New Data on Brown Lacewing Genus Wesmaelius Krüger, 1922 from China (Neuroptera, Hemerobiidae), with a Key to Chinese Species

Total Page:16

File Type:pdf, Size:1020Kb

New Data on Brown Lacewing Genus Wesmaelius Krüger, 1922 from China (Neuroptera, Hemerobiidae), with a Key to Chinese Species Zootaxa 4273 (1): 019–030 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Article ZOOTAXA Copyright © 2017 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4273.1.2 http://zoobank.org/urn:lsid:zoobank.org:pub:347F3413-9BB2-4891-BD26-F4642578AF69 New data on brown lacewing genus Wesmaelius Krüger, 1922 from China (Neuroptera, Hemerobiidae), with a key to Chinese species YANG ZHAO1, YANLIN TIAN2& ZHIQI LIU2,3 1Nanjing Institute of Agricultural Sciences in Jiangsu Hilly Area, No.6 Xianyin South Road, Qixia District, Nanjing, Jiangsu Province 210046, China 2Department of Entomology, China Agricultural University, Beijing 100193, China 3Corresponding author. E-mail: [email protected] Abstract A new species of the genus Wesmaelius is described from China: Wesmaelius dissectus sp. nov., which was found in Si- chuan province. Wesmaelius ravus (Withycombe, 1923) was recorded in China for the first time in Hubei province and Inner Mongolia. The Wesmaelius helanensis Tian & Liu, 2011 is redescribed, with the first discovery of female in China. Updated keys to the adult males and females of the Wesmaelius from China are also provided. Key words: Hemerobiidae, Hemerobiinae, Wesmaelius, new species, new record, China Introduction The genus Wesmaelius Krüger was erected in 1922 based on the type species Hemerobius concinnus Stephens (1836). It belongs to the subfamily Hemerobiinae (Latreille, 1802) and is widely distributed in Asia, Africa, Europe and North America. The genus Wesmaelius has a diversity species in the temperate regions of North America and Eurasia (Yang 1980; Oswald 1993; Tian & Liu 2011). Tjeder (1936) described the first Wesmaelius species from China named Boriomyia sinica which was later synonymized with W. quettanus (Navás, 1930), based on only one male specimen from Gansu province, and found the species W. sufuensis from Xinjiang province in 1968. There was a somewhat controversy about the state of genus Wesmaelius. Tjeder regarded the genus Kimminsia Killington, 1937 as a subgenus of Wesmaelius in 1961. However, according to the characteristics of wings and genitalia, Yang (1980) proposed Wesmaelius and Kimminsia were two valid, but closed related genera. Wesmaelius was diagnosed by the forewing characteristics, i.e., the crossvein between ORB1 and ORB2 is present and the crossvein r is present distal to the origin of ORB1 in the hind wing, while in the genus Kimminsia this crossvein in the forewing is absent and the crossvein r is present at the base of ORB1 in the hind wing. In recent years, works treating Nearctic and Palearctic Wesmaelius generally follow Aspöck et al. (1980) in recognizing two subgenera, Wesmaelius and Kimminsia. Klimaszewski and Kevan (1987) distinguished the two subgenera by the different shapes of forewing and male ectoproct, the 2ir crossvein in forewing present or not and the length of gonapophyses laterales in female. Oswald (1993) regarded the polarities of the characteristics, forewing and male ectoproct shapes, as unresolved, and not adequate to demonstrate the holophyly of either group; by outgroup comparison to other genera of Hemerobiidae, the states of other characteristics above in Wesmaelius were clearly derived and the plesiomorphic state in Kimminsia cannot justify its holophyly. Therefore, neither subgenus was recognized there. After examining the specimens from China we also propose there is no subgenus and they all belong to the genus Wesmaelius. Presently, about sixty-five species are recorded in the world (Tjeder 1961; Kuwayama 1962; Aspöck et al. 1980; Yang 1980; Makarkin 1986, 1996; Klimaszewski & Kevan 1987; Tian & Liu 2011), with seventeen species recorded from China, including one new species in this paper. Wesmaelius is diagnosed by the forewing characteristics as crossvein 2sc-r absent; anterior radial trace bearing Accepted by B. Price: 6 Apr. 2017; published: 1 Jun. 2017 19 3 or more Rs branches; proximal humeral trace strongly recurrent; crossvein 2r-m present and positioned adjacent or distal to crossvein 2m-cu. In hind wing, outer gradate series with 3 or more intraradial crossveins. Wesmaelius can be distinguished from the similar and largely sympatric genus Hemerobius by the presence of forewing crossvein 2r-m in its normal position adjacent or distal to crossvein 2m-cu, the presence of a pecten on the mesal process of the male ectoproct, and the male parabaculum never completely divided (Oswald 1993). In this paper, one new species W. dissectus sp. nov., is described from China. The new record species W. ravus (Withycombe, 1923) is reported with detailed description and the distribution in China. And the female of W. helanensis Tian & Liu, 2011 with new distributions is described for the first time, with keys for identification of adults of Chinese known species. All specimens are deposited in the Entomological Museum of China Agricultural University (CAU), Beijing. Material and methods The specimens were examined under an SZ760 stereomicroscope. Photographs of wings were taken with a Nikon EOS D3200 digital camera attached to the stereomicroscope. The terminalia were observed under a Leica DM2500 compound microscope. Descriptions of coloration are based on observations under the stereomicroscope with direct light on specimens preserved in 75% ethyl alcohol. The abdominal apex with genitalia was cut off and heated in 10% sodium hydroxide for about 10–20 min and then transferred to an excavated slide with glycerin. After examination it was transferred to fresh 75% ethyl alcohol and stored in a microvial. Wing venation terminology follows Oswald (1993) and Makarkin & Wedmann (2009). Terminology of genitalia follows Oswald (1993). Abbreviations: 7S, 8S, 9S, sternite; 7T, 8T, 9T, tergite; Ect, ectoproct; ehgs, extrahemigonarcus; gl, gonapophyses laterales; hgs, hemigonarcus; igps, intragonopons; igs, intragonarcus; ihgs, intrahemigonarcus; med, mediuncus; pmed, paramediuncus; sap, supraapophyseal plate; sg, subgenitale; tl, terminal lobe. Taxonomy Keys to species of Wesmaelius from China Male 1. The crossvein between ORB1 and ORB2 present in forewing; the crossvein r present after the origin of ORB1 in hind wing . W. asiaticus Yang - The crossvein between ORB1 and ORB2 absent in forewing; the crossvein r present before the origin of ORB1 in hind wing 2 2. Body yellowish-brown, no brown spots present in head and prothorax . W. navasi (Andréu) - Body yellowish-brown to dark brown, brown spots present in head or prothorax . 3 3. All the areas before antennae in head dark brown . 4 - Not all the areas before antennae in head dark brown . 8 4. 3 r-rs present in hind wing. W. trivenulatus (Yang) - 1–2 r-rs present in hind wing. 5 5. Three gradate series present in forewing. W. hani (Yang) - Four gradate series present in forewing . 6 6. The anteroventral edge of ectoproct not developed into protrusion . W. nervosus (Fabricius) - The anteroventral edge of ectoproct developed into protrusion . 7 7. Scape and pedicel darker than flagellum; obvious brown stripe absent in forewing; 1 r-rs present in hind wing . W. ravus (Withycombe) - Scape and pedicel not darker than flagellum; obvious brown stripe present in forewing; 2 r-rs present in hind wing . .W. baikalensis (Navás) 8. Three gradate series present in forewing. W. conspurcatus (McLachlan in Fedtschenko) - Four gradate series present in forewing . 9 9. A V-shaped brown spot present in pronotum; cubitus gradate series transparent and unconspicuous in forewing . .W. quettanus (Navás) - A V-shaped brown spot absent in pronotum; cubitus gradate series conspicuous in forewing . 10 10. Brown stripe present along the middle gradate series in forewing . 11 - Brown stripe absent along the middle gradate series in forewing. 12 11. Brown stripe present along the cubitus gradate series in forewing; posteroventral edge of 8th sternite declining and include the 20 · Zootaxa 4273 (1) © 2017 Magnolia Press ZHAO ET AL. spiraculae. W. bihamitus (Yang) - Brown stripe absent along the cubitus gradate series in forewing; posteroventral edge of 8th sternite declining but not include the spiraculae. W. sufuensis Tjeder 12. Only frons in head dark brown; anteroventral edge of ectoproct long, intersected and ended with sharp hook . W. helanensis Tian & Liu - All the areas before antennae dark brown except the clypeus; anteroventral edge of ectoproct short, not intersected and ended flat . W. dissectus sp. nov. Female 1. The crossvein between ORB1 and ORB2 present in forewing; the crossvein r present after the first fork of ORB1 in hind wing . W. asiaticus Yang - The crossvein between ORB1 and ORB2 absent in forewing; the crossvein r present before the first fork of ORB1 in hind wing . 2 2. Body yellowish-brown, no brown spot present in head and prothorax . 3 - Body yellowish-brown to dark brown, brown spots present in head or prothorax. 4 3. Brown longitudinal stripes present along both sides of pronotum; veins various colored with transparent intervals in forewing . .W. tuofenganus (Yang) - Brown longitudinal stripes absent along both sides of pronotum; veins uniform colored in forewing . W. navasi (Andréu) 4. All the areas before antennae in head dark brown . 5 - Not all the areas before antennae in head dark brown . 10 5. 3 r-rs present in hind wing . W. trivenulatus (Yang) - 1–2 r-rs present in hind wing . 6 6. 1 r-rs present in hind wing . W. ravus (Withycombe) - 2 r-rs present in hind wing . ..
Recommended publications
  • ARTHROPOD COMMUNITIES and PASSERINE DIET: EFFECTS of SHRUB EXPANSION in WESTERN ALASKA by Molly Tankersley Mcdermott, B.A./B.S
    Arthropod communities and passerine diet: effects of shrub expansion in Western Alaska Item Type Thesis Authors McDermott, Molly Tankersley Download date 26/09/2021 06:13:39 Link to Item http://hdl.handle.net/11122/7893 ARTHROPOD COMMUNITIES AND PASSERINE DIET: EFFECTS OF SHRUB EXPANSION IN WESTERN ALASKA By Molly Tankersley McDermott, B.A./B.S. A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biological Sciences University of Alaska Fairbanks August 2017 APPROVED: Pat Doak, Committee Chair Greg Breed, Committee Member Colleen Handel, Committee Member Christa Mulder, Committee Member Kris Hundertmark, Chair Department o f Biology and Wildlife Paul Layer, Dean College o f Natural Science and Mathematics Michael Castellini, Dean of the Graduate School ABSTRACT Across the Arctic, taller woody shrubs, particularly willow (Salix spp.), birch (Betula spp.), and alder (Alnus spp.), have been expanding rapidly onto tundra. Changes in vegetation structure can alter the physical habitat structure, thermal environment, and food available to arthropods, which play an important role in the structure and functioning of Arctic ecosystems. Not only do they provide key ecosystem services such as pollination and nutrient cycling, they are an essential food source for migratory birds. In this study I examined the relationships between the abundance, diversity, and community composition of arthropods and the height and cover of several shrub species across a tundra-shrub gradient in northwestern Alaska. To characterize nestling diet of common passerines that occupy this gradient, I used next-generation sequencing of fecal matter. Willow cover was strongly and consistently associated with abundance and biomass of arthropods and significant shifts in arthropod community composition and diversity.
    [Show full text]
  • A New Brachypterous Nusalala Species from Costa Rica, with Comments on the Evolution of Flightlessness in Brown Lacewings (Neuroptera: Hemerobiidae)
    Systematic Entomology (1996) 21, 343-352 A new brachypterous Nusalala species from Costa Rica, with comments on the evolution of flightlessness in brown lacewings (Neuroptera: Hemerobiidae) J 0 H N D . 0 S WA L D Department of Entomology, Texas A&M University, College Station, Texas, U.S.A. Abstract. A new flightless hemerobiid species, Nusalala brachyptera, collected at high elevation in Costa Rica, is described and illustrated, and a variety of data relevant to the evolution of flightlessness in the family Hemerobiidae are reviewed. Flightlessness due to brachyptery has evolved independently in at least five monophyletic [= holophyletic] lineages of the family Hemerobiidae (brown lacewings). Volant hemerobiids are primarily foliage foraging arboreal predators [presumed ancestral condition], while flightless species are predominantly associated with terricolous-type microhabitats (e.g. ground-litter, epiphytic mosses) [presumed derived condition]. These differences suggest a significant habitat shift for flightless hemerobiid species, and that the parallel evolution of flightlessness and brachyptery in hemerobiids are shared responses to the conditions of a terricolous existence. The restriction of most flightless hemerobiid species to insular andlor montanelalpine land areas may be related to the typically depauperate nature of the faunas of such areas. This faunal characteristic may facilitate ttansitions from arboreality to terricolousness by presenting ancestrally arboreal predators such as hemerobiids with novel ecological opportunities
    [Show full text]
  • Kenai National Wildlife Refuge Species List, Version 2018-07-24
    Kenai National Wildlife Refuge Species List, version 2018-07-24 Kenai National Wildlife Refuge biology staff July 24, 2018 2 Cover image: map of 16,213 georeferenced occurrence records included in the checklist. Contents Contents 3 Introduction 5 Purpose............................................................ 5 About the list......................................................... 5 Acknowledgments....................................................... 5 Native species 7 Vertebrates .......................................................... 7 Invertebrates ......................................................... 55 Vascular Plants........................................................ 91 Bryophytes ..........................................................164 Other Plants .........................................................171 Chromista...........................................................171 Fungi .............................................................173 Protozoans ..........................................................186 Non-native species 187 Vertebrates ..........................................................187 Invertebrates .........................................................187 Vascular Plants........................................................190 Extirpated species 207 Vertebrates ..........................................................207 Vascular Plants........................................................207 Change log 211 References 213 Index 215 3 Introduction Purpose to avoid implying
    [Show full text]
  • Neuropterida of the Lower Cretaceous of Southern England, with a Study on Fossil and Extant Raphidioptera
    NEUROPTERIDA OF THE LOWER CRETACEOUS OF SOUTHERN ENGLAND, WITH A STUDY ON FOSSIL AND EXTANT RAPHIDIOPTERA A thesis submitted to The University of Manchester for the degree of PhD in the Faculty of Engineering and Physical Sciences 2010 JAMES EDWARD JEPSON SCHOOL OF EARTH, ATMOSPHERIC AND ENVIRONMENTAL SCIENCES TABLE OF CONTENTS FIGURES.......................................................................................................................8 TABLES......................................................................................................................13 ABSTRACT.................................................................................................................14 LAY ABSTRACT.........................................................................................................15 DECLARATION...........................................................................................................16 COPYRIGHT STATEMENT...........................................................................................17 ABOUT THE AUTHOR.................................................................................................18 ACKNOWLEDGEMENTS..............................................................................................19 FRONTISPIECE............................................................................................................20 1. INTRODUCTION......................................................................................................21 1.1. The Project.......................................................................................................21
    [Show full text]
  • Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera)
    Biodiversity Data Journal 3: e4830 doi: 10.3897/BDJ.3.e4830 Data Paper Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera) Ulrike Aspöck‡§, Horst Aspöck , Agostino Letardi|, Yde de Jong ¶,# ‡ Natural History Museum Vienna, 2nd Zoological Department, Burgring 7, 1010, Vienna, Austria § Institute of Specific Prophylaxis and Tropical Medicine, Medical Parasitology, Medical University (MUW), Kinderspitalgasse 15, 1090, Vienna, Austria | ENEA, Technical Unit for Sustainable Development and Agro-industrial innovation, Sustainable Management of Agricultural Ecosystems Laboratory, Rome, Italy ¶ University of Amsterdam - Faculty of Science, Amsterdam, Netherlands # University of Eastern Finland, Joensuu, Finland Corresponding author: Ulrike Aspöck ([email protected]), Horst Aspöck (horst.aspoeck@meduni wien.ac.at), Agostino Letardi ([email protected]), Yde de Jong ([email protected]) Academic editor: Benjamin Price Received: 06 Mar 2015 | Accepted: 24 Mar 2015 | Published: 17 Apr 2015 Citation: Aspöck U, Aspöck H, Letardi A, de Jong Y (2015) Fauna Europaea: Neuropterida (Raphidioptera, Megaloptera, Neuroptera). Biodiversity Data Journal 3: e4830. doi: 10.3897/BDJ.3.e4830 Abstract Fauna Europaea provides a public web-service with an index of scientific names of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region), and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard) reference suitable for many users in science, government, industry, nature conservation and education.
    [Show full text]
  • Tomasz Blaik1 & Roland Dobosz2 the Beginning of Investigation on Neuroptera of the Southern Shore of the Baltic Sea, at Pres
    _____________________________________________________ Proceedings of the Tenth International Symposium on Neuropterology. Piran, Slovenia, 2008. Devetak, D., Lipovšek, S. & Arnett, A.E. (eds). Maribor, Slovenia, 2010. Pp 97–112. ___________________________________________________________________________ Lacewings (Neuroptera) of the Polish Baltic coast with remarks on Wesmaelius (Kimminsia) balticus (Tjeder, 1931) – a new species of Hemerobiidae to the fauna of Poland Tomasz Blaik1 & Roland Dobosz2 1 Opole University, Department of Biosystematics, Oleska 22, 45-052 Opole, Poland; E-mail: [email protected] 2 Upper Silesian Museum, Department of Natural History, Jana III Sobieskiego 2, 41-902 Bytom, Poland; E-mail: [email protected] Abstract. The paper summarizes the state-of-the-art on Neuroptera recorded on the Polish Baltic coast. The results of investigations conducted since the eighties of the 20th century against the background of revised original data on the area are presented. The complete list of local neuropteran fauna comprises 6 families and 51 species (ca. 59% of the total Neuroptera known from Poland). Siberian faunal elements are dominating here, but a considerable number of Mediterranean, Holarctic and, to a lesser extent, Extramediterranean-European faunal elements is also present. A group of several species reaches a limit of distribution on the area. The occurrence of supposedly relic within northern part of Central Europe, Holomediterranean: Acanthaclisis occitanica (Vill.), Myrmeleon inconspicuus Ramb. and Distoleon tetragrammicus (Fabr.) must be highlighted, as well probably not transitional in Poland, rare: Nothochrysa fulviceps (Steph.) and N. capitata (Fabr.), and noted far from the known Central European centres of distribution - Peyerimhoffina gracilis (Schn.). First record of Wesmaelius balticus (Tjed.) in Poland is given.
    [Show full text]
  • New Data on the Brown Lacewings from Asia (Neuroptera: Hemerobiidae)
    Journal of Neuropterology 3: 61-97, 2000 (2001) New data on the Brown Lacewings from Asia (Neuroptera: Hemerobiidae) V. J. Monserrat Departamento de Biologia Animal I, Facultad de Biologia Universidad Complutense, E-28040 Madrid, Spain E-mail: [email protected] Key Words: Faunistical, Taxonomy, Systematics, Neuroptera, Hemerobiidae, Palaearctic, Oriental Regions. SUMMARY New data on the taxonomy, morphology, distribution or biology of 58 hardly known brown lacewing species from Asia are given. some new synonymies have been proposed as follow: Hemerobius harmandinus NavBs,1910 = (Hemerobius divisus NavBs,1931 n. syn. = Hemerobius lacunaris NavBs,1936 n. syn.), Hemerobius japonicus Nakahara,l915 = (Henzerobiusferox Tjeder,1936 n. syn.), Hemerobius poppii Esben-Petersen,1921 = (Heinerobius tunkunensis Navhs, 1933 n. syn. = Hemerobius xizangensis Yang,1981 n. syn.), Hemerobius tolimensis Banks, 19 10 = (Hemerobius sumatranus NavBs,1926 n. syn.), Hemerobius bispinus Banks,1940 = (Hemerobius montanus Kirnmis,l960 n. syn.), Hemerobius ckiangi Banks,1940 = (Hemerobius mangkamaizus Yang,I 981 n. syn.), Wesnzaelius navasi (Andreu,191 1) = (Wesm~eliusneimenica (Yang,1980) n. syn.), Wesmaelius vaillanti (NavBs,1927) = (Wesmaelius mongolicus (Steinmann,l965)n. syn.), Wesmaelius baikalensis (NavBs,1929) = (Wesnzaelius pseudofurcatus Makarkin,l986 n. syn.), Wesmaelius quettanus (NavBs,193 1) = (Wesmaelius sinicus (Tjeder,1937) n. syn. = Wesmaelius amseli (Aspock & Aspock, 1966) n. syn.), Sympherobius tessellatus Nakahara,l915 = (Sympherobius nzatsucocciphagus Yang,l980 n. syn. = Sympherobius weisong Yang,1980 11. syn. = Sympherobius l~iojiaensisYang,1980 n. syn.), Neuronema albostigma (Matsumura,l907) = (Neuronema nepalensis Nahakara,l971 n. syn. = Sineuronema gyirongana Yang,1981 n. syn.), Neuronema pielina (NavBs,1936) = (Neuronema kwanshiensis Kimmins, 1943 n. syn. = Neuronema tienrnuslzana Yang,1964 iz. syn. = Neuronema chungnanshana Yang,1964 n.
    [Show full text]
  • Norwegian Journal of Entomology
    Norwegian Journal of Entomology Volume 49 No. 2 • 2002 Published by the Norwegian Entomological Society Oslo and Stavanger NORWEGIAN JOURNAL OF ENTOMOLOGY A continuation ofFauna Norvegica Serie B (1979-1998), Norwegian Journal ofEntomology (1975-1978) and Norsk entomologisk Tidsskrift (1921-1974). Published by The Norwegian Entomological Society (Norsk ento­ mologisk forening). Norwegian Journal ofEntomologypublishes original papers and reviews on taxonomy, faunistics, zoogeography, general and applied ecology ofinsects and related terrestrial arthropods. Short communications, e.g. one or two printed pages, are also considered. Manuscripts should be sent to the editor. Editor Lauritz Semme, Department ofBiology, University ofOslo, P.O.Box 1050 Blindern, N-0316 Oslo, Norway. E­ mail: [email protected]. Editorial secretary Lars Ove Hansen, Zoological Museum, University of Oslo, P.O.Box 1172, Blindern, N-0318 Oslo. E-mail: [email protected]. Editorial board Ame C. Nilssen, Tromse John O. Solem, Trondheim Uta Greve Jensen, Bergen Knut Rognes, Stavanger Ame Fjellberg, Tjeme Membership and subscription. Requests about membership should be sent to the secretary: Jan A. Stenlekk, P.O. Box 386, NO-4002 Stavanger, Norway ([email protected]). Annual membership fees for The Norwegian Ento­ mological Society are as follows: NOK 200 (juniors NOK 100) for members with addresses in Norway, NOK 250 for members in Denmark, Finland and Sweden, NOK 300 for members outside Fennoscandia and Denmark. Members ofThe Norwegian Entomological Society receive Norwegian Journal ofEntomology and Insekt-Nytt free. Institutional and non-member subscription: NOK 250 in Fennoscandia and Denmark, NOK 300 elsewhere. Subscription and membership fees should be transferred in NOK directly to the account of The Norwegian Entomo­ logical Society, attn.: Egil Michaelsen, Kurlandvn.
    [Show full text]
  • Ulrike Aspöck Zum 70. Geburtstag: Ein Wissenschaftshistorischer Blumenstrauß
    Entomologica Austriaca 19 101-260 Linz, 16.3.2012 Ulrike Aspöck zum 70. Geburtstag: Ein wissenschaftshistorischer Blumenstrauß Horst ASPÖCK Abstract: Ulrike Aspöck – for her 70th birthday: A scientific historical flower-bouquet. It is my pleasure and honor to present an homage to my wife, Ulrike Aspöck, to celebrate the occasion of her 70th birthday (12 July 2011) and to commemorate almost 50 years of inspiring and fruitful scientific cooperation. On hand of many tables, lists and photographs, this article documents and illustrates aspects of her personal life, academic career and scientific achievements, in particular her merits in Neuropteridan research. K e y w o r d s : Ulrike Aspöck, curriculum, scientific achievements, zoology, entomology, Austria, Neuropterida. Vorbemerkung Es ist ungewöhnlich und mag vielleicht sogar befremden, dass der Ehemann einer Wissenschaftlerin öffentlich und in einer Fachzeitschrift eine Hommage zum 70. Geburtstag seiner Frau schreibt, doch die Rechtfertigung ergibt sich durch den Hinweis, dass die bisher über 48 Jahre dauernde Ehe zugleich durch 48 Jahre ununterbrochener und bis heute unvermindert anhaltender intensiver gemeinsamer wissenschaftlicher Arbeit geprägt ist und dass daher niemand auch nur annähernd so sehr mit dem Leben und dem wissenschaftlichen Werk von Ulrike Aspöck vertraut sein kann, wie ich. Das bedeutet natürlich, dass die Darstellung auch viel Autobiographisches enthält. Ich kann nur bitten, mir zu glauben, dass nicht der Wunsch nach Selbstdarstellung diesen Aufsatz prägt, sondern das Bemühen, den wissenschaftlichen Werdegang einer außerge- wöhnlichen, hervorragenden österreichischen Entomologin darzustellen und damit zugleich ein Stück Geschichte der Neuropterologie und der österreichischen Entomologie zu dokumentieren – so wie ich es im Zusammenhang mit der Darstellung der Biographie und des wissenschaftlichen Werkes anderer Personen schon oft getan habe.
    [Show full text]
  • Zusammenfassungen Der Arbeitskreisbeiträge
    Deutsche Phytomedizinische Gesellschaft Zusammenfassungen der Arbeitskreisbeiträge 2011 Impressum Redaktion: Dr. Falko Feldmann, Dr. Christian Carstensen Deutsche Phytomedizinische Gesellschaft e. V. Messeweg 11/12 D-38104 Braunschweig Tel.: 0531 / 299-3213, Fax 0531 / 299-3019 E-mail: [email protected] www.phytomedizin.org ii INHALT DPG Symposium Plant Protection and Plant Health in Europe 2011 ......................................... 1 AK Herbologie ............................................................................................................................ 6 AK Mykologie........................................................................................................................... 10 AK Nematologie ....................................................................................................................... 21 AK Nutzarthropoden und Entomopathogene Nematoden ........................................................ 39 AK Pflanzenschutztechnik ........................................................................................................ 51 AK Phytobakteriologie .............................................................................................................. 59 AK Phytomedizin in Ackerbau und Grünland PG Schädlinge in Getreide und Mais ........................................................................... 65 PG Krankheiten an Getreide ............................................................................................... 68 AK Phytomedizin in Gartenbau
    [Show full text]
  • The Brown Lacewings (Neuroptera, Hemerobiidae) of Northwestern Turkey with New Records, Their Spatio-Temporal Distribution and Harbouring Plants
    Revista Brasileira de Entomologia http://dx.doi.org/10.1590/S0085-56262014000200006 The brown lacewings (Neuroptera, Hemerobiidae) of northwestern Turkey with new records, their spatio-temporal distribution and harbouring plants Orkun Baris Kovanci1,3, Savas Canbulat2 & Bahattin Kovanci1 1 Department of Plant Protection, Faculty of Agriculture, Uludag University, Gorukle Campus, Bursa 16059, Turkey. [email protected], [email protected] 2 Department of Biology, Faculty of Science, Kyrgyzstan-Turkey Manas University, Cengiz Aytmatov Campus, Bishkek 720044, Kyrgyzstan. [email protected] 3 Corresponding author: [email protected] ABSTRACT. The brown lacewings (Neuroptera, Hemerobiidae) of northwestern Turkey with new records, their spatio-temporal distribution and harbouring plants. The occurrence and spatio-temporal distribution of brown lacewing species (Neuroptera, Hemerobiidae) in Bursa province, northwestern Turkey, was investigated during 1999-2011. A total of 852 brown lacewing speci- mens of 20 species, including the genera of Hemerobius, Megalomus, Micromus, Sympherobius, and Wesmaelius were collected. Of these, 12 species were new records for northwestern Turkey while Sympherobius klapaleki is a new record for the Neuroptera fauna of Turkey. The most widespread species were Hemerobius handschini and Sympherobius pygmaeus with percent dominance values of 42.00 and 15.96%, respectively. Wesmaelius subnebulosus was the earliest emerging hemerobiid species and had the longest flight activity lasting from March to October. The species of southern origin characterized by the Mediterranean elements consti- tuted 55% of the hemerobiid fauna and prevailed over the species of northern origin that belong to the Siberian centres. The total number of hemerobiid species reached a peak in July with captures of 15 species per month.
    [Show full text]
  • First Record of a Fossil Larva of Hemerobiidae (Neuroptera) from Baltic Amber
    TERMS OF USE This pdf is provided by Magnolia Press for private/research use. Commercial sale or deposition in a public library or website is prohibited. Zootaxa 3417: 53–63 (2012) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2012 · Magnolia Press ISSN 1175-5334 (online edition) First record of a fossil larva of Hemerobiidae (Neuroptera) from Baltic amber VLADIMIR N. MAKARKIN1,4, SONJA WEDMANN2 & THOMAS WEITERSCHAN3 1Institute of Biology and Soil Sciences, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia 2Senckenberg Forschungsinstitut und Naturmuseum, Forschungsstation Grube Messel, Markstrasse 35, D-64409 Messel, Germany 3Forsteler Strasse 1, 64739 Höchst Odw., Germany 4Corresponding author. E-mail: [email protected] Abstract A fossil larva of Hemerobiidae (Neuroptera) is recorded for the first time from Baltic amber. The subfamilial and generic affinities of this larva are discussed. It is assumed that it may belong to Prolachlanius resinatus, the most common hemer- obiid species from the Eocene Baltic amber forest. An updated list of extant species of Hemerobiidae with described larvae is provided. Key words: Insecta, Neuroptera, Hemerobiidae, Baltic amber, Eocene, larva Introduction The Hemerobiidae is the most widely distributed family of Neuroptera. Hemerobiid species occur from the subpo- lar tundra to tropical regions, but with approximately 550 species they are not particularly speciose (Oswald 2007). Their fossil record extends to the Late Jurassic (Makarkin et al. 2003); however, records of fossils older than the Eocene are rare. The larvae of Hemerobiidae feed on small arthropods (e.g., aphids, mites) and are often used for pest control.
    [Show full text]