Cleaning up How Solar Is Tackling Its Costly Soiling Problem, P.14 PV TECH POWER PV TECH Vol

Total Page:16

File Type:pdf, Size:1020Kb

Cleaning up How Solar Is Tackling Its Costly Soiling Problem, P.14 PV TECH POWER PV TECH Vol PV-Tech.org Volume 21 PV POWER PLANT TECHNOLOGY AND BUSINESS November 2019 cleaning up How solar is tackling its costly soiling problem, p.14 PV TECH TECH PV POWER Vol. 21. 2019 Vol. Market System Design & PLant Watch Integration Build Performance Solar’s big leap Benchmarking Standardising Backsheet forward in the PV module floating solar, durability in harsh Middle East, p.28 bankability, p.40 p.82 environments, p.63 regulars Published by ublished by Solar Media Ltd. 123 Buckingham Palace Road London, SW1W 9SH, UK Tel: +44 (0) 207 871 0122 www.pv-tech.org Publisher Introduction David Owen Editorial Editor in chief: Liam Stoker Managing editor: Welcome to the latest edition of PV Tech solar. Trade body SolarPower Europe offers Ben Willis Senior news editor: Power. As we head into a new decade, a glimpse at how entire swathes of the Mark Osborne it would be easier to look back over the solar ecosystem is going digital, taking in Reporters: Andy Colthorpe, Tom Kenning, José Rojo spectacular journey solar has walked new developments such as AI and machine Martin, Alice Grundy, Cecilia Keating throughout the 2010s. From nascent learning (p.72). These are no longer industry Design & production technology to a stalwart of power systems buzzwords, but real solutions posing tangible Design and production manager: the world over, the last 10 years will be benefits to the industry. Sarah-Jane Lee Production: remembered as the decade of solar’s New technologies have also helped solar Daniel Brown maturation. deploy where it hasn’t been able to before. Advertising But rather than reflect on the journey so Previous editions of this magazine have Sales director: far, this edition of the magazine continues charted the rise and rise of floating solar, David Evans Account managers: to push the envelope and instead glances and this has prompted renewed calls for Graham Davie, Lili Zhu, Adam Morrison, standardisation in the field, as José Rojo Will Swan forward. Indeed, what immediately jumps out is the level of sophistication that can be Martin learns (p.82). Printed by But this sophistication is not just seen in Buxton Press Ltd., Derbyshire identified as you flick through the pages of issue 21 of PV Tech Power. solar. While recent analysis has shown marked PV Tech Power Volume 21, 2019 ISSN: 2057-438X This edition’s cover story comes from the decreases in the price of lithium-ion batteries, longer-duration batteries continue to be of While every eff ort has been made to ensure deserts of the Middle East, where researchers the accuracy of the contents of this supple- are getting to grips with the issue of soiling real interest, and our resident energy storage ment, the publisher will accept no respon- sibility for any errors, or opinion expressed, and what can be done to prevent it. As you’ll experts Andy Colthorpe and Alice Grundy or omissions, or for any loss or damage, provide a comprehensive review of new consequential or otherwise, suff ered as a result read (p.14), soiling is estimated to have of any material here published. reduced global solar energy production by developments in this area (p.114). The entire contents of this publication are pro- as much as 4% in 2018, trimming power At the time of writing, representatives tected by copyright, full details of which are from across the world were grappling with available from the publisher. All rights reserved. revenues by as much as €5 billion (US$5.5 No part of this publication may be reproduced, billion). As solar PV’s penetration grows, the lack of requisite action to help prevent stored in a retrieval system or transmitted in any form or by any means – electronic, me- so too does the reach and impact of such climate catastrophe. The COP25 summit, chanical, photocopying, recording or otherwise held in Madrid, harked back to the landmark – without the prior permission of the copyright issues, so the work of academics and research owner. institutes such as QEERI to prevent and treat Paris climate accords to measure just what these issues will be pivotal. has been achieved since then. The answer And if it’s sophistication you’re seeking, is, evidently, not much. This has thrust then look no further than the issue of significant importance on actions to be taken Brands of Solar Media: bifaciality, which litters the pages of this in the next decade, with decarbonisation of volume of the magazine. The technology power amongst the most straightforward continues to push the boundaries, helping solutions at our disposal. to drive tender prices to record lows in the Solar, as these pages show, stands ever Middle East (p.50), while helping make ready to do more than its share of the heavy subsidy-free projects bankable in markets as lifting. far north as the UK (p.56). Of course, bifacial isn’t the only technology Liam Stoker being adopted in the pursuit of sophisticated Editor in chief Cover illustration by Adrian Cartwright, Planet illustration www.pv-tech.org | November 2019 | 3 regulars Contents 22 59 08-12 News Round-up of the biggest stories in PV from around the world. 101 14-25 cover story Soiling and cleaning 14-18 PV soiling in dry climates: causes, impacts and solutions By Benjamin Figgis, Amir Abdallah, Maulid Kivambe, Brahim Aissa, Kamran Ali, Cédric Broussillou and Veronica Bermudez, Qatar Environment & Energy Research Institute; Klemens Ilse, Fraunhofer Center for Silicon Photovoltaics 22-25 Keeping it clean Solar cleaning technologies and strategies 37 28-39 Market watch 28-30 Turning to the sun How solar is coming of age in the Middle East and North Africa 32-36 Risky business The uncertainties facing Australian solar investment 37-39 The rise of Asian solar: A first-timer’s travel diary Solar stories from China, Malaysia and Taiwan 63-78 Plant performance 63-68 Technical Briefing Influences of different backsheets on PV module durability in high-humidity 40-58 system integration environments By Haidan Gong, Minge Gao and Yiwei, Wuxi 40-44 Technical Briefing PV ModuleTech Bankability Suntech Rankings: methodology, validation and supplier ratings for Q4’19 72-76 Technical Briefing O&M and asset management 2.0: optimising the sector through digitalisation By Finlay Colville, Solar Media By Martina Pianta, 3E for SynaptiQ; Guillermo 45-49 Technical Briefing Balance-of-system components Oviedo Hernánde, BayWa r.e. Operation Services and new PV ecosystems S.r.l.; Constantinos Peonides, Alectris; Will By Robert Puto, TÜV SÜD Hitchcock, Above; Máté Heisz, SolarPower Europe 50-53 Mirror of sand: Middle East reflects US bifacial 77-78 Technical Briefing Sampling guideline for boom inspection and testing of PV modules in the field Rich pickings for bifacial solar technology By Satish Pandey, Preetha Pillai, Sandeep Jadhav, 56-58 Project Briefing When solar meets science Shyam Kumar, Gaurav Mishra and Rajesh Kumar Inside GridServes’ ground-breaking York Solar Farm Dhuriya, Mahindra Teqo 4 | November 2019 | www.pv-tech.org Threephase 3-20KTL_poster_EN Version-1.pdf 1 2019/8/12 10:32:45 FusionSolar Residential & Commercial Smart PV Solution Digital PV Solution for Ultimate Safety & Better Experience ULTRA SAFE AI Powered AFCI to Proactively Mitigate Fire Risk ULTRA Easier O&M Through Auto PV Module Health Check ULTRA FAST C Faster Inverter Commissioning through Only 4-Step App Setting M Y HIGHER CM MY CY CMY K SUN2000-3-20KTL regulars 82 56 114 82-89 Design & build 45 82-87 Floating solar sets sail for common ground Can floating solar design and technology be standardised? 88-89 Interview: Getting hard on solar soft costs storage & smart power The SunPower alumni tackling solar’s Achilles’ heel 106-121 106-112 Technical Briefing Redox flow batteries for renewable energy storage 90-102 Financial, legal, professional By Jens Noack, Nataliya Roznyatovskaya, Chris Menictas and Maria Skyllas-Kazacos, CENELEST 90-96 Technical Briefing Bringing retired PV modules back to life: From science-fiction to the reality of the 114-118 Contenders: Long-duration technologies and circular economy in the PV sector who’s behind them By Dr. Ioannis Tsanakas, Arvid van der Heide, Prof. The movers and shakers shaping the lesser known Dr. Jozef Poortmans and Dr. Eszter Voroshazi, imec/ side of energy storage (QHUJ\9LOOH %HOJLXP 7DGDV5DGDYLĀLXVDQG-XOLXV 120-121 Interview: Taking charge Denafas, SoliTek R&D; Dr. Tom Rommens VITO Energy Storage Association CEO, Kelly Speakes- (Belgium) Backman 98-100 Tools of the trade for corporate renewable energy buyers Lending a helping hand to Europe’s corporate green Regulars energy purchasers 03 Introduction 101-102 Merchant renewables: a viable investment or a bubble fit to burst? 59 Products Lessons from Spain’s post-subsidy solar boom 122 Advertisers index 6 | November 2019 | www.pv-tech.org NEWS | from PV-Tech.org Europe confirmed that it energised the 5.4MW Hall Farm II project on 5 August 2019, the company’s first project to be completed without support of subsidies. The investor said that the development gave Spain it “industry leadership in this space”, with the company having Spain offers subsidies in olive branch to FiT litigants already started construction on a much larger, 50MW subsidy- Spain’s post-election government has approved a plan to offer stable remuneration to free site. That project, located on the border of Bedfordshire and renewable projects, in a bid to defuse litigation sparked by retroactive subsidy cuts. Less Cambridgeshire, is scheduled to complete before the end of the than a fortnight after the country’s latest snap election, ministers of the minority ruling 2019/20 financial year. socialist party of PSOE offered investors 7%-plus in guaranteed returns for over a decade if they scrap ongoing lawsuits over the feed-in tariff (FiT) phase-out.
Recommended publications
  • Digital Twin Modeling of a Solar Car Based on the Hybrid Model Method with Data-Driven and Mechanistic
    applied sciences Article Digital Twin Modeling of a Solar Car Based on the Hybrid Model Method with Data-Driven and Mechanistic Luchang Bai, Youtong Zhang *, Hongqian Wei , Junbo Dong and Wei Tian Laboratory of Low Emission Vehicle, Beijing Institute of Technology, Beijing 100081, China; [email protected] (L.B.); [email protected] (H.W.); [email protected] (J.D.); [email protected] (W.T.) * Correspondence: [email protected] Featured Application: This technology is expected to be used in energy management of new energy vehicles. Abstract: Solar cars are energy-sensitive and affected by many factors. In order to achieve optimal energy management of solar cars, it is necessary to comprehensively characterize the energy flow of vehicular components. To model these components which are hard to formulate, this study stimulates a solar car with the digital twin (DT) technology to accurately characterize energy. Based on the hybrid modeling approach combining mechanistic and data-driven technologies, the DT model of a solar car is established with a designed cloud platform server based on Transmission Control Protocol (TCP) to realize data interaction between physical and virtual entities. The DT model is further modified by the offline optimization data of drive motors, and the energy consumption is evaluated with the DT system in the real-world experiment. Specifically, the energy consumption Citation: Bai, L.; Zhang, Y.; Wei, H.; error between the experiment and simulation is less than 5.17%, which suggests that the established Dong, J.; Tian, W. Digital Twin DT model can accurately stimulate energy consumption. Generally, this study lays the foundation Modeling of a Solar Car Based on the for subsequent performance optimization research.
    [Show full text]
  • Solar Racking Installation for ATN Final Report Fall 2016
    1 Solar Racking Installation for an Automated Public Transportation System Solar Engineering Team San Jose State University Mechanical Engineering Department August, 2016 Advisor: Dr. Burford Furman Ron Swenson Eric Hagstrom Eric Rosenfeld Author: 2 Abstract The Sustainable Mobility System for Silicon Valley (SMSSV), also known as the Spartan Superway, is a project to develop a grid-tied solar powered Automated Transit Network (ATN) system. The ATN system will be elevated allowing for traffic and infrastructure below. The ATN system is designed for the vehicles or pods to be hanging from the track, giving the system opportunities for a solar module system on the top of the ATN. Recent work has focused on analyzing the power requirements and designing the solar power system for a potential implementation of ATN in the city of San José. The System Advisor Model (SAM) software from the National Renewable Laboratory (NREL) estimates the POA (plane-of-array) energy available for the ATN network and how much can be used for other applications. Results show to power 88 vehicles over a 14km guideway 24 hours a day requires 19,600 monocrystalline solar panels with an area of 38,000m2. 24/7 and be zero net-metered (on average) over a calendar year. Extensive research determining the boundary condition required for our solar racking system is underway. A design for a racking system utilizing bolts was analyzed showing more 3 difficult maintenance & installation, however cheaper infrastructure. Another design for a semi- automated design was analyzed essentially showing cheaper maintenance & installation, however more expensive infrastructure. Four different designs for semi-automated locking mechanism were created.
    [Show full text]
  • Designing a Concentrating Photovoltaic (CPV) System in Adjunct with a Silicon Photovoltaic Panel for a Solar Competition Car
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repositorio Institucional Universidad EAFIT Designing a Concentrating Photovoltaic (CPV) system in adjunct with a silicon photovoltaic panel for a solar competition car Andrés Arias-Rosalesa, Jorge Barrera-Velásqueza, Gilberto Osorio-Gómez*a, Ricardo Mejía- Gutiérreza a Design Engineering Research Group (GRID), Universidad EAFIT, Medellin, Colombia * Corresponding author: [email protected], Other authors’ e-mail: [email protected]; [email protected]; [email protected] ABSTRACT Solar competition cars are a very interesting research laboratory for the development of new technologies heading to their further implementation in either commercial passenger vehicles or related applications. Besides, worldwide competitions allow the spreading of such ideas where the best and experienced teams bet on innovation and leading edge technologies, in order to develop more efficient vehicles. In these vehicles, some aspects generally make the difference such as aerodynamics, shape, weight, wheels and the main solar panels. Therefore, seeking to innovate in a competitive advantage, the first Colombian solar vehicle “Primavera”, competitor at the World Solar Challenge (WSC)-2013, has implemented the usage of a Concentrating Photovoltaic (CPV) system as a complementary solar energy module to the common silicon photovoltaic panel. By harvesting sunlight with concentrating optical devices, CPVs are capable of maximizing the allowable photovoltaic area. However, the entire CPV system weight must be less harmful than the benefit of the extra electric energy generated, which in adjunct with added manufacture and design complexity, has intervened in the fact that CPVs had never been implemented in a solar car in such a scale as the one described in this work.
    [Show full text]
  • TOWN of PETERBOROUGH Photovoltaic Project Proposal
    Application to the New Hampshire Public Utilities Commission June 2013 TOWN OF PETERBOROUGH Photovoltaic Project Proposal 6/7/2013 Letter of Transmittal Borrego Solar, with its NH headquarters in Peterborough, NH, has teamed up with the Town of Peterborough to develop a 947kW ground mounted PV array to be located at the Peterborough Waste Water Treatment Facility (WWTF). The NH PUC has clearly stated that two of the most important selection criteria factors are the project’s likelihood to expand the production capacity of renewable energy facilities in NH (including REC qualification) and the capacity of the team to successfully complete the initiative. After reading our proposal we hope you will share our belief that our team is extremely qualified and has the experience and expertise to complete this project. This solar project will be a class I REC producing site, generating an estimated 1,150 REC’s in the first year. Borrego Solar has provided a detailed production estimate using the industry standard PVSyst software. Borrego Solar has essentially written the book on production estimating – see SolarPro article – Exhibit E. Our fleet of systems has historically produced at 103% of estimated production, and we will have a production guarantee in our PPA with the Town of Peterborough. That guarantee includes damages should the system under-perform, which ensures our commitment to hitting the annual production estimates. The Town of Peterborough has recently completed a state of the art WWTF at 58 Water Street. The new facility eliminates the need to have several acres of holding ponds. The waste from the ponds will be removed, and the ponds will be filled in.
    [Show full text]
  • 2 International Workshop Thin Films in the Photovoltaic Industry
    Workshop Proceedings of the “2nd International Workshop Thin Films in the Photovoltaic Industry” 9/10 November 2006 Editor: A. Jäger-Waldau 2007 EUR 22630 EN II Workshop Proceedings of the “2nd International Workshop Thin Films in the Photovoltaic Industry” held at the EC JRC Ispra, 9/10 November 2006 Chairperson: Bernhard Dimmler and Arnulf Jäger-Waldau Editor: A. Jäger-Waldau Co-organised by EUR 22630 EN III LEGAL NOTICE Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use, which might be made of the following information. The report does not represent any official position of the European Commission, nor do its contents prejudge any future Commission proposals in any areas of Community policy. A great deal of additional information on the European Union is available on the Internet. It can be accessed through the Europa server (http://europa.eu). Luxembourg: Office for Official Publications of the European Communities, 2007 © European Communities, 2007 Reproduction is authorised provided the source is acknowledged Printed in Italy ISSN 1018-5593 - EUR 22630 EN IV PREFACE This are the minutes of the 2nd International Workshop "Thin Films in the Photovoltaic Industry" held at the European Commission's Joint Research Centre in Ispra, Italy on 09/10 November 2006. The workshop was a follow up of the 2005 workshop, which was initiated and chaired by Bernhard Dimmler, Würth Solar, Germany. It was co-organized by EPIA in the framework of the FP6 project "Creating Markets for RES" and the Renewable Energies Unit of IES. Aim of the workshop In the past 5 years, the yearly world market growth rate for Photovoltaics was an average of more than 40%, which makes it one of the fastest growing industries at present.
    [Show full text]
  • Solar Power Initiative Using Caltrans Right-Of-Way Final Research Report
    STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION TECHNICAL REPORT DOCUMENTATION PAGE DRISI-2011 (REV 10/1998) 1. REPORT NUMBER 2. GOVERNMENT ASSOCIATION NUMBER 3. RECIPIENT'S CATALOG NUMBER CA20-3177 4. TITLE AND SUBTITLE 5. REPORT DATE Solar Power Initiative Using Caltrans Right-of-Way 12/09/2020 Final Research Report 6. PERFORMING ORGANIZATION CODE 7. AUTHOR 8. PERFORMING ORGANIZATION REPORT NO. Sarah Kurtz, Edgar Kraus, Kristopher Harbin, Brianne Glover, Jaqueline Kuzio, William Holik, Cesar Quiroga 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NUMBER University of California, Merced School of Engineering and Material Science 11. CONTRACT OR GRANT NUMBER 5200 North Lake Road 65A0742 Merced, CA 95343 12. SPONSORING AGENCY AND ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED California Department of Transportation Final Report Division of Research, Innovation and System Information June 2019 - December 2020 P.O. Box 942873 14. SPONSORING AGENCY CODE Sacramento, CA 94273 15. SUPPLEMENTARY NOTES 16. ABSTRACT Provide guidance to the California Department of Transportation (Caltrans) on the installation of utility-scale solar electrical generation facilities in its right-of-way. Explores the current rules, regulations, and policies from regulatory agencies external to Caltrans and California utilities that affect Caltrans’ ability to install solar within its right-of-way. Determines best practices that other state departments of transportation have developed based on their experience with the deployment of solar generation facilities within their right-of-way. Outlines best practices of how to develop solar generation sites within Caltrans right-of-way. Summarizes design-build-own strategies that Caltrans could use as part of a public-private partnership to finance the installation and/or maintenance of solar sites within the Caltrans right-of-way.
    [Show full text]
  • A Summer Training Report on “Solar Energy”
    A SUMMER TRAINING REPORT ON “SOLAR ENERGY” Submitted By: Abhishek Gaur & Mandeep Kaur In partial fulfilment for the award of the Degree Of B.Tech (Electrical Engineering) Hindu College Of Engineering, Sonipat June-July 2011 INDIAN OIL CORPORATION LIMITED, NOIDA DECLARATION This is to certify that project report on “SOLAR ENERGY” submitted to “HINDU COLLEGE OF ENGINEERING, SONIPAT” , by ABHISHEK GAUR and MANDEEP KAUR , in fulfilment of their partial requirement for the degree of B.Tech (Electrical Engg.) is a bonafied work carried out by them under our supervision and guidance. The work was carried out during the period from16.06.2011 to 28.07.2011 at Indian Oil Cooperation Limited (pipeline division), NOIDA. Dated: 28.07.2011 A.K Khurana Deputy General Manager (Electrical) Indian Oil Corporation Limited Pipelines Division, NOIDA ACKNOWLEDGEMENT It is our pleasure to express the most sincere appreciation and acknowledge the thoughts and insights of our project guide in co-ordination of our studies to Mr A.K KHURANA (D.G.M Electrical) Indian Oil Corporation Limited, NOIDA, without which it would not have been possible for the project to take its final shape. Also our thanks and gratitude to Mr. MAHESH KUMAR (Deputy Project Manager), for help and assistance during our training. Last but not the least, we are thankful to each and everyone who is directly or indirectly related to our project and has helped us in achieving our goal. Dated: 28.07.2011 (ABHISHEK GAUR & MANDEEP KAUR) Place:NOIDA CONTENTS Solar Energy ◦ PV Effect PV Module ◦
    [Show full text]
  • Racing to Innovate Racing to Innovate
    VOLUME 15 ISSUE 2 Racing to Innovate How the next-generation is pushing the boundaries of solar by James Loginov SINCE THEIR FOUNDING IN 1989, the University of Michigan Solar Car Team (UM Solar Car) has built 15 solar race cars. Currently, their working on production of their latest model for the American Solar Challenge. In addition to winning this event nine times, the team has also secured 7 Bridgestone World Solar Challenge podium finishes, and won the 2015 Abu Dhabi Solar Challenge. UM Solar Car has become America's undisputed #1 solar Like the Daytona 500 or 24-Hours of Le Mans, the BWSC is car team. Over the years, it’s grown to encompass four engineering not just about speed; everything about the car and the team is divisions - mechanical, electrical, aerodynamics, and strategy, as well as stress-tested to the extreme. This is a true endurance challenge. operations and business - yet remains an entirely student-run project. With very fine margins between winning and losing, even finishing is a huge achievement. “Joining the team means joining a tight- knit community, including hundreds of “The Bridgestone World Solar team alumni as part of a global solar Challenge is such a tough race racing community. It's a chance to engage because you can show up with the with complex subjects, from energy best technology, the lightest car, storage to international shipping and and still not reach the podium. weather modelling, all in a hands-on, To be able to say that you raced open-ended capacity that goes beyond 3000 kilometres, and conquered any classroom experience.
    [Show full text]
  • Energy Optimisation of a Solar Vehicle for South African Conditions Christiaan C
    Energy optimisation of a solar vehicle for South African conditions Christiaan C. Oosthuizen To cite this version: Christiaan C. Oosthuizen. Energy optimisation of a solar vehicle for South African conditions. Other. Université Paris-Saclay; Tshwane University of Technology, 2020. English. NNT : 2020UPASG003. tel-03150589 HAL Id: tel-03150589 https://tel.archives-ouvertes.fr/tel-03150589 Submitted on 23 Feb 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Optimisation énergétique pour une voiture solaire dans les conditions de l'Afrique du Sud Thèse de doctorat de l'université Paris-Saclay et de Tshwane University of Technology École doctorale n°580: Sciences et technologies de l'information et de la communication (STIC) Spécialité de doctorat: Mathématiques et Informatique Unité de recherche : Université Paris-Saclay, UVSQ, LISV, 78124, Vélizy - Villacoublay, France Référent : Université de Versailles -Saint-Quentin-en-Yvelines Thèse présentée et soutenue à Pretoria le 06/10/2020 Christiaan C. OOSTHUIZEN Composition du Jury François ROCARIES
    [Show full text]
  • DOE Solar Energy Technologies Program FY 2007 Annual Report
    DOE Solar Energy Technologies Program Welcome to the fiscal year (FY) 2007 Annual Report for the U.S. Department of Energy’s Solar Energy Technologies Program (Solar Program). The Solar Program is responsible for carrying out the federal role of researching, developing, demonstrating, and deploying solar energy technologies. This document presents a detailed description of the activities funded by DOE during FY 2007. FY 2007 was a year of incredible importance for the Solar Program and its partners. Announced during President Bush’s 2006 State of the Union address, the Advanced Energy Initiative includes the Solar America Initiative (SAI), a presidential initiative with the goal of achieving grid parity for solar electricity, produced by photovoltaic (PV) systems, across the nation by 2015. FY 2007 was the first official year of SAI and represented a shift in Solar Program operations, budget, activities, and partnerships. As a 9-year initiative, SAI is dependent upon wise choices made during its early years. I am pleased to report that FY 2007 represented a successful start to this critically important effort. A few of the many highlights achieved in FY 2007 and discussed in greater detail within this report include: • Launch of the Technology Pathway Partnerships (TPPs), public-private partnerships with industry designed to create fully scalable PV systems that meet the SAI cost goals. The TPPs are characterized by rigorous review and down-selection processes, as well as ambitious timetables. • Establishment of the PV Incubator activity, which funds the development of PV-system components to shorten their timeline to commercialization. • Initiation of a groundbreaking market transformation effort to help commercialize solar technologies by eliminating market barriers and promoting deployment opportunities through outreach activities.
    [Show full text]
  • Low Cost High Concentration PV Systems for Utility Power Generation
    Low Cost High Concentration PV Systems for Utility Power Generation Amonix, Inc. • Funding: DOE Year 1 Total Cost DOE Cost Recipient Cost $3,200,000 $29,600,000 $14,800,000 $14,800,000 • Project Description: The principal objective of the project is to transition Amonix’s concentrating photovoltaic (PV) systems from low-volume to high-volume production. • Significance: Utility scale mainstream power generation will be achieved using concentrating MegaModules. Amonix will take advantage of high-volume production (previously non- existent in the concentrating PV sector) to significantly reduce costs associated with the current low-volume concentrating PV market. • Location: Leadership of the project will be based out of Torrance California. The following Amonix team members will perform additional work in the following states: New Jersey - CYRO Industries; Arizona - ASU, JOL Enterprises; Nevada - UNLV; California - Imperial Irrigation District, Hernandez Electric, Northstar, Spectrolab, Micrel; Colorado - NREL. Key Metrics LCOE Manufacturing ($/kWh) Capacity (MW) Baseline $0.3300 1 (2006) 2009-2010 $0.1400 60 2014-2015 $0.0600 1000 High Efficiency Concentrating Photovoltaic Power System The Boeing Company • Funding: DOE Year 1 Total Cost DOE Cost Recipient Cost $5,900,000 $29,800,000 $13,300,000 $16,500,000 • Project Description: The work described in this proposal will develop a new concentrating photovoltaic (PV) system, incorporating high-efficiency multi-junction cells, for the utility-scale PV power market. The efficiency of the production cells will be increased along with a >2x reduction in cost and an increase in cell production capacity; a novel optical design will be developed to take best advantage of the cells; and reliability and cost of the tracker and balance of systems will be improved as well.
    [Show full text]
  • Solar Power-Optimized Cart (SPOC)
    Solar Power-Optimized Cart (SPOC) Senior Design Project Documentation Due: April 28, 2014 Group #28 Members: Jacob Bitterman Cameron Boozarjomehri William Ellett SPOC Table of contents 1. Executive Summary1 2. Project Description 2 2.1. Motivation and Goals…………………………………………………………….2 2.2. Goals……………………………………………………………………………...3 2.3. Objectives………………………………………………………………………...4 2.4. Project Requirements and Specifications……………………………………..6. 2.5. Limitations………………………………………………………………………..7 3. Research related to Project Definition 10 3.1. Existing Similar Projects and Products………………………………………1. 0 3.1.1. SEV (Solar Electric Vehicles)..........................................................1..0.. .. 3.1.2. Tindo Solar Bus………………………………………………………...12 3.1.3. NUMA 7…………………………………………………………………13 3.1.4. UCF ZENN……………………………………………………………...14 3.1.5. EVOENERGY SOFLEX 600………………………………………….15 3.1.6. Star EV…………………………………………………………………. 16 3.2. Relevant Technologies…………………………………………………………17 3.2.1. Tesla Motors Rapid Battery Charging………………………………..1. 7 3.2.2. Grape Solar……………………………………………………………..19 3.2.3. Electric Energy and Power Consumption by Light­Duty Plug­In Electric Vehicles………………………………………………………..20 3.2.4. Battery Requirements for Plug­In Hybrid Electric Vehicles – Analysis and Rationale…………………………………………………………...19 3.2.5. Designing a High­Efficiency Solar Power Battery Charger…………21 3.2.6. Choosing a Microcontroller……………………………………………2. 2 3.2.7. Bluetooth Vehicle integration Components………………………….2. 3 3.2.8. Additional Bluetooth component considerations…………………….2.5 3.2.9. I2C and the Atmega328P­PU…………………………………………26 3.3. Strategic Components…………………………………………………………27 3.3.1. Cart……………………………………………………………………... 28 3.3.2. Atmega328P­PU……………………………………………………….31 3.3.3. User Interface…………………………………………………………...33 3.3.4. T105­H Signature Line Flooded Deep Cycle 6V Battery…………..3. 4 3.3.5. Solar Array……………………………………………………………...36 3.4. Possible Architectures and Related Diagrams………………………………39 3.4.1.
    [Show full text]