Abstract Freeman, Callie Prater

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Freeman, Callie Prater ABSTRACT FREEMAN, CALLIE PRATER. Biology, Ecology, and Management of White Grubs in North Carolina Turfgrass. (Under the direction of Rick L. Brandenburg.) Larval scarabs (Coleoptera: Scarabaeidae) known as white grubs, are an increasingly important pest of turfgrass in North Carolina. This research was conducted to gain knowledge of white grub ecology and develop a cost effective management program incorporating conventional insecticides and “non-traditional” control strategies for North Carolina turfgrass managers. A 3-year statewide pheromone and blacklight trapping study was conducted to identify the seasonal activity, relative abundance, and distribution of key damaging species. The Japanese beetle, Popillia japonica, was present at all 9 trapping sites. Peak flight generally occurred 22 Jun – 21 Jul. The oriental beetle, Anomala orientalis, was localized to Buncombe Co. in western North Carolina with activity peaking 22 Jun – 7 Jul annually. Masked chafers (Cyclocephala spp.) represented 87.5 to 96.6% of species in blacklight traps in western trapping sites. Cyclocephala spp. flight peaked between 1 – 21 Jul. Species of Phyllophaga were dominant in central North Carolina representing 33 – 45% of species collected and exhibited peak flight in late July. The rice beetle, Dyscinetus morator made up 74 – 84% of species at coastal sites and were active Jun to Jul. Anomala marginata, A. flavipennis, Pelidnota punctata, Tomarus gibbosus, Euetheola humilis rugiceps, Maladera castanea, and species of Polyphylla were routinely trapped. This study documents the occurrence of multiple species of injurious white grubs at most sites throughout North Carolina. Small arena choice and no-choice tests and large cage choice tests were conducted to determine if P. japonica oviposition differed between tall fescue and bermudagrass. In three series of small arena choice tests, 82.5% of all eggs were laid in tall fescue cores. During the first small arena no-choice test, tall fescue cores received significantly more eggs than bermudagrass. A follow up no-choice test failed to detect similar variation. No preference for either species of turfgrass was detected in cage choice tests conducted with large numbers of beetles. Under moderate pest density in mixed turfgrass stands, tall fescue will likely receive more eggs from ovipositing P. japonica. The biological drive of females under no- choice conditions as well as high population pressure in the field however may override host plant criteria utilized by female beetles. Commercial milky spore powder, Surround® WP, and SulFer 95 were tested in multi-year field and greenhouse trials, as well as small arena and large cage oviposition assays as alternative management strategies. Milky spore failed to significantly reduce grubs in multi- year field trials and greenhouse experiments. Surround® WP did not decrease grub numbers in field plots in 2007 but provided significant control in 2008. Surround® WP was unsuccessful in deterring P. japonica oviposition in small arena and large cage experiments. Efficacy of SulFer 95 applied prior to and throughout adult beetle flight also varied significantly in field trials between years. Sulfer 95 did not impact female P. japonica oviposition in 2-way small arena and large cage choice tests. This study suggests that the efficacy of these products as alternative control measures is highly dependent on environmental conditions and interactions within the turfgrass environment which are not clearly understood. High and low rates as well as multiple application timings of the neonicotinoid insecticides Arena 0.5G (clothianidin), Meridian 0.33G (thiamethoxam), Merit 0.5G (imidacloprid), as well as the combination product Allectus 0.36G (imidacloprid + bifenthrin) were evaluated for white grub control in multiple field trials during 2007 and 2008. Arena 0.5G and Meridian 0.33G provided significant control of white grub infestations in both years regardless of rate or application timing. Allectus 0.36G treatments significantly reduced grub numbers below control plots in 2007. Significant differences did exist between treatments, with late applications providing the least control. Allectus 0.36G treatments in 2008 reduced grub numbers significantly compared to control plots with no observed treatment differences. Merit 0.5G significantly decreased grub numbers in treated plots with the exception of late applications made in 2007. Biology, Ecology, and Management of White Grubs in North Carolina Turfgrass by Callie Prater Freeman A dissertation submitted to the Graduate Faculty of North Carolina State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Entomology Raleigh, North Carolina 2010 APPROVED BY: _______________________________ ______________________________ Nick Hamon Tom Rufty ________________________________ ______________________________ Wes Watson Rick Brandenburg Committee Chair BIOGRAPHY Callie Anne (Prater) Freeman was born on 30 August 1977 in Nashville, Tennessee, and is the daughter of David and Becky Prater. Callie grew up with her brother David, on the outskirts of Fayette County located in the scenic heart of Kentucky’s Bluegrass Region, an area recognized as the Horse Capital of the World. Following graduation from Henry Clay High School in 1996, she enrolled at the University of Kentucky and received her Bachelor of Science degree in Biology in 2002. Throughout her undergraduate education, Callie was involved in numerous research projects including: equine performance and nutrition, distribution and habitat studies of the Allegheny woodrat, and investigations into agnostic behavior of certain fishes. In the last years of her undergraduate study, Callie was afforded the opportunity to work in the field of Turfgrass Entomology. She quickly developed a particular interest in the area of biological control and garnered a deep appreciation for the applied aspects of this field. After graduation, Callie pursued her master’s degree in Entomology at the University of Kentucky under the direction of Dr. Daniel Potter. Her research involved the detection, formulation, and evaluation of a baculovirus against black cutworm populations in turfgrass. This was the first research to use a virus for management of a turfgrass pest. After completing her degree in 2005, Callie moved to Raleigh, North Carolina to begin her doctorate degree under the direction of Dr. Rick L. Brandenburg. Her research has focused on the development of a comprehensive pest management plan for pestiferous white grubs in North Carolina turfgrass. ii Callie married Major F. Heath Freeman, United States Marine Corps, in March of 2008. They are currently living in Woodbridge, VA with their black Labrador retriever Parker. iii ACKNOWLEDGMENTS I would like to extend my sincere appreciation to the many individuals that aided in the completion of the work described herein. Chiefly, I am grateful to my advisor Dr. Rick L. Brandenburg for his patience, counsel, and infinite support throughout my graduate studies. I would also like to thank the members of my committee Drs. Nick Hamon, Tom Rufty, and Wes Watson for their advice, expertise, and encouragement throughout this project. I am also obliged to Chris Frank (Department of Statistics, NC State University) for his assistance with statistical analysis. Special thanks also to Rebecca Doskocil, Shannon Blackburn, Brenda Watson, Diane Silcox, Jake Doskocil, and Peter Hertl whose assistance contributed greatly to this project. I am especially appreciative of Brian Royals for his infinite patience and guidance during the commencement of these studies. I am deeply indebted to Amanda Stone, Josh Beam, and Cliff Ruth with the North Carolina Cooperative Extension for help with trap collections. Thanks also to Matt Bertone and David Stephan for aid in insect identification. I wish to especially thank Rebecca Willis for her generous help setting up experiments and frequent assistance processing samples, often until the wee hours of the morning. This research was made possible by grants from the North Carolina State Center for Turfgrass Environmental Research and Education and the North Carolina Turfgrass Foundation. Much of this work would not have been possible without the cooperation and participation of the many sod producers, golf course superintendents, and research station managers including Dave McCart (Piedmont Turf), Sammy Roebuck (Perfect Turf, Inc), Gene Taylor iv (Lawn Pro, Inc), Denny Phelps (American Turfgrass Corp), Wendell Blanton (High Tech Turf), Mark Thompson (Sandhills Research Station), Bill Samuels (Biltmore Forest Country Club), Mitch Stamey (Grove Park Inn), and Mitch Clodfelter (Cowan’s Ford Country Club). I wish to extend a special thank you to David and Linda Bradley (Turf Mountain Sod, Inc), James Horner (Orange Turf), Matt Parrish (SODCO Turf Producers), and Bob Erickson (Lake Wheeler Turfgrass Research Station) for their tremendous help and support throughout this project. I also wish to thank my parents David and Becky, brother and sister-in-law David St. and Amelia, my grandfather “Daddy John” Hudson, and especially my husband Heath for their constant love, support, and encouragement throughout my career. v TABLE OF CONTENTS Page LIST OF TABLES……..……………………………………………………………. viii LIST OF FIGURES………………………………………………………………… x INTRODUCTION……………………………………………………………………. 1 Literature Cited……………………………………………………………… 5 SEASONAL FLIGHT ACTIVITY AND RELATIVE ABUNDANCE OF ADULT SCARABS (COLEOPTERA:
Recommended publications
  • The Changing of the Guard in White Grub Control Insecticides
    A PRACTICAL RESEARCH DIGEST FOR TURF MANAGERS Volume 10, Issue 6 • June 2001 ¡TURFGRASS PEST CONTROL IN THIS ISSUE • The changing of the The Changing of the guard in white grub Guard in White Grub control insecticides 1 Organophosphate/ Control Insecticides carbamate update New product information By Kevin Mathias Natural control influence of insecticides combination of federal regulatory rulings and economic decisions by insecticide Multiple targeting manufacturers has dramatically changed the landscape of white grub insecticides A and control strategies. At the beginning of the 1990's white grub control insecti- • Site analysis for golf cides consisted mainly of organophosphate and carbamate based chemistries with only a course development 7 few biorational products available (Table 1). As a group, the organophosphate and car- Climate bamate insecticides, have a relatively short residual activity and are highly efficacious when used in curative control programs. Topography Optimum results are attained if the products are applied in mid to late August or into September, as white grub damage is first noticed and Drainage patterns when the grubs are young and relatively small. Optimum results are Water availability As we enter the new millennium many of the cura- attained if the tive control products have been replaced by a group of Soils and geology products are applied new insecticides. These insecticides, Merit and Mach 2, offer greater applicator safety, have less adverse effect Environmental issues in mid to late August on the environment, provide a longer window of appli- Wetlands or into September, as cation due to their extended soil residual activities, have minimal impact on beneficial predators, and pro- Water quality white grub damage vide excellent control (+90%) of white grubs.
    [Show full text]
  • Natural Products for Managing Landscape and Garden Pests in Florida1 Matthew A
    ENY-350 Natural Products for Managing Landscape and Garden Pests in Florida1 Matthew A. Borden, Eileen A. Buss, Sydney G. Park Brown, and Adam G. Dale2 Pest control professionals and homeowners throughout Florida and the southeastern US are seeking effective options that are safer for people and the environment than some conventional synthetic pesticides. There is also rising interest in organic gardening, which relies on natural pesticides. See the Organic Materials Review Institute (OMRI) website (https://www.omri.org/omri-lists/ download) for products that are acceptable in organic plant production. Natural or biological pesticides, also called biopesticides, can be used by themselves or in combination with conventional pesticide programs as valuable rotation options, thus delaying or preventing onset of resistance caused by repeated use of the same chemical controls. Figure 1. A brown lacewing larva, Micromus posticus, feeding on aphid This publication describes natural products for use in pests of a rose bush. This soft-bodied predator would likely be killed residential landscapes and gardens. They are generally by natural insecticides intended for the aphids. Credits: Lyle Buss, UF/IFAS less toxic to nontarget organisms and the environment and, when used correctly, can be effective tools for plant There is a general lack of knowledge about natural or protection. These products are most effective when used in biological pesticides, including commercial availability and an integrated pest management (IPM) program along with effective use. All pesticides, whether natural or synthetic, sanitation, proper cultural practices, mechanical control carry inherent risks and require safe and responsible use by tactics, use of resistant plant varieties, and biological the applicator.
    [Show full text]
  • Point of Sale Promotions
    LOUISIANA DEPARTMENT OF AGRICULTURE & FORESTRY MIKE STRAIN DVM, COMMISSIONER Louisiana Specialty Crop Program Final Performance Report Agreement # 12-25-B-1464 January 8, 2016 CONTACTS Program Administration: Michelle Estay, Director of Commodity Promotion & Research Louisiana Department of Agriculture & Forestry 47076 N. Morrison Blvd. Hammond, LA 70401-7308 Financial Officer: Dane Morgan, Assistant Commissioner Office of Management & Finance Louisiana Department of Agriculture & Forestry P.O. Box 3481 Baton Rouge, LA 70821-3481 CONTENTS Abstract ......................................................................................................... 2 Project One..................................................................................................... 2 Project Two .................................................................................................... 7 Project Three .................................................................................................. 52 Project Four………………………………………………………………… 65 Project Five…………………………………………………………………. 76 Project Six………………………………………………………………….. 84 1 PROGRAM OVERVIEW The Louisiana Department of Agriculture and Forestry (LDAF) was awarded $351,115.72 in funding for the FY 2012 Specialty Crop Block Grant Program (SCBGP). LDAF implemented projects to enhance the competitiveness of specialty crops throughout the state. Louisiana’s projects focused on programs working to inform consumers of the availability of Louisiana specialty crops, where they can be purchased for increased
    [Show full text]
  • Effects of Landscape, Intraguild Interactions, and a Neonicotinoid on Natural Enemy and Pest Interactions in Soybeans
    University of Kentucky UKnowledge Theses and Dissertations--Entomology Entomology 2016 EFFECTS OF LANDSCAPE, INTRAGUILD INTERACTIONS, AND A NEONICOTINOID ON NATURAL ENEMY AND PEST INTERACTIONS IN SOYBEANS Hannah J. Penn University of Kentucky, [email protected] Author ORCID Identifier: http://orcid.org/0000-0002-3692-5991 Digital Object Identifier: https://doi.org/10.13023/ETD.2016.441 Right click to open a feedback form in a new tab to let us know how this document benefits ou.y Recommended Citation Penn, Hannah J., "EFFECTS OF LANDSCAPE, INTRAGUILD INTERACTIONS, AND A NEONICOTINOID ON NATURAL ENEMY AND PEST INTERACTIONS IN SOYBEANS" (2016). Theses and Dissertations-- Entomology. 30. https://uknowledge.uky.edu/entomology_etds/30 This Doctoral Dissertation is brought to you for free and open access by the Entomology at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Entomology by an authorized administrator of UKnowledge. For more information, please contact [email protected]. STUDENT AGREEMENT: I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File. I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known.
    [Show full text]
  • Popillia Japonica: Procedures for Official Control
    Bulletin OEPP/EPPO Bulletin (2016) 46 (3), 543–555 ISSN 0250-8052. DOI: 10.1111/epp.12345 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 9/21(1) National regulatory control systems Systemes de lutte nationaux reglementaires PM 9/21(1) Popillia japonica: procedures for official control Scope Approval and amendment This Standard describes procedures for official control with First approved in 2016-09 the aim of detecting, containing and eradicating Popillia japonica. NPPOs may draw on this guidance when develop- ing national contingency plans for outbreaks of Popillia japonica. Earlier records are likely to be misidentifications and are 1. Introduction most probably Popillia quadriguttata (F.) (EPPO, 2000). Popillia japonica Newman (EPPO Code: POPIJA) (Coleop- Records of the species in China are regarded as invalid or tera: Rutelidae), commonly known as the Japanese beetle, unreliable records. is a highly polyphagous beetle and an EPPO A2 pest (Pot- Within the EPPO region, P. japonica was first identi- ter & Held, 2002; EPPO, 2006). Popillia japonica is listed fied from the island of Terceira in the Azores (PT) in the in Annex IAII of the Directive 2000/29/EC, so any detec- early 1970s, and has since been recorded from the islands tion on consignments entering European Union (EU) Mem- of Faial, Flores, Pico, S~ao Jorge, Corvo and on the west- ber States would be subject to statutory action. Native to ern part of S~ao Miguel (Simoes~ & Martins, 1985; Martins Japan and the far eastern Russian island of Kuril, & Simoes,~ 1986; Vieira, 2008).
    [Show full text]
  • Heteronychus Arator
    Heteronychus arator Scientific Name Heteronychus arator (Fabricius) Synonyms: Heteronychus arator australis Endrödi, Heteronychus indenticulatus Endrodi, Heteronychus madagassus Endrodi, Heteronychus sanctaehelenae Blanchard, Heteronychus transvaalensis Peringuey, Scarabaeus arator Fabricius Common Name(s) Black maize beetle, African black beetle, black lawn beetle, black beetle Type of Pest Beetle Figure 1. Illustration of each stage of the life Taxonomic Position cycle of the black maize beetle, showing a close up view of each stage and a Insecta, Coleoptera, Class: Order: background view showing that the eggs, Family: Scarabaeidae larvae, and pupae are all underground stages with the adults being the only stage Reason for Inclusion appearing above ground. Illustration CAPS Target: AHP Prioritized Pest List- courtesy of NSW Agriculture. http://www.ricecrc.org/Hort/ascu/zecl/zeck11 2006 – 2009 3.htm Pest Description Life stages are shown in Figures 1 and 2. 1 Eggs: White, oval, and measuring approximately 1.8 mm (approx. /16 in) long at time of oviposition. Eggs grow larger through development and become more 3 round in shape. Eggs are laid singly at a soil depth of 1 to 5 cm (approx. /8 to 2 in). Females each lay between 12 to 20 eggs total. In the field, eggs hatch after approximately 20 days. Larvae can be seen clearly with the naked eye (CABI, 2007; Matthiessen and Learmoth, 2005). Larvae: There are three larval instars. Larvae are creamy-white except for the brown head capsule and hind segments, which appear dark where the contents of the gut show through the body wall. The head capsule is smooth textured, 1 1 measuring 1.5 mm (approx.
    [Show full text]
  • Natural* Pest Control in the Home Garden Why Go the Natural Route?
    Natural* Pest Control in the Home Garden Why go the natural route? • Safety • Sustainability • Insect resistance • Cost considerations • $ • Time • Health Natural Controls • At least some natural forces act on all organisms, causing populations to rise and fall • Be aware of the influence of natural forces and whether or not you can harness them to balance the scales in your favor • Climate • Natural enemies • Geography/Environment • Sustenance • Shelter Disease Triangle So I want to go more natural. What are my strategies? First Thing’s First: Document everything. Plant/Variety Selection • Right plant, right place (think of the disease triangle) • Stressed plants emit pheromones that attract insect pests • Some plants resist pest attacks better than others • Heirlooms vs hybrids Timing • Time plantings so that majority of crop will avoid peak pest infestations Cultural/Mechanical Control • Spacing • Plant strength • Airflow/circulation • Pathogen dispersal • Plant Strength Cultural/Mechanical Control • Weeds, grass around garden may harbor harmful pests • Gardens started on formerly turfed area may contain harmful larvae and formidable weeds Cultural/Mechanical Control • Crop Rotation/Cover Crop • Soil health • Weed control Cultural/Mechanical Control • Row Covers Cultural/Mechanical Control Sanitation • Removal of sick, dying, dead plant material • Mulch • Know when to call it quits Trapping • Very practical, just require a threshold • Traps for wide range of pests available commercially Scouting • Not just what you see – context is
    [Show full text]
  • Grubs / Scarab Beetles Know Thy Enemy: White Grubs / Scarab Beetles • Scarab Beetles (Scarabaeidae) Are Part of the Coleoptera Order (General Beetles)
    A Novel, Effective Approach to Grub Control That is Safe for Pollinators, People, Animals and the Environment with EPA Exemptions in CT Joe Magazzi, MS President Outline WHAT? WHY? HOW? Know Thy Enemy: White Grubs / Scarab Beetles Know Thy Enemy: White Grubs / Scarab Beetles • Scarab Beetles (Scarabaeidae) are part of the Coleoptera order (General Beetles). • There are about 30,000 scarab species comprising about 10 percent of all known beetles. The term “white grub” is the immature or larval form of the scarab beetle. • Most consume live plants, fruits and vegetable and are considered agricultural pests with a large negative economic impact. In Connecticut, the most prevalent and damaging species are: Japanese beetles, European chafers, Asiatic garden beetles, Oriental beetles, Northern masked chafer Know Thy Enemy: White Grubs / Scarab Beetles Economic Impact • “White grubs are the most damaging group of turf grass insect pests in our region”…Connecticut IPM Annual Report from UCONN in 2013. • According to a USDA/APHIS report in 2000, about $156 million is spent in the US annually renovating or replacing damaged turf or ornamental plants. • That same report from 2000 estimated that $460 million is spent each year to control the grubs and adults. • Today, the economic impact is likely higher than it was 16 years ago. • These numbers are only for the Japanese beetle – total white grub & adult beetle damage is likely in the billions. Know Thy Enemy: Beetle Life Cycles From Cornell University Integrated Pest Management Program (www.nysipm.cornell.edu/publications/grubs/life.asp) beetleGONE! & grubGONE! (Bacillus thuringiensis) & The Cry Proteins: An Introduction & Mode of Action Against Grubs & Beetles “The Enemy of My Enemy is My Friend” Bacillus thuringiensis (Bt) • Bacteria first isolated in 1901 by Ishiwatari from diseased silkworms and again by Berliner from diseased flour moth larvae in 1911.
    [Show full text]
  • Masked Chafer (Coleoptera: Scarabaeidae) Grubs in Turfgrass
    Journal of Integrated Pest Management (2016) 7(1): 3; 1–11 doi: 10.1093/jipm/pmw002 Profile Biology, Ecology, and Management of Masked Chafer (Coleoptera: Scarabaeidae) Grubs in Turfgrass S. Gyawaly,1,2 A. M. Koppenho¨fer,3 S. Wu,3 and T. P. Kuhar1 1Virginia Tech, Department of Entomology, 216 Price Hall, Blacksburg, VA 24061-0319 ([email protected]; [email protected]), 2Corresponding author, e-mail: [email protected], and 3Rutgers University, Department of Entomology, Thompson Hall, 96 Lipman Drive, New Brunswick, NJ 08901-8525 ([email protected]; [email protected]) Received 22 October 2015; Accepted 11 January 2016 Abstract Downloaded from Masked chafers are scarab beetles in the genus Cyclocephala. Their larvae (white grubs) are below-ground pests of turfgrass, corn, and other agricultural crops. In some regions, such as the Midwestern United States, they are among the most important pest of turfgrass, building up in high densities and consuming roots below the soil/thatch interface. Five species are known to be important pests of turfgrass in North America, including northern masked chafer, Cyclocephala borealis Arrow; southern masked chafer, Cyclocephala lurida Bland [for- http://jipm.oxfordjournals.org/ merly Cyclocephala immaculata (Olivier)]; Cyclocephala pasadenae (Casey); Cyclocephala hirta LeConte; and Cyclocephala parallela Casey. Here we discuss their life history, ecology, and management. Key words: Turfgrass IPM, white grub, Cyclocephala, masked chafer Many species of scarabs are pests of turfgrass in the larval stage southern Ohio, and Maryland. The two species have overlapping (Table 1). Also known as white grubs, larvae of these species feed distributions throughout the Midwest, particularly in the central on grass roots and damage cultivated turfgrasses.
    [Show full text]
  • Species-Specific Recognition of Beetle Cues by the Nematode Pristionchus Maupasi
    EVOLUTION & DEVELOPMENT 10:3, 273–279 (2008) Species-specific recognition of beetle cues by the nematode Pristionchus maupasi RayL.Hong,a Alesˇ Svatosˇ,b Matthias Herrmann,a and Ralf J. Sommera,Ã aDepartment for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tuebingen, Germany bMax-Planck Institute for Chemical Ecology, Mass Spectrometry Research Group, Jena, Germany ÃAuthor for correspondence (email: [email protected]) SUMMARY The environment has a strong effect on studies originally established in Caenorhabditis elegans.We development as is best seen in the various examples of observed that P. maupasi is exclusively attracted to phenol, phenotypic plasticity. Besides abiotic factors, the interactions one of the sex attractants of Melolontha beetles, and that between organisms are part of the adaptive forces shaping the attraction was also observed when washes of adult beetles evolution of species. To study how ecology influences were used instead of pure compounds. Furthermore, development, model organisms have to be investigated in P. maupasi chemoattraction to phenol synergizes with plant their environmental context. We have recently shown that the volatiles such as the green leaf alcohol and linalool, nematode Pristionchus pacificus and its relatives are closely demonstrating that nematodes can integrate distinct associated with scarab beetles with a high degree of species chemical senses from multiple trophic levels. In contrast, specificity. For example, P. pacificus is associated with the another cockchafer-associated nematode, Diplogasteriodes oriental beetle Exomala orientalis in Japan and the magnus, was not strongly attracted to phenol. We conclude northeastern United States, whereas Pristionchus maupasi that interception of the insect communication system might be is primarily isolated from cockchafers of the genus Melolontha a recurring strategy of Pristionchus nematodes but that in Europe.
    [Show full text]
  • ENV /JM /M on O(2016)27 Unclassified
    Unclassified ENV/JM/MONO(2016)27 Organisation de Coopération et de Développement Économiques Organisation for Economic Co-operation and Development 29-Jun-2016 ___________________________________________________________________________________________ _____________ English - Or. English ENVIRONMENT DIRECTORATE JOINT MEETING OF THE CHEMICALS COMMITTEE AND Unclassified ENV/JM/MONO(2016)27 THE WORKING PARTY ON CHEMICALS, PESTICIDES AND BIOTECHNOLOGY Cancels & replaces the same document of 29 June 2016 CONSENSUS DOCUMENT ON THE BIOLOGY OF SORGHUM (Sorghum bicolor (L.) Moench) Series on Harmonisation of Regulatory Oversight in Biotechnology No. 62 English JT03398806 Complete document available on OLIS in its original format - This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of Or. English international frontiers and boundaries and to the name of any territory, city or area. ENV/JM/MONO(2016)27 2 ENV/JM/MONO(2016)27 OECD Environment, Health and Safety Publications Series on Harmonisation of Regulatory Oversight in Biotechnology No. 62 Consensus Document on the Biology of Sorghum (Sorghum bicolor (L.) Moench) Environment Directorate Organisation for Economic Co-operation and Development Paris 2016 3 ENV/JM/MONO(2016)27 Also published in the Series on Harmonisation of Regulatory Oversight in Biotechnology: No. 1, Commercialisation of Agricultural Products Derived through Modern Biotechnology: Survey Results (1995) No. 2, Analysis of Information Elements Used in the Assessment of Certain Products of Modern Biotechnology (1995) No. 3, Report of the OECD Workshop on the Commercialisation of Agricultural Products Derived through Modern Biotechnology (1995) No. 4, Industrial Products of Modern Biotechnology Intended for Release to the Environment: The Proceedings of the Fribourg Workshop (1996) No.
    [Show full text]
  • Disentangling the Phenotypic Variation and Pollination Biology of the Cyclocephala Sexpunctata Species Complex (Coleoptera:Scara
    DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE CYCLOCEPHALA SEXPUNCTATA SPECIES COMPLEX (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) A Thesis by Matthew Robert Moore Bachelor of Science, University of Nebraska-Lincoln, 2009 Submitted to the Department of Biological Sciences and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Master of Science July 2011 © Copyright 2011 by Matthew Robert Moore All Rights Reserved DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE CYCLOCEPHALA SEXPUNCTATA SPECIES COMPLEX (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) The following faculty members have examined the final copy of this thesis for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science with a major in Biological Sciences. ________________________ Mary Jameson, Committee Chair ________________________ Bin Shuai, Committee Member ________________________ Gregory Houseman, Committee Member ________________________ Peer Moore-Jansen, Committee Member iii DEDICATION To my parents and my dearest friends iv "The most beautiful thing we can experience is the mysterious. It is the source of all true art and all science. He to whom this emotion is a stranger, who can no longer pause to wonder and stand rapt in awe, is as good as dead: his eyes are closed." – Albert Einstein v ACKNOWLEDMENTS I would like to thank my academic advisor, Mary Jameson, whose years of guidance, patience and enthusiasm have so positively influenced my development as a scientist and person. I would like to thank Brett Ratcliffe and Matt Paulsen of the University of Nebraska State Museum for their generous help with this project.
    [Show full text]