles • Scarab Beetles (Scarabaeidae) Are Part of the Coleoptera Order (General Beetles)
    A Novel, Effective Approach to Grub Control That is Safe for Pollinators, People, Animals and the Environment with EPA Exemptions in CT Joe Magazzi, MS President Outline WHAT? WHY? HOW? Know Thy Enemy: White Grubs / Scarab Beetles Know Thy Enemy: White Grubs / Scarab Beetles • Scarab Beetles (Scarabaeidae) are part of the Coleoptera order (General Beetles). • There are about 30,000 scarab species comprising about 10 percent of all known beetles. The term “white grub” is the immature or larval form of the scarab beetle. • Most consume live plants, fruits and vegetable and are considered agricultural pests with a large negative economic impact. In Connecticut, the most prevalent and damaging species are: Japanese beetles, European chafers, Asiatic garden beetles, Oriental beetles, Northern masked chafer Know Thy Enemy: White Grubs / Scarab Beetles Economic Impact • “White grubs are the most damaging group of turf grass insect pests in our region”…Connecticut IPM Annual Report from UCONN in 2013. • According to a USDA/APHIS report in 2000, about $156 million is spent in the US annually renovating or replacing damaged turf or ornamental plants. • That same report from 2000 estimated that $460 million is spent each year to control the grubs and adults. • Today, the economic impact is likely higher than it was 16 years ago. • These numbers are only for the Japanese beetle – total white grub & adult beetle damage is likely in the billions. Know Thy Enemy: Beetle Life Cycles From Cornell University Integrated Pest Management Program (www.nysipm.cornell.edu/publications/grubs/life.asp) beetleGONE! & grubGONE! (Bacillus thuringiensis) & The Cry Proteins: An Introduction & Mode of Action Against Grubs & Beetles “The Enemy of My Enemy is My Friend” Bacillus thuringiensis (Bt) • Bacteria first isolated in 1901 by Ishiwatari from diseased silkworms and again by Berliner from diseased flour moth larvae in 1911.
    [Show full text]
  • Masked Chafer (Coleoptera: Scarabaeidae) Grubs in Turfgrass
    Journal of Integrated Pest Management (2016) 7(1): 3; 1–11 doi: 10.1093/jipm/pmw002 Profile Biology, Ecology, and Management of Masked Chafer (Coleoptera: Scarabaeidae) Grubs in Turfgrass S. Gyawaly,1,2 A. M. Koppenho¨fer,3 S. Wu,3 and T. P. Kuhar1 1Virginia Tech, Department of Entomology, 216 Price Hall, Blacksburg, VA 24061-0319 ([email protected]; [email protected]), 2Corresponding author, e-mail: [email protected], and 3Rutgers University, Department of Entomology, Thompson Hall, 96 Lipman Drive, New Brunswick, NJ 08901-8525 ([email protected]; [email protected]) Received 22 October 2015; Accepted 11 January 2016 Abstract Downloaded from Masked chafers are scarab beetles in the genus Cyclocephala. Their larvae (white grubs) are below-ground pests of turfgrass, corn, and other agricultural crops. In some regions, such as the Midwestern United States, they are among the most important pest of turfgrass, building up in high densities and consuming roots below the soil/thatch interface. Five species are known to be important pests of turfgrass in North America, including northern masked chafer, Cyclocephala borealis Arrow; southern masked chafer, Cyclocephala lurida Bland [for- http://jipm.oxfordjournals.org/ merly Cyclocephala immaculata (Olivier)]; Cyclocephala pasadenae (Casey); Cyclocephala hirta LeConte; and Cyclocephala parallela Casey. Here we discuss their life history, ecology, and management. Key words: Turfgrass IPM, white grub, Cyclocephala, masked chafer Many species of scarabs are pests of turfgrass in the larval stage southern Ohio, and Maryland. The two species have overlapping (Table 1). Also known as white grubs, larvae of these species feed distributions throughout the Midwest, particularly in the central on grass roots and damage cultivated turfgrasses.
    [Show full text]
  • Species-Specific Recognition of Beetle Cues by the Nematode Pristionchus Maupasi
    EVOLUTION & DEVELOPMENT 10:3, 273–279 (2008) Species-specific recognition of beetle cues by the nematode Pristionchus maupasi RayL.Hong,a Alesˇ Svatosˇ,b Matthias Herrmann,a and Ralf J. Sommera,Ã aDepartment for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tuebingen, Germany bMax-Planck Institute for Chemical Ecology, Mass Spectrometry Research Group, Jena, Germany ÃAuthor for correspondence (email: [email protected]) SUMMARY The environment has a strong effect on studies originally established in Caenorhabditis elegans.We development as is best seen in the various examples of observed that P. maupasi is exclusively attracted to phenol, phenotypic plasticity. Besides abiotic factors, the interactions one of the sex attractants of Melolontha beetles, and that between organisms are part of the adaptive forces shaping the attraction was also observed when washes of adult beetles evolution of species. To study how ecology influences were used instead of pure compounds. Furthermore, development, model organisms have to be investigated in P. maupasi chemoattraction to phenol synergizes with plant their environmental context. We have recently shown that the volatiles such as the green leaf alcohol and linalool, nematode Pristionchus pacificus and its relatives are closely demonstrating that nematodes can integrate distinct associated with scarab beetles with a high degree of species chemical senses from multiple trophic levels. In contrast, specificity. For example, P. pacificus is associated with the another cockchafer-associated nematode, Diplogasteriodes oriental beetle Exomala orientalis in Japan and the magnus, was not strongly attracted to phenol. We conclude northeastern United States, whereas Pristionchus maupasi that interception of the insect communication system might be is primarily isolated from cockchafers of the genus Melolontha a recurring strategy of Pristionchus nematodes but that in Europe.
    [Show full text]
  • Insect Pathogens As Biological Control Agents: Back to the Future ⇑ L.A
    Journal of Invertebrate Pathology 132 (2015) 1–41 Contents lists available at ScienceDirect Journal of Invertebrate Pathology journal homepage: www.elsevier.com/locate/jip Insect pathogens as biological control agents: Back to the future ⇑ L.A. Lacey a, , D. Grzywacz b, D.I. Shapiro-Ilan c, R. Frutos d, M. Brownbridge e, M.S. Goettel f a IP Consulting International, Yakima, WA, USA b Agriculture Health and Environment Department, Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK c U.S. Department of Agriculture, Agricultural Research Service, 21 Dunbar Rd., Byron, GA 31008, USA d University of Montpellier 2, UMR 5236 Centre d’Etudes des agents Pathogènes et Biotechnologies pour la Santé (CPBS), UM1-UM2-CNRS, 1919 Route de Mendes, Montpellier, France e Vineland Research and Innovation Centre, 4890 Victoria Avenue North, Box 4000, Vineland Station, Ontario L0R 2E0, Canada f Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, Canada1 article info abstract Article history: The development and use of entomopathogens as classical, conservation and augmentative biological Received 24 March 2015 control agents have included a number of successes and some setbacks in the past 15 years. In this forum Accepted 17 July 2015 paper we present current information on development, use and future directions of insect-specific Available online 27 July 2015 viruses, bacteria, fungi and nematodes as components of integrated pest management strategies for con- trol of arthropod pests of crops, forests, urban habitats, and insects of medical and veterinary importance. Keywords: Insect pathogenic viruses are a fruitful source of microbial control agents (MCAs), particularly for the con- Microbial control trol of lepidopteran pests.
    [Show full text]
  • Report of Astaena Pygidialis Kirsch (Coleoptera: Scarabaeidae)
    Report of Astaena pygidialis Kirsch (Coleoptera: Scarabaeidae), the main chafer beetle causing damage to avocado fruit and young leaves in Antioquia Department, Colombia Claudia M. Holguin1,*, and Rosa H. Mira1 Abstract Scarab beetles (Coleoptera: Scarabaeidae) are one of the most limiting pests of avocado in Antioquia Department, Colombia. The establishment of management strategies to control these beetles has been difficult because the species causing damage to avocado fruit and young leaves have not been identified. Selected commercial avocado fields were surveyed at different times of d for scarab beetle adults affecting small fruit and young leaves, as well as other plant structures such as flowers, tender buds, stems, and mature leaves. Additionally, ultraviolet light traps were placed at each field to quantify the species captured. After direct scouting of avocado trees, the only scarab beetle species detected causing damage to fruit and young leaves at all sampling sites was Astaena pygidialis Kirsch (Coleoptera: Melolonthinae). Adults were observed chewing the green skin of small fruit causing striations on the fruit and skeletonization of young leaves by chewing the leaf tissue between veins on the upper surface. Other species observed include Anomala cincta Say (Coleoptera: Rutelinae), Charioderma xylina Blanchard, and Strigoderma sp. (all Coleoptera: Rutelinae) associated with flowers, Isonychus sp. (Coleoptera: Melolonthinae) with flower buds, Cyclocephala fulgurata Burmeister (Coleoptera: Dynastinae) with tender buds, stems and flowers, andAstaena valida Burmeister and Plectris pavida (Burmeister) (both Coleoptera: Melolonthinae) with mature leaves. The species detected through scouting also were captured with light traps. The dominant species captured with light traps was Phyllophaga obsoleta (Blanchard) (Coleoptera: Melolonthinae), which was not observed causing damage to avocado fruit or young leaves.
    [Show full text]
  • White Grubs (Japanese Beetle, May/June Beetle, Masked Chafer, Green June Beetle, European Chafer, Asiatic Garden Beetle, Oriental Beetle, Black Turfgrass Ataenius)
    White Grubs (Japanese Beetle, May/June Beetle, Masked Chafer, Green June Beetle, European Chafer, Asiatic Garden Beetle, Oriental Beetle, Black Turfgrass Ataenius) There are 8 different white grubs that are commonly known to cause turfgrass plant damage. They include the Japanese beetle, May and June beetle, masked chafer, green June beetle, European chafer, Asiatic garden beetle, oriental beetle, and black turfgrass ataenius. They all do the most damage in their larval stage, although some adults can also cause damage. Japanese Beetle (Popillia japonica) Japanese beetles are concentrated mostly in the northeastern and Mid Atlantic states. The Japanese beetle larvae are the primary cause of turf damage. They feed on turfgrass roots, which causes yellowing and a wilting, thinning appearance to the plants. Turf that has been damaged can easily be rolled or lifted back from the soil because the grubs have eaten through the fibrous roots. Typical Japanese beetle raster pattern. Typical Japanese beetle adult. Pictures: http://creatures.ifas.ufl.edu/orn/beetles/Japanese_beetle_02.htm; http://extension.usu.edu/files/publications/factsheet/ENT-100-06PR.pdf; http://ohioline.osu.edu/hyg-fact/2000/2510.html Text: Handbook of Turfgrass Insect Pests by Rick Brandenburg and Michael Villani For more information on Japanese beetles: Ohio State University Extension Fact Sheet – Japanese Beetle http://ohioline.osu.edu/hyg-fact/2000/2504.html University of Maryland – Japanese Beetle http://iaa.umd.edu/umturf/Insects/japanese_beetle.html Utah State University Extension Fact Sheet – Japanese Beetle http://extension.usu.edu/files/publications/factsheet/ENT-100-06PR.pdf University of Florida – Japanese Beetle http://edis.ifas.ufl.edu/IN630 May and June Beetles (Phyllophaga species) May and June beetles can be found all across the United States.
    [Show full text]
  • Connecticut State Entomologist . Thirty Ninth Report for 1939
    Bulletin 434 June, 1940 LONNECTICUT STATEENTOMOLOGIST THIRTY -NINTH REPORT 1939 R. B. FRIEND, PH.D. State Entomologist Bulletin 434 June, 1940 CONNECTTCUTSTATE ENTOMOLOGIST THIRTY-NIP JTH R EPORT 19-.1.39 R. B. FRIEND, PH.1 State Entomologist CONTENTS ~NSECT~ECORDFOR~~~~............................................... CONFERENCEOF CONNECTICUTENTOMOLOGISTS ........................... TNSPECTION OFNURSERIES.1939 ........................................ Number and Size of Nurseries ...................................... Connectic~~tNursery Firms Certified in 1939 ......................... Other Kincls of Certificates Issued ................................... Inspection of Imported Nursery Stock ............................... Results of Inspection .......................................... INSPECTIONOFAPIA~IES,1939 .......................................... Statistics of Inspection ............................................ I'inancialStatement ............................................... Registration of 13ces ............................................... REPORTON CONTROLOF THE GYPSYMOTH . 1938-1939 ..................... hTewEquipment.................................................. ControlOperations ................................................ Work Performed by State Men ................................. \\'ark Performed by C.C.C. R4en ................................ \\:PA Work Performed ......................................... Scouting for Brown-Tail Moth ...................................... Financialstatement ..............................................
    [Show full text]
  • Turfgrass Insects Department of Entomology
    E-271-W Turfgrass Insects Department of Entomology MANAGING WHITE GRUBS IN TURFGRASS Douglas S. Richmond, Turfgrass Entomology Extension Specialist HOW TO USE THIS PUBLICATION This publication provides turfgrass management professionals and property owners with information to help them 1) properly identify the most common white grub species associated with turfgrass in Indiana and adjacent states, 2) understand white grub biology, 3) recognize white grub damage and 4) formulate safe and effective white grub management strate- gies. For information on turfgrass identification, weed, disease and fertility management, visit the Purdue Turfgrass Science Website (https://turf.purdue.edu) or call Purdue Extension (1-888-EXT-INFO). WHITE GRUB SPECIES ASSOCIATED WITH TURFGRASS IN THE MIDWEST White grubs represent a complex of beetle larvae in the fam- ily Scarabaeidae that are common pests of agricultural and Figure 1. A typical white grub. Notice that the body is C- horticultural systems. Often called scarab beetles, the family shaped and 3 pairs of legs are present. The yellow arrow consists of over 30,000 species world-wide. The larvae, or indicates the location of the raster pattern that is useful for grubs, of several species are common pests of turfgrass. identification. These species include the Japanese beetle, masked chafers (2 species), European chafer, Asiatic garden beetle, Oriental beetle, green June beetle, May/June beetles (several spe- 1/4 to 1-1/2 inches in length. White grubs can be identified cies), and black turfgrass ataenius. White grubs damage a to genus or species based on the conformation of the raster variety of warm- and cool-season grasses while feeding in pattern.
    [Show full text]
  • Great Lakes Entomologist
    Vol. 34, No. 2 Fa II/Winter 2001 THE GREAT LAKES ENTOMOLOGIST PUBLISHED BY THE MICHIGAN ENTOMOLOGICAL SOCIETY THE GREAT LAKES ENTOMOLOGIST Published by the Michigan Entomological Society Volume 34 No.2 ISSN 0090-0222 TABLE OF CONTENTS Commentary on Ametropus species (Ephemeroptera: Amertropodidae) in North America W. P. McCafferty....................................................................................................... 1 First record ofAxymyiidae (Diptera: Nematocera: Axymyioidea) from Wisconsin Daniel K. Young and Anneke Lisberg ........................................................................ 7 Checklist of identified Lepidoptera collected at Mud Lake State Nature Preserve, Williams County, Ohio Roy W, Rings ............................................................................................................ 9 Dstribution of terrestrial isopods (Crustacea: Isopoda) throughout Michigan: early results Jennifer L. Stoyenoff ............................................................................................... 29 First Canadian record of Hexaco/a neoscatellae (Hymenoptera: Figitidae: Eucoilinae), a parasitoid of the shore fly, Scatella stagnalis Joshua C. Diamond, Vanessa A. Carney, Graeme D. Murphy, and Wayne R. Allen ...... 51 Hawkmoths (Lepidoptera: Sphingidae) collected in Grand Traverse and adjacent counties, Michigan Andrew W. Douglass, Christopher B. Douglass, and John F. Douglass .......................... 55 Second location for two rare Odonata in Ohio, Nannothemis bella and Ladona iulia, (Odonata:
    [Show full text]
  • Abstract Freeman, Callie Prater
    ABSTRACT FREEMAN, CALLIE PRATER. Biology, Ecology, and Management of White Grubs in North Carolina Turfgrass. (Under the direction of Rick L. Brandenburg.) Larval scarabs (Coleoptera: Scarabaeidae) known as white grubs, are an increasingly important pest of turfgrass in North Carolina. This research was conducted to gain knowledge of white grub ecology and develop a cost effective management program incorporating conventional insecticides and “non-traditional” control strategies for North Carolina turfgrass managers. A 3-year statewide pheromone and blacklight trapping study was conducted to identify the seasonal activity, relative abundance, and distribution of key damaging species. The Japanese beetle, Popillia japonica, was present at all 9 trapping sites. Peak flight generally occurred 22 Jun – 21 Jul. The oriental beetle, Anomala orientalis, was localized to Buncombe Co. in western North Carolina with activity peaking 22 Jun – 7 Jul annually. Masked chafers (Cyclocephala spp.) represented 87.5 to 96.6% of species in blacklight traps in western trapping sites. Cyclocephala spp. flight peaked between 1 – 21 Jul. Species of Phyllophaga were dominant in central North Carolina representing 33 – 45% of species collected and exhibited peak flight in late July. The rice beetle, Dyscinetus morator made up 74 – 84% of species at coastal sites and were active Jun to Jul. Anomala marginata, A. flavipennis, Pelidnota punctata, Tomarus gibbosus, Euetheola humilis rugiceps, Maladera castanea, and species of Polyphylla were routinely trapped. This study documents the occurrence of multiple species of injurious white grubs at most sites throughout North Carolina. Small arena choice and no-choice tests and large cage choice tests were conducted to determine if P.
    [Show full text]
  • (Z)-7-Tetradecen-2-One Also Referred to As a BRAD
    BIOPESTICIDES REGISTRATION ACTION DOCUMENT Z-7-Tetradecen-2-one PC Code 127600 U.S. Environmental Protection Agency Office of Pesticide Programs Biopesticides and Pollution Prevention Division Z-7-Tetradecen-2-one Page 2 of 13 Biopesticides Registration Action Document TABLE OF CONTENTS I. EXECUTIVE SUMMARY:................................................................................................. 5 II. ACTIVE INGREDIENT OVERVIEW............................................................................... 6 III. REGULATORY BACKGROUND..................................................................................... 6 A. Classification ........................................................................................................................ 6 B. Food Clearances and Tolerances........................................................................................ 6 IV. RISK ASSESSMENT...........................................................................................................6 A. Active Ingredient Characterization ................................................................................... 6 B. Human Health Assessment ................................................................................................. 7 1. Toxicology.......................................................................................................................... 7 2. Dose Response Assessment............................................................................................... 8 3. Drinking Water
    [Show full text]