Use of Floral Nectar in Heliconia Stilesii Daniels by Three Species of Hermit Hummingbirds

Total Page:16

File Type:pdf, Size:1020Kb

Use of Floral Nectar in Heliconia Stilesii Daniels by Three Species of Hermit Hummingbirds The Condor89~779-787 0 The Cooper OrnithologicalSociety 1987 ECOLOGICAL FITTING: USE OF FLORAL NECTAR IN HELICONIA STILESII DANIELS BY THREE SPECIES OF HERMIT HUMMINGBIRDS FRANK B. GILL The Academyof Natural Sciences,Philadelphia, PA 19103 Abstract. Three speciesof hermit hummingbirds-a specialist(Eutoxeres aquikz), a gen- eralist (Phaethornissuperciliosus), and a thief (Threnetesruckerz]-visited the nectar-rich flowers of Heliconia stilesii Daniels at a lowland study site on the Osa Peninsula of Costa Rica. Unlike H. pogonanthaCufodontis, a related Caribbean lowland specieswith a less specialized flower, H. stilesii may not realize its full reproductive potential at this site, becauseit cannot retain the services of alternative pollinators such as Phaethornis.The flowers of H. stilesii appear adapted for pollination by Eutoxeres, but this hummingbird rarely visited them at this site. Lek male Phaethornisvisited the flowers frequently in late May and early June, but then abandonedthis nectar sourcein favor of other flowers offering more accessiblenectar. The strong curvature of the perianth prevents accessby Phaethornis to the main nectar chamber; instead they obtain only small amounts of nectar that leaks anteriorly into the belly of the flower. Key words: Hummingbird; pollination; mutualism;foraging; Heliconia stilesii; nectar. INTRODUCTION Ultimately affectedare the hummingbird’s choice Species that expand their distribution following of flowers and patterns of competition among speciationenter novel ecologicalassociations un- hummingbird species for nectar (Stiles 1975, related to previous evolutionary history and face 1978; Wolf et al. 1976; Feinsinger 1978; Gill the challenges of adjustment to new settings, 1978). Use of specificHeliconia flowers as sources called “ecological fitting” (Janzen 1985a). In the of nectar by particular species of hermit hum- case of mutualistic species, such as plants and mingbirds, however, varies seasonally and geo- their pollinators, new ecological settingsmay in- graphically (Stiles 1975). Comparative studies of clude new arrays of speciesvarying in ability to the foragingecology of hermit hummingbirds and function as partners. Bird-pollinated plants in a the pollination biology of Heliconiaflowers could new setting, for example, will face new selection help us to understand the loosening and tight- pressureson the form of floral display, the ac- ening of mutualistic relationships in different cessibility of nectar, and the phenology of flow- ecological settings. ering, all of which affect ability to compete for In this paper I examine the use of nectar in the services of hummingbirds (Brown and Ko- flowers of Heliconia stilesii Daniels by three dric-Brown 1919, Kodric-Brown and Brown speciesof hermit hummingbirds at one locality 1979, Stiles 1980). in the Pacific lowlands of southern Costa Rica. Hermit hummingbirds (Trochilidae, Phae- Belonging to different genera, the three species thorninae) and Heliconiaflowers (Zingiberales: of hermit hummingbirds differ strikingly in bill Heliconiaceae) provide striking examples of spe- form: Phaethornissuperciliosus (Long-tailed cialized pollination mutualisms (Snow and Snow Hermit) has a long (38 to 39 mm) decurved bill; 1972, 1980; Stiles 1975, 1979; Feinsinger 1983; Threnetesruckeri (Band-tailed Barbthroat) has a Dobkin 1984). Promoting the parallel evolution shorter (28 to 29 mm) nearly straight, sharp- of bills and flowers is the effect of the precise fit tipped bill; Eutoxeresaquilu (White-tipped Sick- between the two on the hummingbird’s rate of lebill) has a sharply bent, stout bill (photos in nectar extraction and the associatedprobability Stiles 1975). The differencesin bill form affected of pollen transfer (Wolf et al. 1972, Stiles 1980). their abilities to extract nectar from H. stilesii flowers, which were abundant next to a large lek ’ ’ Received24 October 1986. Final acceptance 13 of P. superciliosus,and thus an obvious potential May 1987. sourceof energy for their breeding efforts.Nectar [7791 780 FRANK B. GILL TABLE 1. Floral characteristicsof two speciesof Hel- iconia. Character H. rmbricata ’ H. stilesii Flower (perianth) A c Length (cm) 2.5-3.0 5.5 I I Curvature slight strong ,0”l?l Nectar Concentration f 1 SD (O/asucrose equivalents) 22.4 t 2.1 29.1 k 5.4 Energy content f 1 SD (J/pi) 3.6 f 0.3 4.9 * 0.9 Production’ (&hr) 19 18 I Ratesof nectarproduction declined during the day (seeStiles 1975; Gill, m press).The valuespresented here are averageworking estimates for early to midmorning. FIGURE 1. Mid-longitudinal section of Heliconia imbricata(upper) and H. stilesii(lower) flowers. A = into Panama (Daniels and Stiles 1979). It was main nectar chamber; B = belly of flower where nectar accumulatesafter overflowing from the main chamber; common at several forest edge localities at Si- C = site of bill insertion by Phaethornissuperciliosus rena. It was scarceelsewhere in Corcovado Na- and Eutoxeresaquila. tional Park. H. stilesiiflowers throughout the year at Sirena with a general peak of bloom during from the quite similar H. pognonantha Cufo- the rainy seasonstarting in late May. Each flower dontis fuels reproduction by P. superciliosusat lasts only half a day, wilting conspicuously by La Selva in the Caribbean lowlands on the op- early afternoon. The flowers are long and sharply posite side of Costa Rica (Stiles and Wolf 1979). bent, making accessto the main nectar chamber Contrary to expectation, however, the flowers of extremely difficult. A tight passagewayat the an- H. stilesii served only as a temporary resource terior end of the chamber compounds the chal- for P. superciliosusin our study area. lenge of nonlinear accessto the distant nectar chamber. MATERIALS AND METHODS H. imbricata is an abundant, widespread I conducted this study of color-marked hum- speciesin both the Caribbean and Pacific low- mingbirds (see Stiles and Wolf 1973 for proce- lands of Central America, and was one of the dures) in 1980 and 198 1 in Corcovado National dominant plants in the wet second growth hab- Park on the Osa Peninsula of Costa Rica. Allen itat at Sirena. The dark red, compact, vertical (1956)andHartshorne(l983: 132-136)describe inflorescence produces short, slightly curved the forests of this region. Our study site was lo- flowers, which allow direct accessto the nectar cated on the edge of rain forest near the park chamber by a straight bill or capillary tube. The headquartersat Sirena at the base of a small ridge anterior opening to the nectar chamber of H. next to the park headquarters and adjacent to a imbricata flowers allows easy passage. Both lek of P. superciliosus.Both Phaethornis and straight-billed hummingbirds, such as Thalura- Threneteswere common at this locality, but Eu- nia fircata and Amazilia decora, and hermit toxereswas rare, as reflectedin the relative abun- hummingbirds can reach the floral nectar cham- dance of captures during our study, namely 155 ber. Phaethornis, 76 Threnetes,and 7 Eutoxeres. The ease of measuring floral nectar contents Table 1 summarizes the floral and nectar char- facilitates study of energetic rewards available to acteristics of H. stilesii, the principal botanical hummingbirds. Nectar concentrations in H. sti- subjectof this study, and of H. imbricata (Kuntze) lesii flowers were measured in terms of percent Baker, the main alternative sourceof nectar used sucroseequivalents with a temperature-compen- by Phaethornis in our study area in May to July. sated hand refractometer and converted to H. stilesii is found on the Pacific side of Central J/flower based on grams of solute per 100 ml America up to 1,000 m elevation from Par&a, (Bolten et al. 1979). The nectar contained fiuc- Costa Rica south through the Golfo Dulce region tose, sucrose, glucose, and unidentified amino THREE HERMITS 781 0 0 . 07,. I,, I I I. I I 20 24 29 1 5 9 13 17 21 25 29 3 7 11 15 19 23 27 31 4 9 MAY JUNE JULY AUG. FIGURE 2. Standingcrops of nectar energy in Heliconiastilesii (squares) and in H. imbricata(closed circles). Black squares= mean total nectar per H. stilesiiflower at 06:OO;white squares= mean total nectar per H. stilesii flower at 10:OO;black circles = mean total nectar per H. imbricataflower * 1 SD indicated for values after mid- July (deviations in May and June were similar but omitted to simplify figure).Nectar energyavailable as overflow in the bellv of H. stilesiiflowers is shown at the bottom left of the figure:horizontal bars = mean; vertical black bars = i 1 SD. acids (Gill, unpubl. data). Nectar volumes in studies.One lek male, color-marked Pink-White- plucked flowers were measured using 100 ~1 cap- Red (PWR), accounted for 83% of the visits to illary tubes, first from the belly of the flower “I” in 1981. anterior to the staminode and then separately To determine the patterns of nectar removal from the main chamber (Fig. 1). The presence from H. stilesiiflowers by Phaethornis,we bagged of insect larvae or ants in the nectar chamber bracts with new flowers at dawn and then re- was noted. Most flowers also contained floral moved the netting in midmorning to await hum- mites (see Colwell 1973, Dobkin 1984). In this mingbird visits. Baggedflowers remaining on an paper the term “standing crop” refers to nectar inflorescence served as controls. Flowers with present in flowers open to visitors of all kinds. beetle or fly larvae were excluded from the anal- Nectar production was estimated as the accu- ysis of nectar removal; suchflowers typically were mulation in flowers bagged with mesh cloth be- rejected by Phaethornis. Brief or aborted flower fore dawn. visits (less than 5% of total) also were discarded To establish the temporal patterns of flower to insure that the flower contained substantial visitation, we undertook continuous vigils at nectar and that the hummingbird fed without stands (= presumed clones) of H. stilesii. We interference from larvae inside the flower or from monitored all visits by hummingbirds to these Trigona bees. flowers from 07:OO to 12:00, and into the late afternoon on some days.
Recommended publications
  • The Basilinna Genus (Aves: Trochilidae): an Evaluation Based on Molecular Evidence and Implications for the Genus Hylocharis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Revista Mexicana de Biodiversidad 85: 797-807, 2014 DOI: 10.7550/rmb.35769 The Basilinna genus (Aves: Trochilidae): an evaluation based on molecular evidence and implications for the genus Hylocharis El género Basilinna (Aves: Trochilidae): una evaluación basada en evidencia molecular e implicaciones para el género Hylocharis Blanca Estela Hernández-Baños1 , Luz Estela Zamudio-Beltrán1, Luis Enrique Eguiarte-Fruns2, John Klicka3 and Jaime García-Moreno4 1Museo de Zoología, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México. Apartado postal 70- 399, 04510 México, D. F., Mexico. 2Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México. Apartado postal 70-275, 04510 México, D. F., Mexico. 3Burke Museum of Natural History and Culture, University of Washington, Box 353010, Seattle, WA, USA. 4Amphibian Survival Alliance, PO Box 20164, 1000 HD Amsterdam, The Netherlands. [email protected] Abstract. Hummingbirds are one of the most diverse families of birds and the phylogenetic relationships within the group have recently begun to be studied with molecular data. Most of these studies have focused on the higher level classification within the family, and now it is necessary to study the relationships between and within genera using a similar approach. Here, we investigated the taxonomic status of the genus Hylocharis, a member of the Emeralds complex, whose relationships with other genera are unclear; we also investigated the existence of the Basilinna genus. We obtained sequences of mitochondrial (ND2: 537 bp) and nuclear genes (AK-5 intron: 535 bp, and c-mos: 572 bp) for 6 of the 8 currently recognized species and outgroups.
    [Show full text]
  • Topazes and Hermits
    Trochilidae I: Topazes and Hermits Fiery Topaz, Topaza pyra Topazini Crimson Topaz, Topaza pella Florisuginae White-necked Jacobin, Florisuga mellivora Florisugini Black Jacobin, Florisuga fusca White-tipped Sicklebill, Eutoxeres aquila Eutoxerini Buff-tailed Sicklebill, Eutoxeres condamini Saw-billed Hermit, Ramphodon naevius Bronzy Hermit, Glaucis aeneus Phaethornithinae Rufous-breasted Hermit, Glaucis hirsutus ?Hook-billed Hermit, Glaucis dohrnii Threnetes ruckeri Phaethornithini Band-tailed Barbthroat, Pale-tailed Barbthroat, Threnetes leucurus ?Sooty Barbthroat, Threnetes niger ?Broad-tipped Hermit, Anopetia gounellei White-bearded Hermit, Phaethornis hispidus Tawny-bellied Hermit, Phaethornis syrmatophorus Mexican Hermit, Phaethornis mexicanus Long-billed Hermit, Phaethornis longirostris Green Hermit, Phaethornis guy White-whiskered Hermit, Phaethornis yaruqui Great-billed Hermit, Phaethornis malaris Long-tailed Hermit, Phaethornis superciliosus Straight-billed Hermit, Phaethornis bourcieri Koepcke’s Hermit, Phaethornis koepckeae Needle-billed Hermit, Phaethornis philippii Buff-bellied Hermit, Phaethornis subochraceus Scale-throated Hermit, Phaethornis eurynome Sooty-capped Hermit, Phaethornis augusti Planalto Hermit, Phaethornis pretrei Pale-bellied Hermit, Phaethornis anthophilus Stripe-throated Hermit, Phaethornis striigularis Gray-chinned Hermit, Phaethornis griseogularis Black-throated Hermit, Phaethornis atrimentalis Reddish Hermit, Phaethornis ruber ?White-browed Hermit, Phaethornis stuarti ?Dusky-throated Hermit, Phaethornis squalidus Streak-throated Hermit, Phaethornis rupurumii Cinnamon-throated Hermit, Phaethornis nattereri Little Hermit, Phaethornis longuemareus ?Tapajos Hermit, Phaethornis aethopygus ?Minute Hermit, Phaethornis idaliae Polytminae: Mangos Lesbiini: Coquettes Lesbiinae Coeligenini: Brilliants Patagonini: Giant Hummingbird Lampornithini: Mountain-Gems Tro chilinae Mellisugini: Bees Cynanthini: Emeralds Trochilini: Amazilias Source: McGuire et al. (2014)..
    [Show full text]
  • Ecography ECOG-01538 Maglianesi, M
    Ecography ECOG-01538 Maglianesi, M. A., Blüthgen, N., Böhning-Gaese, K. and Schleuning, M. 2015. Topographic microclimates drive microhabitat associations at the range margin of a butterfly. – Ecography doi: 10.1111/ecog.01538 Supplementary material Appendix 1 Table A1. List of families, genera and species of plants recorded by identification of pollen loads carried by hummingbird individuals at three elevations in northeastern Costa Rica. Only plant morphotypes that could be identified to species, genus or family level are given. The proportion of pollen identified to species level was 43% and that identified to a higher taxonomic level was 10%; 47% of pollen grains were categorized into pollen morphotypes (not shown here). Plant families are ordered alphabetically within each elevation. Elevation Family Genus Species Low Bromeliaceae Aechmea Aechmea mariareginae Low Acanthaceae Aphelandra Aphelandra storkii Low Bignoniaceae Arrabidaea Arrabidaea verrucosa Low Gesneraciae Besleria Besleria columnoides Low Alstroemeriaceae Bomarea Bomarea obovata Low Gesneriaceae Columnea Columnea linearis Low Gesneraceae Columnea Columnea nicaraguensis Low Gesneraceae Columnea Columnea purpurata Low Gesneraceae Columnea Columnea querceti Low Costaceae Costus Costus pulverulentus Low Costaceae Costus Costus scaber Low Costaceae Costus Costus sp 1 Low Gesneriaceae Drymonia Drymonia macrophylla Low Ericaceae Ericaceae Ericaceae 1 Low Ericaceae Ericaceae Ericaceae 2 Low Bromeliaceae Guzmania Guzmania monostachia Low Rubiaceae Hamelia Hamelia patens Low Heliconiaceae
    [Show full text]
  • Nesting Behavior of Reddish Hermits (Phaethornis Ruber) and Occurrence of Wasp Cells in Nests
    NESTING BEHAVIOR OF REDDISH HERMITS (PHAETHORNIS RUBER) AND OCCURRENCE OF WASP CELLS IN NESTS YOSHIKA ONIKI REDraSHHermits (Phaethornisruber) are small hummingbirdsof the forested tropical lowlands east of the Andes and south of the Orinoco (Meyer de Schauensee,1966: 161). Five birds mist-nettedat Belem (1 ø 28' S, 48ø 27' W, altitude 13 m) weighed2.0 to 2.5 g (average2.24 g). I studiedtheir nestingfrom 14 October1966 to October1967 at Belem, Brazil, in the Area de PesquisasEco16gicas do Guam•t (APEG) and MocamboForest reserves,in the Instituto de Pesquisase Experimentaqfio Agropecu•triasdo Norte (IPEAN). Names of forest types used and the Portugueseequivalents are: tidal swamp forest (vdrze'a), mature upland forest (terra-/irme) and secondgrowth (capoeira). In all casescapo.eira has been in mature upland situations. At Belem Phaethornisruber is commonall year in the lower levels of secondgrowth (capoeira) where thin branchesare plentiful. Isolated males call frequently from thin horizontal branches,never higher than 2.5-3.0 m. The male sits erect and wags his tail forward and backward as he squeaksa seriesof insectlike"pi-pi-pipipipipipi" notes, 18-20 times per minute; the first two or three notesare short and separated,the rest are run togetherrapidly. The bird sometimesstops calling for someseconds and flasheshis tongue in and out several times during the interval. I foundno singingassemblies of malehermits such as Davis (1934) describes for both the Reddishand Long-tailedHermits (Phaethornissuperciliosus). and Snow (1968) for the Little Hermit (P. longuemareus). Breeding season.--The monthly rainfall at Belem in the year of the study was 350 to 550 mm from January to May and 25 to 200 mm from June to December,with lows in October and November and highs in March and April.
    [Show full text]
  • Downloaded from Birdtree.Org [48] to Take Into Account Phylogenetic Uncertainty in the Comparative Analyses [67]
    bioRxiv preprint doi: https://doi.org/10.1101/586362; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. RESEARCH ARTICLE Open Access Distribution of iridescent colours in Open Peer-Review hummingbird communities results Open Data from the interplay between Open Code selection for camouflage and communication Cite as: preprint Posted: 15th November 2019 Hugo Gruson1, Marianne Elias2, Juan L. Parra3, Christine Recommender: Sébastien Lavergne Andraud4, Serge Berthier5, Claire Doutrelant1, & Doris Reviewers: Gomez1,5 XXX Correspondence: 1 [email protected] CEFE, Univ Montpellier, CNRS, Univ Paul Valéry Montpellier 3, EPHE, IRD, Montpellier, France 2 ISYEB, CNRS, MNHN, Sorbonne Université, EPHE, 45 rue Buffon CP50, Paris, France 3 Grupo de Ecología y Evolución de Vertrebados, Instituto de Biología, Universidad de Antioquia, Medellín, Colombia 4 CRC, MNHN, Ministère de la Culture et de la Communication, CNRS, Paris, France 5 INSP, Sorbonne Université, CNRS, Paris, France This article has been peer-reviewed and recommended by Peer Community In Evolutionary Biology Peer Community In Evolutionary Biology 1 of 33 bioRxiv preprint doi: https://doi.org/10.1101/586362; this version posted November 19, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Identification errors between closely related, co-occurring, species may lead to misdirected social interactions such as costly interbreeding or misdirected aggression. This selects for divergence in traits involved in species identification among co-occurring species, resulting from character displacement.
    [Show full text]
  • Trematoda: Digenea: Plagiorchiformes: Prosthogonimidae
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Faculty Publications from the Harold W. Manter Laboratory of Parasitology Parasitology, Harold W. Manter Laboratory of 8-2003 Whallwachsia illuminata n. gen., n. sp. (Trematoda: Digenea: Plagiorchiformes: Prosthogonimidae) in the Steely-Vented Hummingbird Amazilia saucerrottei (Aves: Apodiformes: Trochilidae) and the Yellow-Olive Flycatcher Tolmomyias sulphurescens (Aves: Passeriformes: Tyraninidae) from the Área de Conservación Guanacaste, Guanacaste, Costa Rica David Zamparo University of Toronto Daniel R. Brooks University of Toronto, [email protected] Douglas Causey University of Alaska Anchorage, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/parasitologyfacpubs Part of the Parasitology Commons Zamparo, David; Brooks, Daniel R.; and Causey, Douglas, "Whallwachsia illuminata n. gen., n. sp. (Trematoda: Digenea: Plagiorchiformes: Prosthogonimidae) in the Steely-Vented Hummingbird Amazilia saucerrottei (Aves: Apodiformes: Trochilidae) and the Yellow-Olive Flycatcher Tolmomyias sulphurescens (Aves: Passeriformes: Tyraninidae) from the Área de Conservación Guanacaste, Guanacaste, Costa Rica" (2003). Faculty Publications from the Harold W. Manter Laboratory of Parasitology. 235. https://digitalcommons.unl.edu/parasitologyfacpubs/235 This Article is brought to you for free and open access by the Parasitology, Harold W. Manter Laboratory of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for
    [Show full text]
  • Tinamiformes – Falconiformes
    LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma
    [Show full text]
  • Whole-Genome Data Reveal the Complex History of a Diverse Ecological Community
    Whole-genome data reveal the complex history of a diverse ecological community Lynsey Bunnefelda,b,1,2, Jack Hearna,1, Graham N. Stonea,3, and Konrad Lohsea,3 aInstitute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, Scotland; and bBiological & Environmental Sciences, University of Stirling, Stirling FK9 4LA, Scotland Edited by Craig Moritz, Australian National University, Canberra, ACT, Australia, and accepted by Editorial Board Member Douglas Futuyma May 30, 2018 (received for review January 8, 2018) How widespread ecological communities assemble remains a key Concordant population histories are expected in obligate question in ecology. Trophic interactions between widespread species associations, such as those between plants and special- species may reflect a shared population history or ecological ist pollinators, and these commonly show both coevolution of fitting of local pools of species with very different population his- associated traits and codiversification of the lineages involved tories. Which scenario applies is central to the stability of trophic (6, 7). However, much of terrestrial diversity is found in com- associations and the potential for coevolution between species. munities dominated by less specific interactions between guilds Here we show how alternative community assembly hypotheses of species, for which either codispersal or ecological fitting is can be discriminated using whole-genome data for component a plausible assembly mechanism. These are exemplified by the species and provide a likelihood framework that overcomes cur- rich insect communities associated with temperate trees, in which rent limitations in formal comparison of multispecies histories. widespread herbivores are commonly attacked by a consistent set We illustrate our approach by inferring the assembly history of of parasitoid enemies (8, 9).
    [Show full text]
  • Observations of Hummingbird Feeding Behavior at Flowers of Heliconia Beckneri and H
    SHORT COMMUNICATIONS ORNITOLOGIA NEOTROPICAL 18: 133–138, 2007 © The Neotropical Ornithological Society OBSERVATIONS OF HUMMINGBIRD FEEDING BEHAVIOR AT FLOWERS OF HELICONIA BECKNERI AND H. TORTUOSA IN SOUTHERN COSTA RICA Joseph Taylor1 & Stewart A. White Division of Environmental and Evolutionary Biology, Graham Kerr Building, University of Glasgow, Glasgow, CB23 6DH, UK. Observaciones de la conducta de alimentación de colibríes con flores de Heliconia beckneri y H. tortuosa en El Sur de Costa Rica. Key words: Pollination, sympatric, cloud forest, Cloudbridge Nature Reserve, Green Hermit, Phaethornis guy, Violet Sabrewing, Campylopterus hemileucurus, Green-crowned Brilliant, Heliodoxa jacula. INTRODUCTION sources in a single foraging bout (Stiles 1978). Interactions between closely related sympatric The flower preferences shown by humming- flowering plants may involve competition for birds (Trochilidae) are influenced by a com- pollinators, interspecific pollen loss and plex array of factors including their bill hybridization (e.g., Feinsinger 1987). These dimensions, body size, habitat preference and processes drive the divergence of genetically relative dominance, as influenced by age and based floral phenotypes that influence polli- sex, and how these interact with the morpho- nator assemblages and behavior. However, logical, caloric and visual properties of flow- floral convergence may be favored if the ers (e.g., Stiles 1976). increased nectar supplies and flower densities, Hummingbirds are the primary pollina- for example, increase the regularity and rate tors of most Heliconia species (Heliconiaceae) of flower visitation for all species concerned (Linhart 1973), which are medium to large (Schemske 1981). Sympatric hummingbird- clone-forming herbs that usually produce pollinated plants probably face strong selec- brightly colored floral bracts (Stiles 1975).
    [Show full text]
  • On the Condors and Humming-Birds of the Equatorial Andes
    Annals and Magazine of Natural History Series 4 ISSN: 0374-5481 (Print) (Online) Journal homepage: http://www.tandfonline.com/loi/tnah10 XXI.—On the condors and humming-birds of the Equatorial Andes James Orton To cite this article: James Orton (1871) XXI.—On the condors and humming-birds of the Equatorial Andes , Annals and Magazine of Natural History, 8:45, 185-192, DOI: 10.1080/00222937108696463 To link to this article: http://dx.doi.org/10.1080/00222937108696463 Published online: 16 Oct 2009. Submit your article to this journal Article views: 3 View related articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tnah10 Download by: [La Trobe University] Date: 15 June 2016, At: 22:45 Mr. J. Ortou on t£e Condors of the Equatorial Andes. 185 [In the 27th cervical vertebra of PleMosaurus Manselii~ Mr. Hulke gives the measurements as :- From front to back of centrum .......... 2~ inches. Width of centrum .................... 4 ,, Depth of centrum .................... 3~ ,, and in the pectoral region the distinctive proportions of width and depth become slightly more marked. The more concave articular face of the eentrum and less thickened peripheral margin of the Kimmeridge species con- firm the specific distinction of the types.] Pectoral vertebra.--The pectoral vertebra of P. wlns2itensis appears to measure-- From front to back of the centrum " 18 inch. Width of centrum .................... 2-) inches. Depth of centrum .................... 1{ inch. Thus the form of the articular surface of the eentrum is broader from side to side than in the neck; it is also a little flatter.
    [Show full text]
  • Project Scientific Progress Report Study Site
    Project Ecology of plant-hummingbird interactions along an elevational gradient Scientific Progress Report Project leader: Catherine Graham, Swiss Federal Research Institute Principal investigator: María Alejandra Maglianesi, Universidad Estatal a Distancia Coordinator: Emanuel Brenes Rodríguez, Universidad Estatal a Distancia Study site Las Nubes Biological Reserve York University San José, Costa Rica January, 2020 1 INTRODUCTION A primary aim of community ecology is to identify the processes that govern species assemblages across environmental gradients (McGill et al. 2006), allowing us to understand why biodiversity is non-randomly distributed on Earth. Mutualistic interactions such as those between plants and their animal pollinators are the major biodiversity component from which the integrity of ecosystems depends (Valiente-Banuet et al. 2015). The interdependence of plant and pollinators can be assessed using a network approach, which is a powerful tool to analyze the complexity of ecological systems (Ings et al. 2009), especially in highly diversified tropical regions. Mountain regions provide pronounced environmental gradients across relatively small spatial scales and have proved to be a suitable model system to investigate patterns and determinants of species diversity and community structure (Körner 2000, Sanders and Rahbek 2012). Although some studies have investigated the variation in plant–pollinator interaction networks across elevational gradients (Ramos-Jiliberto et al. 2010, Benadi et al. 2013), such studies are still scarce, particularly in the tropics. In the Neotropics, hummingbirds (Trochilidae) are considered to be effective pollinators (Castellanos et al. 2003). They have been classified into two distinct groups: hermits and non-hermits, which differ mainly in their elevational distribution and their level of specialization on floral resources, i.e., the proportion of floral resources available in the community that is used by species (Stiles 1978).
    [Show full text]
  • The Behavior and Ecology of Hermit Hummingbirds in the Kanaku Mountains, Guyana
    THE BEHAVIOR AND ECOLOGY OF HERMIT HUMMINGBIRDS IN THE KANAKU MOUNTAINS, GUYANA. BARBARA K. SNOW OR nearly three months, 17 January to 5 April 1970, my husband and I F camped at the foot of the Kanaku Mountains in southern Guyana. Our camp was situated just inside the forest beside Karusu Creek, a tributary of Moco Moco Creek, at approximately 80 m above sea level. The period of our visit was the end of the main dry season which in this part of Guyana lasts approximately from September or October to April or May. Although we were both mainly occupied with other observations we hoped to accumulate as much information as possible on the hermit hummingbirds of the area, particularly their feeding niches, nesting and social organization. Previously, while living in Trinidad, we had studied various aspects of the behavior and biology of the three hermit hummingbirds resident there: the breeding season (D. W. Snow and B. K. Snow, 1964)) the behavior at singing assemblies of the Little Hermit (Phaethornis Zonguemareus) (D. W. Snow, 1968)) the feeding niches (B. K. Snow and D. W. Snow, 1972)) the social organization of the Hairy Hermit (Glaucis hirsuta) (B. K. Snow, 1973) and its breeding biology (D. W. Snow and B. K. Snow, 1973)) and the be- havior and breeding of the Guys’ Hermit (Phuethornis guy) (B. K. Snow, in press). A total of six hermit hummingbirds were seen in the Karusu Creek study area. Two species, Phuethornis uugusti and Phaethornis longuemureus, were extremely scarce. P. uugusti was seen feeding once, and what was presumably the same individual was trapped shortly afterwards.
    [Show full text]