Solar Power Initiative Using Caltrans Right-Of-Way Final Research Report

Total Page:16

File Type:pdf, Size:1020Kb

Solar Power Initiative Using Caltrans Right-Of-Way Final Research Report STATE OF CALIFORNIA • DEPARTMENT OF TRANSPORTATION TECHNICAL REPORT DOCUMENTATION PAGE DRISI-2011 (REV 10/1998) 1. REPORT NUMBER 2. GOVERNMENT ASSOCIATION NUMBER 3. RECIPIENT'S CATALOG NUMBER CA20-3177 4. TITLE AND SUBTITLE 5. REPORT DATE Solar Power Initiative Using Caltrans Right-of-Way 12/09/2020 Final Research Report 6. PERFORMING ORGANIZATION CODE 7. AUTHOR 8. PERFORMING ORGANIZATION REPORT NO. Sarah Kurtz, Edgar Kraus, Kristopher Harbin, Brianne Glover, Jaqueline Kuzio, William Holik, Cesar Quiroga 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. WORK UNIT NUMBER University of California, Merced School of Engineering and Material Science 11. CONTRACT OR GRANT NUMBER 5200 North Lake Road 65A0742 Merced, CA 95343 12. SPONSORING AGENCY AND ADDRESS 13. TYPE OF REPORT AND PERIOD COVERED California Department of Transportation Final Report Division of Research, Innovation and System Information June 2019 - December 2020 P.O. Box 942873 14. SPONSORING AGENCY CODE Sacramento, CA 94273 15. SUPPLEMENTARY NOTES 16. ABSTRACT Provide guidance to the California Department of Transportation (Caltrans) on the installation of utility-scale solar electrical generation facilities in its right-of-way. Explores the current rules, regulations, and policies from regulatory agencies external to Caltrans and California utilities that affect Caltrans’ ability to install solar within its right-of-way. Determines best practices that other state departments of transportation have developed based on their experience with the deployment of solar generation facilities within their right-of-way. Outlines best practices of how to develop solar generation sites within Caltrans right-of-way. Summarizes design-build-own strategies that Caltrans could use as part of a public-private partnership to finance the installation and/or maintenance of solar sites within the Caltrans right-of-way. 17. KEYWORDS 18. DISTRIBUTION STATEMENT Solar, Highway Right-of-Way, Literature Review, DOT Interviews, No restrictions. This document is available to the public through the Regulation Review, Financial Summary, Best Practices, Renewable National Technical Information Service, Springfield, VA 22161 Energy 19. SECURITY CLASSIFICATION (of this report) 20. NUMBER OF PAGES 21. COST OF REPORT CHARGED Unclassified 317 Reproduction of completed page authorized. ADA Notice For individuals with sensory disabilities, this document is available in alternate formats. For alternate format information, contact the Forms Management Unit at (916) 445-1233, TTY 711, or write to Records and Forms Management, 1120 N Street, MS-89, Sacramento, CA 95814. DISCLAIMER STATEMENT This document is disseminated in the interest of information exchange. The contents of this report reflect the views of the authors who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the State of California or the Federal Highway Administration. This publication does not constitute a standard, specification or regulation. This report does not constitute an endorsement by the Department of any product described herein. For individuals with sensory disabilities, this document is available in alternate formats. For information, call (916) 654-8899, TTY 711, or write to California Department of Transportation, Division of Research, Innovation and System Information, MS-83, P.O. Box 942873, Sacramento, CA 94273-0001. Caltrans Project No. P1253 Caltrans Task No. Solar Power Initiative Using Caltrans Right-of-Way— Final Research Report Sarah Kurtz University of California Merced Merced, CA Edgar Kraus, Kristopher Harbin, Brianne Glover, Jaqueline Kuzio, William Holik, and Cesar Quiroga Texas A&M Transportation Institute San Antonio, TX Submitted to DIVISION OF RESEARCH, INNOVATION, AND SYSTEM INFORMATION CALIFORNIA DEPARTMENT OF TRANSPORTATION December 2020 Project P1253 Solar Power Initiative Using Caltrans Right-of-Way—Final Research Report DISCLAIMER The contents of this report reflect the views of the authors, who are responsible for the facts and accuracy of the data presented herein. The contents do not necessarily reflect the official views or policies of the STATE OF CALIFORNIA or the FEDERAL HIGHWAY ADMINISTRATION. This report does not constitute a standard, specification, or regulation. This report does not constitute an endorsement by the California Department of Transportation of any products or services described herein. The contents of this report do not necessarily reflect the official views or policies of the University of California or the Texas A&M Transportation Institute. This report does not constitute an endorsement by the University of California or the Texas A&M Transportation Institute of any products or services described herein. For individuals with sensory disabilities, this document is available in alternate formats. For information, call (916) 654-8899, TTY 711, or write to California Department of Transportation, Division of Research, Innovation, and System Information, MS-83, P.O. Box 942873, Sacramento, CA 94273-0001. - ii - Project P1253 Solar Power Initiative Using Caltrans Right-of-Way—Final Research Report ACKNOWLEDGMENTS The authors of this report thank the California Department of Transportation (Caltrans) for its financial support and guidance on this project. The project benefited from the inputs of many individuals. The primary contributors are listed here. NAME ORGANIZATION Sean Campbell Caltrans—HQ DRISI ITS Special Projects Tori Kanzler Caltrans—HQ DRISI Planning James Anderson Caltrans—HQ Division of Traffic Operations Gonzalo Gomez Caltrans—HQ Maintenance Resham Haddox Caltrans—HQ Right-of-Way John Kluge Caltrans—HQ Right-of-Way Tina Lucas Caltrans—HQ Division of Design Barbara Marquez Caltrans—D7 Sustainability Tyler Monson Caltrans—HQ DRISI Planning Jeremiah Pearce Caltrans—D2 ITS Jannette Ramirez Caltrans—HQ Sustainability Marlon Regisford Caltrans—D12 Special Studies Planning Ignacio Sanchez Del Real Caltrans—HQ Structures Design Joseph Bello UC Merced Sarah Kurtz UC Merced Zabir Mahmud UC Merced Dalia Martinez Escobar UC Merced Pedro Sanchez-Perez UC Merced Bimal Subedi UC Merced Aaron Wheeler UC Merced John Wohlgemuth UC Merced Consultant Cindy Wong UC Merced Brianne Glover Texas A&M Transportation Institute Kris Harbin Texas A&M Transportation Institute William Holik Texas A&M Transportation Institute Edgar Kraus Texas A&M Transportation Institute Jaqueline Kuzio Texas A&M Transportation Institute Cesar Quiroga Texas A&M Transportation Institute - iii - Project P1253 Solar Power Initiative Using Caltrans Right-of-Way—Final Research Report TABLE OF CONTENTS 1 Introduction ........................................................................................................................................ 1 2 Deliverables Summary ...................................................................................................................... 2 2.1 Literature Review Summary..................................................................................................... 2 2.2 Follow-Up Interview Summary ............................................................................................... 2 2.3 Summary of Rules and Regulations ........................................................................................ 4 2.4 Website of Rules and Regulations ........................................................................................... 5 2.5 Financial Opportunities Assessment ....................................................................................... 7 2.6 Best Practices Summary ............................................................................................................ 8 3 Project Evaluation ............................................................................................................................ 11 3.1 Project Management ................................................................................................................ 11 3.2 Literature Review Summary................................................................................................... 11 3.3 Follow-Up Interview Summary ............................................................................................. 11 3.4 Summary of Rules and Regulations ...................................................................................... 12 3.5 Website of Rules and Regulations ......................................................................................... 12 3.6 Financial Opportunities Assessment ..................................................................................... 12 3.7 Best Practices Summary .......................................................................................................... 12 3.8 Final Research Report .............................................................................................................. 13 4 The Future of Solar ........................................................................................................................... 14 4.1 Solar Panel Technology ........................................................................................................... 16 4.1.1 Manufacturing .................................................................................................................. 16 4.1.2 Solar Cell Technology ...................................................................................................... 16 4.1.3 Solar Panel
Recommended publications
  • Final Program
    FINAL PROGRAM May 3 – 8, 2008 • Town and Country Resort & Convention Center • San Diego, California SOLAR 2008 is presented by Featuring 37th ASES National Solar Conference 33rd National Passive Solar Conference 3rd Annual Renewable Energy Policy, Advocacy and Marketing Conference Solar Success! Training Event American Solar Energy Society Annual Meeting Society of Building Science Educators Annual Meeting Welcome On behalf of the American Solar Energy Society (ASES), the San Diego Renewable Energy Society (SDRES), the Northern California Solar Energy Association (NorCal Solar), the Redwood Empire Solar Living Association (RESLA), and the California Center for Sustainable Energy, welcome to SOLAR 2008! This year’s conference will build on the outstanding SOLAR successes of 2006 and 2007 where the dual role of renewable energy in climate and economic recovery, respectively, was clearly established. ASES Reports launched at these events — “Renewable Energy: A Key to Climate Recovery” and “Green Collar Jobs” — have been featured prominently in the public media. In 2008, we feel a new urgency about bringing together technology, policy and community solutions to address climate change, grow our economy and specifically look for solutions to reduce our carbon footprint. With a focus on renewable energy solutions in our communities and leadership to bring about change in our national energy policy we offer several new experiences at SOLAR 2008. First, we invite solar enthusiasts and those new to the field to participate more fully at SOLAR 2008 by opening our event on Public Days on Saturday and Sunday — at a discount for riders of mass transit! Featured will be demonstrations, films, speakers, and an exhibit hall with close to 200 booths.
    [Show full text]
  • DKASC Array Cleaning
    1st Clean 2nd Clean (where required) SITE # Technology Date Time Date Time 1A Large Scale Trackers, DEGERenergie Thursday 21/11/2019 5.55am - 6.15am 1B Large Scale Trackers, DEGERenergie Thursday 21/11/2019 5.55am - 6.15am 2 Large Scale Tracking, ADES Not cleaned -in stall mode 3 Roof Mounted Polycrystalline, BP Solar Monday 18/11/2019 9.10am - 9.45am 4 Solar Forest Hydraulic Trackers, Kyocera Monday 18/11/2019 6.45am - 7.15am 5 Solar Forest 1 Axis Trackers, Kyocera Sunday 17/11/2019 6.55pm - 7.15pm Monday 18/11/2019 5.40am - 6.25am 6 Solar Forest 2 Axis Trackers, Kyocera Sunday 17/11/2019 6.55pm - 7.15pm Monday 18/11/2019 5.40am - 6.25am 7 CdTe Thin Film, First Solar Sunday 17/11/2019 6.10pm - 6.55pm 8 Amorphous Silicon, Kaneka Sunday 17/11/2019 8.25am - 9.30am Sunday 17/11/2019 5.50pm - 6.10pm 9A CIGS Thin Film, Solibro Hanergy Sunday 17/11/2019 7.05am - 7.35am 9B TBD (has old CIGS Thin Film modules) Sunday 17/11/2019 7.45am - 8.05am 10 Monocrystalline Silicon, SunPower (215W) Sunday 17/11/2019 8.10am - 8.25am 11 Polycrystalline Silicon, BP Solar Sunday 17/11/2019 5.30pm - 5.50pm 12 Monocrystalline Silicon, BP Solar Sunday 17/11/2019 6.10am - 7.00am 13 Monocrystalline Silicon, Trina Saturday 16/11/2019 6.10pm - 6.35pm 14 Polycrystalline Silicon, Kyocera Saturday 16/11/2019 5.15pm - 6.05pm 15 Solar Water System, Trunz Saturday 16/11/2019 6.05pm - 6.10pm 16 Solar Compass, BP Solar Thursday 21/11/2019 6.40pm - 7.15pm 17 HIT Hybrid Silicon, Sanyo Monday 18/11/2019 7.15am - 7.45am 18 Monocrystalline Silicon, SunPower (238W) Monday 18/11/2019
    [Show full text]
  • Fire Fighter Safety and Emergency Response for Solar Power Systems
    Fire Fighter Safety and Emergency Response for Solar Power Systems Final Report A DHS/Assistance to Firefighter Grants (AFG) Funded Study Prepared by: Casey C. Grant, P.E. Fire Protection Research Foundation The Fire Protection Research Foundation One Batterymarch Park Quincy, MA, USA 02169-7471 Email: [email protected] http://www.nfpa.org/foundation © Copyright Fire Protection Research Foundation May 2010 Revised: October, 2013 (This page left intentionally blank) FOREWORD Today's emergency responders face unexpected challenges as new uses of alternative energy increase. These renewable power sources save on the use of conventional fuels such as petroleum and other fossil fuels, but they also introduce unfamiliar hazards that require new fire fighting strategies and procedures. Among these alternative energy uses are buildings equipped with solar power systems, which can present a variety of significant hazards should a fire occur. This study focuses on structural fire fighting in buildings and structures involving solar power systems utilizing solar panels that generate thermal and/or electrical energy, with a particular focus on solar photovoltaic panels used for electric power generation. The safety of fire fighters and other emergency first responder personnel depends on understanding and properly handling these hazards through adequate training and preparation. The goal of this project has been to assemble and widely disseminate core principle and best practice information for fire fighters, fire ground incident commanders, and other emergency first responders to assist in their decision making process at emergencies involving solar power systems on buildings. Methods used include collecting information and data from a wide range of credible sources, along with a one-day workshop of applicable subject matter experts that have provided their review and evaluation on the topic.
    [Show full text]
  • Digital Twin Modeling of a Solar Car Based on the Hybrid Model Method with Data-Driven and Mechanistic
    applied sciences Article Digital Twin Modeling of a Solar Car Based on the Hybrid Model Method with Data-Driven and Mechanistic Luchang Bai, Youtong Zhang *, Hongqian Wei , Junbo Dong and Wei Tian Laboratory of Low Emission Vehicle, Beijing Institute of Technology, Beijing 100081, China; [email protected] (L.B.); [email protected] (H.W.); [email protected] (J.D.); [email protected] (W.T.) * Correspondence: [email protected] Featured Application: This technology is expected to be used in energy management of new energy vehicles. Abstract: Solar cars are energy-sensitive and affected by many factors. In order to achieve optimal energy management of solar cars, it is necessary to comprehensively characterize the energy flow of vehicular components. To model these components which are hard to formulate, this study stimulates a solar car with the digital twin (DT) technology to accurately characterize energy. Based on the hybrid modeling approach combining mechanistic and data-driven technologies, the DT model of a solar car is established with a designed cloud platform server based on Transmission Control Protocol (TCP) to realize data interaction between physical and virtual entities. The DT model is further modified by the offline optimization data of drive motors, and the energy consumption is evaluated with the DT system in the real-world experiment. Specifically, the energy consumption Citation: Bai, L.; Zhang, Y.; Wei, H.; error between the experiment and simulation is less than 5.17%, which suggests that the established Dong, J.; Tian, W. Digital Twin DT model can accurately stimulate energy consumption. Generally, this study lays the foundation Modeling of a Solar Car Based on the for subsequent performance optimization research.
    [Show full text]
  • Capricious Suntime
    [Physics in daily life] I L.J.F. (Jo) Hermans - Leiden University, e Netherlands - [email protected] - DOI: 10.1051/epn/2011202 Capricious suntime t what time of the day does the sun reach its is that the solar time will gradually deviate from the time highest point, or culmination point, when on our watch. We expect this‘eccentricity effect’ to show a its position is exactly in the South? e ans - sine-like behaviour with a period of a year. A wer to this question is not so trivial. For ere is a second, even more important complication. It is one thing, it depends on our location within our time due to the fact that the rotational axis of the earth is not zone. For Berlin, which is near the Eastern end of the perpendicular to the ecliptic, but is tilted by about 23.5 Central European time zone, it may happen around degrees. is is, aer all, the cause of our seasons. To noon, whereas in Paris it may be close to 1 p.m. (we understand this ‘tilt effect’ we must realise that what mat - ignore the daylight saving ters for the deviation in time time which adds an extra is the variation of the sun’s hour in the summer). horizontal motion against But even for a fixed loca - the stellar background tion, the time at which the during the year. In mid- sun reaches its culmination summer and mid-winter, point varies throughout the when the sun reaches its year in a surprising way.
    [Show full text]
  • Solar Engineering Basics
    Solar Energy Fundamentals Course No: M04-018 Credit: 4 PDH Harlan H. Bengtson, PhD, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] Solar Energy Fundamentals Harlan H. Bengtson, PhD, P.E. COURSE CONTENT 1. Introduction Solar energy travels from the sun to the earth in the form of electromagnetic radiation. In this course properties of electromagnetic radiation will be discussed and basic calculations for electromagnetic radiation will be described. Several solar position parameters will be discussed along with means of calculating values for them. The major methods by which solar radiation is converted into other useable forms of energy will be discussed briefly. Extraterrestrial solar radiation (that striking the earth’s outer atmosphere) will be discussed and means of estimating its value at a given location and time will be presented. Finally there will be a presentation of how to obtain values for the average monthly rate of solar radiation striking the surface of a typical solar collector, at a specified location in the United States for a given month. Numerous examples are included to illustrate the calculations and data retrieval methods presented. Image Credit: NOAA, Earth System Research Laboratory 1 • Be able to calculate wavelength if given frequency for specified electromagnetic radiation. • Be able to calculate frequency if given wavelength for specified electromagnetic radiation. • Know the meaning of absorbance, reflectance and transmittance as applied to a surface receiving electromagnetic radiation and be able to make calculations with those parameters. • Be able to obtain or calculate values for solar declination, solar hour angle, solar altitude angle, sunrise angle, and sunset angle.
    [Show full text]
  • Creating Google Street Views with the Samsung Gear 360 Camera By
    Creating Google Street Views with the Samsung Gear 360 Camera1 by Andy Lyons ​ Last modified: November 2016 Google Street View Camera Loan Kit In October 2016, Google loaned a 360-camera kit to IGIS (a statewide technical support program in ANR), for the purposes of exploring how Google’s Street View technology can be useful for research and management at the Hopland Research and Extension Center (and ANR field stations more generally). Street View app and the Samsung Gear 360 2 The Street View app (for both Android and iOS) is what you use to create and upload Street Views. The Samsung Gear 360 is one of about four 360 cameras that the Google Street View app is setup to work with (meaning the app can control the camera pretty seamlessly). Most people use the Street View app only to view off-road street views. You can also view off-road street views in plain old Google Maps, but the Street View app makes it a little easier to find user generated content. If you have a VR device such as the Google Cardboard, you can view Street Views in 3 cardboard mode .​ In terms of content creation, the Street View app has three main functions: i) control the camera, ii) process images (which includes stitching them together, blurring faces and license plates, adding locations as needed, and linking nearby photos), and iii) upload the images to Google Street View (after which they’ll be available in Google Maps immediately). The Samsung Gear can also record 360 video. For that you need the Samsung Gear 360 Manager (or another app).
    [Show full text]
  • Sidereal Time Distribution in Large-Scale of Orbits by Usingastronomical Algorithm Method
    International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064 Index Copernicus Value (2013): 6.14 | Impact Factor (2013): 4.438 Sidereal Time Distribution in Large-Scale of Orbits by usingAstronomical Algorithm Method Kutaiba Sabah Nimma 1UniversitiTenagaNasional,Electrical Engineering Department, Selangor, Malaysia Abstract: Sidereal Time literally means star time. The time we are used to using in our everyday lives is Solar Time.Astronomy, time based upon the rotation of the earth with respect to the distant stars, the sidereal day being the unit of measurement.Traditionally, the sidereal day is described as the time it takes for the Earth to complete one rotation relative to the stars, and help astronomers to keep them telescops directions on a given star in a night sky. In other words, earth’s rate of rotation determine according to fixed stars which is controlling the time scale of sidereal time. Many reserachers are concerned about how long the earth takes to spin based on fixed stars since the earth does not actually spin around 360 degrees in one solar day.Furthermore, the computations of the sidereal time needs to take a long time to calculate the number of the Julian centuries. This paper shows a new method of calculating the Sidereal Time, which is very important to determine the stars location at any given time. In addition, this method provdes high accuracy results with short time of calculation. Keywords: Sidereal time; Orbit allocation;Geostationary Orbit;SolarDays;Sidereal Day 1. Introduction (the upper meridian) in the sky[6]. Solar time is what the time we all use where a day is defined as 24 hours, which is The word "sidereal" comes from the Latin word sider, the average time that it takes for the sun to return to its meaning star.
    [Show full text]
  • Using Google MAPS Street View on Your PHONE and Creating Hyperlinks
    Using Google Maps, Google Street View, and Google Earth on your PHONE and creating hyperlinks Google Maps Type in your search term. You might need to try different phrases to get what you want. Pull the bottom screen up to see the Overview and click on Photos Switch to “Street View & 360” and search through the images listed, opening them by clicking on them. Once in the 360 degree view you can move your view around by swiping on the screen (you can also do this to the smaller preview images in the list). Once you have found the view that “explains the ways in which it augments understanding of the monument/place/site/object itself, beyond your readings or what has been discussed in class” save the view as the choice for your Spatial Exploration Project entry. To do this click on the “share” icon (a square with an arrow projecting from it) that I’ve outlined in red at the top of the page. At this point you can text or email yourself the link or copy it to paste into a document. To create a hyperlink in your document, highlight the text you want to be connected to your view, paste the copied url you made from the previous share screen, hit ”go” or “enter,” and that text will now have the link embedded in it. Google Street View While less well known than Google Maps, Street View allows you to walk the streets of the location you choose. Once again, you type in your search term.
    [Show full text]
  • Q2/Q3 2020 Solar Industry Update
    Q2/Q3 2020 Solar Industry Update David Feldman Robert Margolis December 8, 2020 NREL/PR-6A20-78625 Executive Summary Global Solar Deployment PV System and Component Pricing • The median estimate of 2020 global PV system deployment projects an • The median residential quote from EnergySage in H1 2020 fell 2.4%, y/y 8% y/y increase to approximately 132 GWDC. to $2.85/W—a slower rate of decline than observed in any previous 12- month period. U.S. PV Deployment • Even with supply-chain disruptions, BNEF reported global mono c-Si • Despite the impact of the pandemic on the overall economy, the United module pricing around $0.20/W and multi c-Si module pricing around States installed 9.0 GWAC (11.1 GWDC) of PV in the first 9 months of $0.17/W. 2020—its largest first 9-month total ever. • In Q2 2020, U.S. mono c-Si module prices fell, dropping to their lowest • At the end of September, there were 67.9 GWAC (87.1 GWDC) of solar PV recorded level, but they were still trading at a 77% premium over global systems in the United States. ASP. • Based on EIA data through September 2020, 49.4 GWAC of new electric Global Manufacturing generating capacity are planned to come online in 2020, 80% of which will be wind and solar; a significant portion is expected to come in Q4. • Despite tariffs, PV modules and cells are being imported into the United States at historically high levels—20.6 GWDC of PV modules and 1.7 • EIA estimates solar will install 17 GWAC in 2020 and 2021, with GWDC of PV cells in the first 9 months of 2020.
    [Show full text]
  • Sidereal Time 1 Sidereal Time
    Sidereal time 1 Sidereal time Sidereal time (pronounced /saɪˈdɪəri.əl/) is a time-keeping system astronomers use to keep track of the direction to point their telescopes to view a given star in the night sky. Just as the Sun and Moon appear to rise in the east and set in the west, so do the stars. A sidereal day is approximately 23 hours, 56 minutes, 4.091 seconds (23.93447 hours or 0.99726957 SI days), corresponding to the time it takes for the Earth to complete one rotation relative to the vernal equinox. The vernal equinox itself precesses very slowly in a westward direction relative to the fixed stars, completing one revolution every 26,000 years approximately. As a consequence, the misnamed sidereal day, as "sidereal" is derived from the Latin sidus meaning "star", is some 0.008 seconds shorter than the earth's period of rotation relative to the fixed stars. The longer true sidereal period is called a stellar day by the International Earth Rotation and Reference Systems Service (IERS). It is also referred to as the sidereal period of rotation. The direction from the Earth to the Sun is constantly changing (because the Earth revolves around the Sun over the course of a year), but the directions from the Earth to the distant stars do not change nearly as much. Therefore the cycle of the apparent motion of the stars around the Earth has a period that is not quite the same as the 24-hour average length of the solar day. Maps of the stars in the night sky usually make use of declination and right ascension as coordinates.
    [Show full text]
  • Google Street View As a Medium for Social Gaming Steven Dao
    University of South Carolina Scholar Commons Senior Theses Honors College Spring 5-5-2017 Google Street View as a Medium for Social Gaming Steven Dao Tien Ho Austin Pahl Follow this and additional works at: https://scholarcommons.sc.edu/senior_theses Part of the Computer Sciences Commons Recommended Citation Dao, Steven; Ho, Tien; and Pahl, Austin, "Google Street View as a Medium for Social Gaming" (2017). Senior Theses. 145. https://scholarcommons.sc.edu/senior_theses/145 This Thesis is brought to you by the Honors College at Scholar Commons. It has been accepted for inclusion in Senior Theses by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. GOOGLE STREET VIEW AS A MEDIUM FOR SOCIAL GAMING By Steven Dao Tien Ho Austin Pahl Submitted in Partial Fulfillment of the Requirements for Graduation with Honors from the South Carolina Honors College May, 2017 Approved: Dr. Jose M. Vidal Director of Thesis Steve Lynn, Dean For South Carolina Honors College Table of Contents Thesis Summary 4 Introduction 4 Planning 5 Waterfall Development Process 5 Technologies 5 Collaboration/Communication Tools 5 Frontend Frameworks 6 Angular 2 6 AngularFire 2 7 Bootstrap 7 HowlerJS 8 Google Maps API 8 Backend Frameworks 8 Firebase 8 Django 8 MEAN Stack 9 Frontend and Backend Overview 9 Design 10 Mockups 10 Architecture 12 Requirements 13 Implementation 15 Architecture 15 Services 15 Components 15 UML Diagram 16 Challenges/Issues 17 Validation 18 Testing 18 Debugging 19 Results 19 Finished App 19 Presentations 21 References 22 Appendix: Tools and Technologies Used 23 2 Thesis Summary In this thesis project, we planned and built a multiplayer web game called safehouse from Fall ​ ​ 2016 to Spring 2017.
    [Show full text]