Connecticut State Entomologist . Thirty Ninth Report for 1939

Total Page:16

File Type:pdf, Size:1020Kb

Connecticut State Entomologist . Thirty Ninth Report for 1939 Bulletin 434 June, 1940 LONNECTICUT STATEENTOMOLOGIST THIRTY -NINTH REPORT 1939 R. B. FRIEND, PH.D. State Entomologist Bulletin 434 June, 1940 CONNECTTCUTSTATE ENTOMOLOGIST THIRTY-NIP JTH R EPORT 19-.1.39 R. B. FRIEND, PH.1 State Entomologist CONTENTS ~NSECT~ECORDFOR~~~~............................................... CONFERENCEOF CONNECTICUTENTOMOLOGISTS ........................... TNSPECTION OFNURSERIES.1939 ........................................ Number and Size of Nurseries ...................................... Connectic~~tNursery Firms Certified in 1939 ......................... Other Kincls of Certificates Issued ................................... Inspection of Imported Nursery Stock ............................... Results of Inspection .......................................... INSPECTIONOFAPIA~IES,1939 .......................................... Statistics of Inspection ............................................ I'inancialStatement ............................................... Registration of 13ces ............................................... REPORTON CONTROLOF THE GYPSYMOTH . 1938-1939 ..................... hTewEquipment.................................................. ControlOperations ................................................ Work Performed by State Men ................................. \\'ark Performed by C.C.C. R4en ................................ \\:PA Work Performed ......................................... Scouting for Brown-Tail Moth ...................................... Financialstatement ............................................... Statistics of Infestations ........................................... '~HEJAPANESEBEETLE,1939 ........................................... Quarantine Activities .............................................. Scouting ......................................................... Inspection and Certification ........................................ Control Activities ................................................. MOSQUITOCONTROL WORK IN CONNECTICUT,1939 ........................ RODENTCONTROL..................................................... Mouse Control .................................................... Pine Mouse Control ............................................... \l'oodchuck Control ................................................ Survey of Mammal Damage in Nurseries ............................ Mor~seInjury .................................................... Deer Injurq- ...................................................... REPORTON PARASITE\\'ORK FOR 1939 ................................... Oriental Fruit Moth Parasites ...................................... Japanese Beetle Parasites .......................................... TESTSOFAPPLESPRAYS................................................. 260 CONTINUEDEXPERIMENTS ON CONTROLOF THE APPLEMAGGOT ............... 264 CONTIRUEDSTUDY OF STICKE~SFOR STANDARDSPRAY MIXTURES ............. 269 BIOLOGYAND CONTROLOF THE POTATOFLEA BEETLE ....................... SeasonalLifeHistory ................................................ Life History Studies ................................................. Control ............................................................ Summary .......................................................... FURTHEROBSERVATIONS OF THE EFFECTOF SALTN'ATER SPRAY ON FOLIAGE... NOTESON THE SMALLEREUROPEAN ELM BARK BEETLE. Sco!yiu.9 mullislrialrcs MARSHADI................................... :........................ Lifecycle .......................................................... Habits ............................................................. DevelopmentalStages ............................................... FlightandWindDispersion .......................................... Parasites and Predators .............................................. Survival of Larvae at Low Temperatures .............................. Artificial Control .................................................... Summary .......................................................... MISCELLANEOUSINSECT NOTES . .... .... ........................... The Crazy Ant in Connecticut .......................................... Dermestid Larvae in Composition Board ............................... The House Cricket, Gryllus domesticus Linn ............................ Notes on Asiatic Garden Beetle Damage in a Field of Sweet Corn ......... Results of Trapping Rose Chafers ..................................... TheEuropeanEarwig ................................................ Bark Beetle Damage to Plantation Pine ............................... Clover Mite in Dwelling ............................................ Calomyclerus selarius Roelofs in Connecticut ............................ WILTQN EVERETT BRITTON September 18, 1868--February 15, 1939 Statc Entomologist, .Irlly 1, 1901-February 13, 1939 WTLTON EVERETT BRITTON DOCTOR Wilton Everett Britton, State Entomologist of Connecticut and Entomologist of the Agricultural Experiment Statiou at New Haven, died February 15, 1939, in his seventy-first year. He had been a member of the staff of the Agricultural Experiment Station since 1894. ancl State . Entomologist since the ofice was established in 1901. During his long and useful career he exemplified that devotion to his profession and to the welfare of his State that characterizes a public servant of the highest calibre. f Dr. Britton descended from a line of New England ancestors going back to James Britton who, at the age of 27, arrived in America on the Increase April 15, 1635. Probably he came from London, and he lived for a time in Charlestown, Massachusetts. The succeeding generations of the family, dwelling in eastern Massachusetts, southern Maine, ancl southern New Hampshire, were presumably typical of that class which formed the backbone of the population, a race of farmers, sailors, mechan- ics, small merchants, and, when wars were afoot, soldiers. Dr. Britton's father, Benjamin Howard Britton, was born at North Easton, Massachu- setts, in 1833 and died at Gilsum, New Hampshire, in 1899. In 1861 he married Emily Eliza Wright, whose great grandfather had come from Hartford, Connecticut, and died at Iceene, New Hampshire, in 1812. Dr. Britton was born at Marlboro, Massachusetts, September 18, 1868. His family moved to a farm in Gilsum, New Hampshire. There, ,. in a distinctly rural environment, the impress of which lasted throughout, his life, Dr. Britton spent his early years. He attended the local schools and worked on the farm, raising the crops, caring for livestock, lumbering, making maple sugar, etc. Life was a bit rigorous, but conducive to integ- I rity, industry, frugality, and independence of thought and action. He enjoyed it. Later Ire attended the New Hampshire College of Agriculture and Mechanic Arts at Hanover (now the University of New Hampshire at Durham), from which he received the degree of Bachelor of Science in 1893. If later performance is any criterion, he must have been a good student. The year following graduation was spent at Cornell University studying under L. H. Bailey. Apparently at that time Dr. Britton's main interests lay in the field of horticulture. In 1894 the opportunity came to obtain a position as horticulturist at the Connecticut Agricultural Experiment Station at New Haven. Both student and professor evidently believed this position offered great promise professionally, for Dr. Britton once told the writer that Bailey advised him to take the job even if he received no salary. The advice was followed, although salary there was-fifty dollars a month. This inclination to disregard remuneration when offered an opportunity to work in his field , was quite characteristic. While at the Agricultural Experiment Station he continued graduate study in the Department of Botany at Yale Univer- sity and received the degree of Doctor of Philosophy from that institution in 1903. Connect icut Experimenb Slat ion Bulletin 43.4 During his tenure as horticulturist, Dr. Britton collaborated with the Station chemist, Dr. E. H. Jenkins, in fertilizer investigations, worked with "forcing-house" crops, conducted experiments in grafting nut trees, and began his entomological career. The reports of the Experiment Station during this period indicate that his work was carefully done and of such high quality that the confidence of his superiors became,firmly established. Dr. Britton's interest in entomology dates back to his boyhood days. The economic aspect of the science was early impressed on him by long hours spent in the hot summer sun knocking Colorado potato beetles off the plants into a can. While at college he made a collection of insects and built a fine cabinet with eighteen glass-topped drawers to house it. This was the foundation of the present collection at the Experiment Station, and the cabinet is still in use. At this time he also wrote an article entitled "The Horn Fly", which was published in the New Hampshire College Monthly in 1893. While working in horticulture, his attention was drawn to insect pests of cultivated plants and he considered them well worth investigating. In the report of the Experiment Station for the year 1894#, a short article entitled "Notes on Some Leaf Miners" (pp. 143-14.6) bears his signature. This describes the life cycle and habits of Odonlocera dorsalis Loew (Cerodonthafernoralis Meigen), the habits of which had been ullknown up to that time, on corn, and Phytomyza aquilegiae Hardy, not previously known to have occurred in this country, on columbine. At
Recommended publications
  • Author Index to USDA Technical Bulletins
    USD Index to USDA United States Department of Agriculture Technical Bulletins Compiled in March 2003 by: ARS Ellen Kay Miller Agricultural D.C. Reference Center Research Service National Agricultural Library Agricultural Research Service U.S. Department of Agriculture NAL Updated November 2003 National Agricultural Library National Agricultural Library Cataloging Record: Miller, Ellen K. Index to USDA Technical Bulletins 1. United States. Dept. of Agriculture--Periodicals, Indexes. I. Title. aZ5073.I52-1993 Contents USDA Technical Bulletins by Title USDA Technical Bulletins by Number - 1-1906 Subject Index (with links to Bulletin Title) Author Index (with links to Bulletin Title) The National Agricultural Library call number of each Agriculture Information Bulletin is (1--Ag84Te-no.xxx), where xxx is the series document number of the publication. Titles held by the National Agricultural Library can be verified in the Library's AGRICOLA database. To obtain copies of these documents, contact your local or state libraries, including public libraries, land-grant university libraries, or other large research libraries. Note: An older edition of this document was published in 1993: Index to USDA Technical Bulletins, Numbers 1-1802. The current edition is an Internet-based document, and includes links to full-text USDA Technical Bulletins on the Internet. Technical Bulletins by Title Skip Navigation Bar | By Title | By Number | Subject Index | Author Index Go to: A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z | A Accounting for the environment in agriculture. Hrubovcak, James; LeBlanc, Michael, and Eakin, B.
    [Show full text]
  • The Genetic Mechanism of Selfishness and Altruism in Parent-Offspring Coadaptation Min Wu, Jean-Claude Walser, Lei Sun and Mathias Kölliker
    SCIENCE ADVANCES | RESEARCH ARTICLE EVOLUTIONARY BIOLOGY Copyright © 2020 The Authors, some rights reserved; The genetic mechanism of selfishness and altruism exclusive licensee American Association in parent-offspring coadaptation for the Advancement Min Wu1*, Jean-Claude Walser2, Lei Sun3†, Mathias Kölliker1*‡ of Science. No claim to original U.S. Government Works. Distributed The social bond between parents and offspring is characterized by coadaptation and balance between altruistic under a Creative and selfish tendencies. However, its underlying genetic mechanism remains poorly understood. Using transcriptomic Commons Attribution screens in the subsocial European earwig, Forficula auricularia, we found the expression of more than 1600 genes License 4.0 (CC BY). associated with experimentally manipulated parenting. We identified two genes, Th and PebIII, each showing evidence of differential coexpression between treatments in mothers and their offspring. In vivo RNAi experiments confirmed direct and indirect genetic effects of Th and PebIII on behavior and fitness, including maternal food provisioning and reproduction, and offspring development and survival. The direction of the effects consistently indicated a reciprocally altruistic function for Th and a reciprocally selfish function for PebIII. Further metabolic pathway analyses suggested roles for Th-restricted endogenous dopaminergic reward, PebIII-mediated chemical communication and a link to insulin signaling, juvenile hormone, and vitellogenin in parent-offspring Downloaded from coadaptation and social evolution. INTRODUCTION manipulations with and without mother-offspring contact, without Parents and offspring influence each other’s behavior and evolutionary detrimental effects on offspring. Females produce one or two clutches http://advances.sciencemag.org/ fitness through reciprocal interactions (1). As an altruistic trait, over their lifetime and provide food (see movie S1) and protection parental care is beneficial to the survival and development of offspring to their young nymphs (8, 9).
    [Show full text]
  • Popillia Japonica: Procedures for Official Control
    Bulletin OEPP/EPPO Bulletin (2016) 46 (3), 543–555 ISSN 0250-8052. DOI: 10.1111/epp.12345 European and Mediterranean Plant Protection Organization Organisation Europe´enne et Me´diterrane´enne pour la Protection des Plantes PM 9/21(1) National regulatory control systems Systemes de lutte nationaux reglementaires PM 9/21(1) Popillia japonica: procedures for official control Scope Approval and amendment This Standard describes procedures for official control with First approved in 2016-09 the aim of detecting, containing and eradicating Popillia japonica. NPPOs may draw on this guidance when develop- ing national contingency plans for outbreaks of Popillia japonica. Earlier records are likely to be misidentifications and are 1. Introduction most probably Popillia quadriguttata (F.) (EPPO, 2000). Popillia japonica Newman (EPPO Code: POPIJA) (Coleop- Records of the species in China are regarded as invalid or tera: Rutelidae), commonly known as the Japanese beetle, unreliable records. is a highly polyphagous beetle and an EPPO A2 pest (Pot- Within the EPPO region, P. japonica was first identi- ter & Held, 2002; EPPO, 2006). Popillia japonica is listed fied from the island of Terceira in the Azores (PT) in the in Annex IAII of the Directive 2000/29/EC, so any detec- early 1970s, and has since been recorded from the islands tion on consignments entering European Union (EU) Mem- of Faial, Flores, Pico, S~ao Jorge, Corvo and on the west- ber States would be subject to statutory action. Native to ern part of S~ao Miguel (Simoes~ & Martins, 1985; Martins Japan and the far eastern Russian island of Kuril, & Simoes,~ 1986; Vieira, 2008).
    [Show full text]
  • Seasonal Distribution of the Potato Leafhopper, Empoasca Fabae (Harris), Among Solanum Clones Richard Lloyd Miller Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1962 Seasonal distribution of the potato leafhopper, Empoasca fabae (Harris), among Solanum clones Richard Lloyd Miller Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Zoology Commons Recommended Citation Miller, Richard Lloyd, "Seasonal distribution of the potato leafhopper, Empoasca fabae (Harris), among Solanum clones " (1962). Retrospective Theses and Dissertations. 2014. https://lib.dr.iastate.edu/rtd/2014 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. This dissertation has been 62—3020 microfilmed exactly as received MILLER, Richard Lloyd, 1931- SEASONAL DISTRIBUTION OF THE POTATO LEAFHOPPER, EMPOASCA FABAE (HARRIS), AMONG SOLANUM CLONES. Iowa State University of Science and Technology Ph.D., 1962 Zoology University Microfilms, Inc., Ann Arbor, Michigan SEASONAL DISTRIBUTION OP THE POTATO LBAFHOPPER, EMPOASOA PABAE (HARRIS), AMONG SOLANÏÏM CLONES Richard Lloyd Miller A Dissertation Submitted to the Graduate Faculty in Partial Fulfillment of The Requirements for the Degree of DOCTOR OP PHILOSOPHY Major Subject: Entomology Approved; Signature was redacted for privacy. In Charge of Major Work Signature was redacted for privacy. Head of Major Department Signature was redacted for privacy. De ah of Graduate College Iowa State University Of Science and Technology Ames, Iowa 1962 ii TABLE OP CONTENTS Page INTRODUCTION 1 REVIEW OP LITERATURE 3 Synonymy, Origin and Distribution of the Insect 3 Biological Observations 6 Host Plant Response to Infestation 13 Classification of the Potato 17 Origin of the Genua Solanum 20 Origin of Solanum tuberosum L.
    [Show full text]
  • Insects That Feed on Trees and Shrubs
    INSECTS THAT FEED ON COLORADO TREES AND SHRUBS1 Whitney Cranshaw David Leatherman Boris Kondratieff Bulletin 506A TABLE OF CONTENTS DEFOLIATORS .................................................... 8 Leaf Feeding Caterpillars .............................................. 8 Cecropia Moth ................................................ 8 Polyphemus Moth ............................................. 9 Nevada Buck Moth ............................................. 9 Pandora Moth ............................................... 10 Io Moth .................................................... 10 Fall Webworm ............................................... 11 Tiger Moth ................................................. 12 American Dagger Moth ......................................... 13 Redhumped Caterpillar ......................................... 13 Achemon Sphinx ............................................. 14 Table 1. Common sphinx moths of Colorado .......................... 14 Douglas-fir Tussock Moth ....................................... 15 1. Whitney Cranshaw, Colorado State University Cooperative Extension etnomologist and associate professor, entomology; David Leatherman, entomologist, Colorado State Forest Service; Boris Kondratieff, associate professor, entomology. 8/93. ©Colorado State University Cooperative Extension. 1994. For more information, contact your county Cooperative Extension office. Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture,
    [Show full text]
  • Grubs / Scarab Beetles Know Thy Enemy: White Grubs / Scarab Beetles • Scarab Beetles (Scarabaeidae) Are Part of the Coleoptera Order (General Beetles)
    A Novel, Effective Approach to Grub Control That is Safe for Pollinators, People, Animals and the Environment with EPA Exemptions in CT Joe Magazzi, MS President Outline WHAT? WHY? HOW? Know Thy Enemy: White Grubs / Scarab Beetles Know Thy Enemy: White Grubs / Scarab Beetles • Scarab Beetles (Scarabaeidae) are part of the Coleoptera order (General Beetles). • There are about 30,000 scarab species comprising about 10 percent of all known beetles. The term “white grub” is the immature or larval form of the scarab beetle. • Most consume live plants, fruits and vegetable and are considered agricultural pests with a large negative economic impact. In Connecticut, the most prevalent and damaging species are: Japanese beetles, European chafers, Asiatic garden beetles, Oriental beetles, Northern masked chafer Know Thy Enemy: White Grubs / Scarab Beetles Economic Impact • “White grubs are the most damaging group of turf grass insect pests in our region”…Connecticut IPM Annual Report from UCONN in 2013. • According to a USDA/APHIS report in 2000, about $156 million is spent in the US annually renovating or replacing damaged turf or ornamental plants. • That same report from 2000 estimated that $460 million is spent each year to control the grubs and adults. • Today, the economic impact is likely higher than it was 16 years ago. • These numbers are only for the Japanese beetle – total white grub & adult beetle damage is likely in the billions. Know Thy Enemy: Beetle Life Cycles From Cornell University Integrated Pest Management Program (www.nysipm.cornell.edu/publications/grubs/life.asp) beetleGONE! & grubGONE! (Bacillus thuringiensis) & The Cry Proteins: An Introduction & Mode of Action Against Grubs & Beetles “The Enemy of My Enemy is My Friend” Bacillus thuringiensis (Bt) • Bacteria first isolated in 1901 by Ishiwatari from diseased silkworms and again by Berliner from diseased flour moth larvae in 1911.
    [Show full text]
  • Masked Chafer (Coleoptera: Scarabaeidae) Grubs in Turfgrass
    Journal of Integrated Pest Management (2016) 7(1): 3; 1–11 doi: 10.1093/jipm/pmw002 Profile Biology, Ecology, and Management of Masked Chafer (Coleoptera: Scarabaeidae) Grubs in Turfgrass S. Gyawaly,1,2 A. M. Koppenho¨fer,3 S. Wu,3 and T. P. Kuhar1 1Virginia Tech, Department of Entomology, 216 Price Hall, Blacksburg, VA 24061-0319 ([email protected]; [email protected]), 2Corresponding author, e-mail: [email protected], and 3Rutgers University, Department of Entomology, Thompson Hall, 96 Lipman Drive, New Brunswick, NJ 08901-8525 ([email protected]; [email protected]) Received 22 October 2015; Accepted 11 January 2016 Abstract Downloaded from Masked chafers are scarab beetles in the genus Cyclocephala. Their larvae (white grubs) are below-ground pests of turfgrass, corn, and other agricultural crops. In some regions, such as the Midwestern United States, they are among the most important pest of turfgrass, building up in high densities and consuming roots below the soil/thatch interface. Five species are known to be important pests of turfgrass in North America, including northern masked chafer, Cyclocephala borealis Arrow; southern masked chafer, Cyclocephala lurida Bland [for- http://jipm.oxfordjournals.org/ merly Cyclocephala immaculata (Olivier)]; Cyclocephala pasadenae (Casey); Cyclocephala hirta LeConte; and Cyclocephala parallela Casey. Here we discuss their life history, ecology, and management. Key words: Turfgrass IPM, white grub, Cyclocephala, masked chafer Many species of scarabs are pests of turfgrass in the larval stage southern Ohio, and Maryland. The two species have overlapping (Table 1). Also known as white grubs, larvae of these species feed distributions throughout the Midwest, particularly in the central on grass roots and damage cultivated turfgrasses.
    [Show full text]
  • Species-Specific Recognition of Beetle Cues by the Nematode Pristionchus Maupasi
    EVOLUTION & DEVELOPMENT 10:3, 273–279 (2008) Species-specific recognition of beetle cues by the nematode Pristionchus maupasi RayL.Hong,a Alesˇ Svatosˇ,b Matthias Herrmann,a and Ralf J. Sommera,Ã aDepartment for Evolutionary Biology, Max-Planck Institute for Developmental Biology, Tuebingen, Germany bMax-Planck Institute for Chemical Ecology, Mass Spectrometry Research Group, Jena, Germany ÃAuthor for correspondence (email: [email protected]) SUMMARY The environment has a strong effect on studies originally established in Caenorhabditis elegans.We development as is best seen in the various examples of observed that P. maupasi is exclusively attracted to phenol, phenotypic plasticity. Besides abiotic factors, the interactions one of the sex attractants of Melolontha beetles, and that between organisms are part of the adaptive forces shaping the attraction was also observed when washes of adult beetles evolution of species. To study how ecology influences were used instead of pure compounds. Furthermore, development, model organisms have to be investigated in P. maupasi chemoattraction to phenol synergizes with plant their environmental context. We have recently shown that the volatiles such as the green leaf alcohol and linalool, nematode Pristionchus pacificus and its relatives are closely demonstrating that nematodes can integrate distinct associated with scarab beetles with a high degree of species chemical senses from multiple trophic levels. In contrast, specificity. For example, P. pacificus is associated with the another cockchafer-associated nematode, Diplogasteriodes oriental beetle Exomala orientalis in Japan and the magnus, was not strongly attracted to phenol. We conclude northeastern United States, whereas Pristionchus maupasi that interception of the insect communication system might be is primarily isolated from cockchafers of the genus Melolontha a recurring strategy of Pristionchus nematodes but that in Europe.
    [Show full text]
  • Additions, Deletions and Corrections to An
    Bulletin of the Irish Biogeographical Society No. 36 (2012) ADDITIONS, DELETIONS AND CORRECTIONS TO AN ANNOTATED CHECKLIST OF THE IRISH BUTTERFLIES AND MOTHS (LEPIDOPTERA) WITH A CONCISE CHECKLIST OF IRISH SPECIES AND ELACHISTA BIATOMELLA (STAINTON, 1848) NEW TO IRELAND K. G. M. Bond1 and J. P. O’Connor2 1Department of Zoology and Animal Ecology, School of BEES, University College Cork, Distillery Fields, North Mall, Cork, Ireland. e-mail: <[email protected]> 2Emeritus Entomologist, National Museum of Ireland, Kildare Street, Dublin 2, Ireland. Abstract Additions, deletions and corrections are made to the Irish checklist of butterflies and moths (Lepidoptera). Elachista biatomella (Stainton, 1848) is added to the Irish list. The total number of confirmed Irish species of Lepidoptera now stands at 1480. Key words: Lepidoptera, additions, deletions, corrections, Irish list, Elachista biatomella Introduction Bond, Nash and O’Connor (2006) provided a checklist of the Irish Lepidoptera. Since its publication, many new discoveries have been made and are reported here. In addition, several deletions have been made. A concise and updated checklist is provided. The following abbreviations are used in the text: BM(NH) – The Natural History Museum, London; NMINH – National Museum of Ireland, Natural History, Dublin. The total number of confirmed Irish species now stands at 1480, an addition of 68 since Bond et al. (2006). Taxonomic arrangement As a result of recent systematic research, it has been necessary to replace the arrangement familiar to British and Irish Lepidopterists by the Fauna Europaea [FE] system used by Karsholt 60 Bulletin of the Irish Biogeographical Society No. 36 (2012) and Razowski, which is widely used in continental Europe.
    [Show full text]
  • European Earwig, Forficula Auricularia Linnaeus (Insecta: Dermaptera: Forficulidae)1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-032 European Earwig, Forficula auricularia Linnaeus (Insecta: Dermaptera: Forficulidae)1 H. V. Weems, Jr., and P. E. Skelley2 Introduction Distribution The European earwig, Forficula auricularia This earwig is found throughout Europe, but it Linnaeus 1758, is intercepted in Florida frequently in seldom is present in great numbers. Quantities of bundles of plants and shrubbery, in cut flowers, and nursery stock arrive from the western United States in florists' equipment arriving from the western annually that are infested with this earwig, but it has United States. This insect is spread largely by man. not successfully established in Florida. While it has Spread by natural means is limited because earwigs not been considered of great economic importance in seldom fly and cannot maintain flight very long. It Europe, it has become a serious pest in parts of the has not yet become established in Florida, but it has United States. the potential to do so, at least in the northern part of the state. This earwig was recorded first in the United The European earwig is widespread in cooler States at Newport, Rhode Island in 1911 (Jones parts of the world. Originally known from the 1917). Jones (1917) reported a small colony from Palearctic Region, the European earwig has been Seattle, Washington in 1915. Later evidence indicated recorded from Canada (British Columbia, Manitoba, that it first invaded North America somewhere on the Newfoundland, Nova Scotia, Ontario, Quebec, and west coast in the early 1900s. Eventually it became Saskatchewan) and the United States (Arizona, widespread in the New England and Middle Atlantic California, Colorado, Idaho, Maine, Massachusetts, states and throughout most of the western states, Montana, New York, North Carolina, Oregon, Rhode especially where there is abundant rainfall or Island, Utah, and Washington).
    [Show full text]
  • POPULATION DYNAMICS of the SYCAMORE APHID (Drepanosiphum Platanoidis Schrank)
    POPULATION DYNAMICS OF THE SYCAMORE APHID (Drepanosiphum platanoidis Schrank) by Frances Antoinette Wade, B.Sc. (Hons.), M.Sc. A thesis submitted for the degree of Doctor of Philosophy of the University of London, and the Diploma of Imperial College of Science, Technology and Medicine. Department of Biology, Imperial College at Silwood Park, Ascot, Berkshire, SL5 7PY, U.K. August 1999 1 THESIS ABSTRACT Populations of the sycamore aphid Drepanosiphum platanoidis Schrank (Homoptera: Aphididae) have been shown to undergo regular two-year cycles. It is thought this phenomenon is caused by an inverse seasonal relationship in abundance operating between spring and autumn of each year. It has been hypothesised that the underlying mechanism of this process is due to a plant factor, intra-specific competition between aphids, or a combination of the two. This thesis examines the population dynamics and the life-history characteristics of D. platanoidis, with an emphasis on elucidating the factors involved in driving the dynamics of the aphid population, especially the role of bottom-up forces. Manipulating host plant quality with different levels of aphids in the early part of the year, showed that there was a contrast in aphid performance (e.g. duration of nymphal development, reproductive duration and output) between the first (spring) and the third (autumn) aphid generations. This indicated that aphid infestation history had the capacity to modify host plant nutritional quality through the year. However, generalist predators were not key regulators of aphid abundance during the year, while the specialist parasitoids showed a tightly bound relationship to its prey. The effect of a fungal endophyte infecting the host plant generally showed a neutral effect on post-aestivation aphid dynamics and the degree of parasitism in autumn.
    [Show full text]
  • MOTH CHECKLIST Species Listed Are Those Recorded on the Wetland to Date
    Version 4.0 Nov 2015 Map Ref: SO 95086 46541 MOTH CHECKLIST Species listed are those recorded on the Wetland to date. Vernacular Name Scientific Name New Code B&F No. MACRO MOTHS 3.005 14 Ghost Moth Hepialus humulae 3.001 15 Orange Swift Hepialus sylvina 3.002 17 Common Swift Hepialus lupulinus 50.002 161 Leopard Moth Zeuzera pyrina 54.008 169 Six-spot Burnet Zygaeba filipendulae 66.007 1637 Oak Eggar Lasiocampa quercus 66.010 1640 The Drinker Euthrix potatoria 68.001 1643 Emperor Moth Saturnia pavonia 65.002 1646 Oak Hook-tip Drepana binaria 65.005 1648 Pebble Hook-tip Drepana falcataria 65.007 1651 Chinese Character Cilix glaucata 65.009 1653 Buff Arches Habrosyne pyritoides 65.010 1654 Figure of Eighty Tethia ocularis 65.015 1660 Frosted Green Polyploca ridens 70.305 1669 Common Emerald Hermithea aestivaria 70.302 1673 Small Emerald Hemistola chrysoprasaria 70.029 1682 Blood-vein Timandra comae 70.024 1690 Small Blood-vein Scopula imitaria 70.013 1702 Small Fan-footed Wave Idaea biselata 70.011 1708 Single-dotted Wave Idaea dimidiata 70.016 1713 Riband Wave Idaea aversata 70.053 1722 Flame Carpet Xanthorhoe designata 70.051 1724 Red Twin-spot Carpet Xanthorhoe spadicearia 70.049 1728 Garden Carpet Xanthorhoe fluctuata 70.061 1738 Common Carpet Epirrhoe alternata 70.059 1742 Yellow Shell Camptogramma bilineata 70.087 1752 Purple Bar Cosmorhoe ocellata 70.093 1758 Barred Straw Eulithis (Gandaritis) pyraliata 70.097 1764 Common Marbled Carpet Chloroclysta truncata 70.085 1765 Barred Yellow Cidaria fulvata 70.100 1776 Green Carpet Colostygia pectinataria 70.126 1781 Small Waved Umber Horisme vitalbata 70.107 1795 November/Autumnal Moth agg Epirrita dilutata agg.
    [Show full text]