Life History Characteristics of Glassfish, Ambassis Jacksoniensis, Adjacent

Total Page:16

File Type:pdf, Size:1020Kb

Life History Characteristics of Glassfish, Ambassis Jacksoniensis, Adjacent Life history characteristics of glassfish, Ambassis jacksoniensis, adjacent to saltmarsh within a large and permanently-open estuary Jack J. McPhee Doctor of Philosophy (Environmental and Life Sciences) Supervisors: Dr Maria Schreider (Environmental and Life Sciences) Dr Margaret Platell (Environmental and Life Sciences) “Ambassis jacksoniensis” - Illustrated by Corrine Edwards a ACKNOWLEDGEMENTS I would like to express my sincerest gratitude to a series of people, without whom this PhD would not have been possible. First and foremost, I would like to give a warm thank you to my two supervisors, Dr Maria Schreider and Dr Margaret Platell. Maria, your encouragement to push on, not for self-benefit, but for the greater scientific good is a trait that I have valued since your teaching during my undergraduate years. Your motive to work hard in order to seek the truth (Без муки нет науки) is a characteristic that often reminds me why I was inspired to pursue a scientific career to begin with – спасибо! Margaret, your genuinely friendly and inquisitive attitude towards the project, and science in general, is a characteristic that has also shaped me over the years. Your genuine care for the organisms and environments that we study is a continual reminder that such scientific pursuits are not only for the benefit of the scientific community, but are of equal importance to the organisms that we are studying. While Maria’s traditional, clinical, to the point (i.e. “eschew obfuscation”) scientific perspective helped me “cut the fat” during my studies, Margaret has brought the “seasoning,” the fun, the flavour. Margaret, to me you are truly perspicacious in the field of estuarine ecology and I thank you for eliciting me into this world. The two of you are genuinely altruistic scientists in my eyes and I am hugely grateful for all your inspiration. Thank you for being wonderful teachers, colleagues and friends. I would also like to thank the numerous enthusiastic colleagues that assisted me in the often wild and uncomfortable sampling occasions. A special thank you to Jeff Law, Ryan Hefford, Wayne Davis, Stuart Bowers, James Brooker and Daniel Camilleri. Thank you Gordon Thomson, from Murdoch University, for preparing the gonadal slides for microscopic validation. Thank you Macquarie Geotech for conducting the calorimetric analyses. Thank you Natalie Moltschaniwskyj, for your guidance with the life history and reproduction chapter. I would also like to thank the University of Newcastle for their provision of funding and resources throughout the duration of the project. Thank you Corrine Edwards for illustrating the cover of my thesis. Lastly, I would like to thank my family and friends (particularly my Mum and Dad, Micaela and to my dogs, Willow, Jessie and Pippa), who have all supported me and kept me sane and motivated throughout the entire process of my PhD. The collection of fish and zooplankton was authorised by the Department of Primary Industries (Permit No. P11/0085-1.0) and UoN Animal Ethics Committee (Permit No. A-2012-219). In memory of Dr Kenneth Zimmerman - the man who inspired me to study marine science. i STATEMENT OF ORIGINALITY This thesis contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge, contains no material previously published or written by another person, except where due reference has been made in the text. _________________________________________________________ Jack James McPhee ii PUBLICATIONS RESULTING FROM THIS THESIS The following article has been published by Estuarine, Coastal and Shelf Science and a copy of the publication is attached at the end of this thesis (see Appendix A). Other chapters/components of the research are currently being prepared for submission to various ecological journals for publication. McPhee, J. J., Platell, M. E., and Schreider, M. J. (2015). Trophic relay and prey switching – A stomach contents and calorimetric investigation of an ambassid fish and their saltmarsh prey. Estuarine, Coastal and Shelf Science, 167, 67-74. iii ABSTRACT Saltmarsh vegetation, which typically occurs in intertidal areas within estuaries globally, provides an important habitat and feeding ground for estuarine organisms such as crustaceans, gastropods, birds and fish (some of which are of economic importance). Within south-east Australian estuaries, saltmarsh vegetation is both typically bordered by mangroves and tidally inundated three or four times per month during the high tide of the spring tidal cycle (during the day high tide in summer and during the night high tide in winter). In recent decades, saltmarsh vegetation has declined globally due to anthropogenic influence, and in Australia, ‘Coastal Saltmarsh’ is now listed as an Endangered Ecological Community under the Threatened Species Conservation Act 1995. This study was conducted within a representative and relatively “unmodified” saltmarsh habitat (Empire Bay Wetland) in a large and permanently open estuary, Brisbane Water Estuary, located in south-eastern Australia. This study, which was conducted at two markedly different times of the year during 2012, examined the general “response” of the estuarine fish (using seine nets) and zooplankton (using plankton nets) assemblages to tidal inundation, with further emphasis being placed on selected biological and ecological characteristics of the abundant estuarine ambassid, Ambassis jacksoniensis. Abundances of A. jacksoniensis (mean standard length=37.3 mm, ±0.021 (SE)) and overall fish diversity were greater in nightly winter catches than daily summer catches, which is consistent with previous evidence of important feeding times for estuarine fish (including A. jacksoniensis) upon saltmarsh- derived zooplankton (e.g. crab zoeae released by saltmarsh-dwelling grapsid crabs), during ebb tides that drain saltmarsh following its inundation. Indeed, zooplankton assemblages were dominated by crab zoeae during ebb tides following saltmarsh inundation, while calanoid copepods dominated these assemblages at other times. Moreover, stomach content analyses of A. jacksoniensis showed that crab zoeae were heavily preyed upon during such times, with dietary “switching” to caridean decapods being evident when crab zoeae were not abundantly present within the water column (i.e. during flood tides and during ebb tides that did not follow saltmarsh inundation; as shown within zooplankton assemblages). Despite their high abundance within zooplankton assemblages, calanoid copepods were not preyed upon by A. jacksoniensis, which is likely to reflect the relatively fast escape responses of iv calanoids to predators. Further, stomach fullnesses of A. jacksoniensis were generally highest during ebb tides on days of saltmarsh inundation, implying that feeding was most marked at these times. Trophic relay is an ecological model that involves the movement of biomass and energy from vegetation, such as saltmarshes, within estuaries to the open sea via a series of predator-prey relationships. Therefore, the trophic relationship between saltmarsh-dwelling grapsid crabs (which feed on saltmarsh-derived detritus and microphytobenthos), A. jacksoniensis and their predators (which include economically important fish, such as Acanthopagrus australis, Platycephalus fuscus and Argyrosomus japonicus, provides evidence of partial trophic relay within this system, and thus highlights the ecological and economic importance of saltmarsh within this system. The trophic relationship between A. jacksoniensis and its zooplanktonic prey (e.g. crab zoeae, which is of a red/orange colour) was further investigated, for the first time, by comparisons of the calorimetric contribution of its potential prey (i.e. crab zoeae, and the far paler caridean decapods and calanoid copepods), which found no difference in the energetic densities among such potential prey, suggesting that prey (i.e. zooplankton) abundance and/or prey visibility (due to colour) has a stronger relationship than prey energetic density to the diets of A. jacksoniensis. The feeding ecology of A. jacksonsiensis was also explored, for the first time, in light of its various life history characteristics (e.g. the seasonality of sex ratios, sexual maturity and somatic/reproductive growth), with links being made between saltmarsh-derived tropic relay and energetic requirements for reproductive purposes. Thus, the gonads of A. jacksoniensis were found to be generally maturing and ripe during summer, while juvenile/inactive and spent gonads were prevalent during winter, consistent with previous evidence that A. jacksoniensis spawn during summer with a lull during winter. The sex ratios of A. jacksoniensis were also heavily female-biased during summer before equalising (to approximately 1:1) during winter, suggesting that male A. jacksoniensis may avoid the shallow sampling locations (seagrass adjacent to the saltmarsh/mangroves) in a strategy to counteract visual predation from fish and birds during daytime (summer) before returning to these waters during the night winter, during a lull in spawning, for important feeding opportunities. Female A. jacksoniensis, alternatively, may remain in such vulnerable locations due to increased energetic requirements for reproductive purposes (as demonstrated in male vs female somatic/gonadal growth v analyses). These findings therefore suggest that the seasonal timing of spawning for A. jacksoniensis may be linked to their feeding
Recommended publications
  • §4-71-6.5 LIST of CONDITIONALLY APPROVED ANIMALS November
    §4-71-6.5 LIST OF CONDITIONALLY APPROVED ANIMALS November 28, 2006 SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Plesiopora FAMILY Tubificidae Tubifex (all species in genus) worm, tubifex PHYLUM Arthropoda CLASS Crustacea ORDER Anostraca FAMILY Artemiidae Artemia (all species in genus) shrimp, brine ORDER Cladocera FAMILY Daphnidae Daphnia (all species in genus) flea, water ORDER Decapoda FAMILY Atelecyclidae Erimacrus isenbeckii crab, horsehair FAMILY Cancridae Cancer antennarius crab, California rock Cancer anthonyi crab, yellowstone Cancer borealis crab, Jonah Cancer magister crab, dungeness Cancer productus crab, rock (red) FAMILY Geryonidae Geryon affinis crab, golden FAMILY Lithodidae Paralithodes camtschatica crab, Alaskan king FAMILY Majidae Chionocetes bairdi crab, snow Chionocetes opilio crab, snow 1 CONDITIONAL ANIMAL LIST §4-71-6.5 SCIENTIFIC NAME COMMON NAME Chionocetes tanneri crab, snow FAMILY Nephropidae Homarus (all species in genus) lobster, true FAMILY Palaemonidae Macrobrachium lar shrimp, freshwater Macrobrachium rosenbergi prawn, giant long-legged FAMILY Palinuridae Jasus (all species in genus) crayfish, saltwater; lobster Panulirus argus lobster, Atlantic spiny Panulirus longipes femoristriga crayfish, saltwater Panulirus pencillatus lobster, spiny FAMILY Portunidae Callinectes sapidus crab, blue Scylla serrata crab, Samoan; serrate, swimming FAMILY Raninidae Ranina ranina crab, spanner; red frog, Hawaiian CLASS Insecta ORDER Coleoptera FAMILY Tenebrionidae Tenebrio molitor mealworm,
    [Show full text]
  • 1 Exon Probe Sets and Bioinformatics Pipelines for All Levels of Fish Phylogenomics
    bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.949735; this version posted February 19, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Exon probe sets and bioinformatics pipelines for all levels of fish phylogenomics 2 3 Lily C. Hughes1,2,3,*, Guillermo Ortí1,3, Hadeel Saad1, Chenhong Li4, William T. White5, Carole 4 C. Baldwin3, Keith A. Crandall1,2, Dahiana Arcila3,6,7, and Ricardo Betancur-R.7 5 6 1 Department of Biological Sciences, George Washington University, Washington, D.C., U.S.A. 7 2 Computational Biology Institute, Milken Institute of Public Health, George Washington 8 University, Washington, D.C., U.S.A. 9 3 Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian 10 Institution, Washington, D.C., U.S.A. 11 4 College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, China 12 5 CSIRO Australian National Fish Collection, National Research Collections of Australia, 13 Hobart, TAS, Australia 14 6 Sam Noble Oklahoma Museum of Natural History, Norman, O.K., U.S.A. 15 7 Department of Biology, University of Oklahoma, Norman, O.K., U.S.A. 16 17 *Corresponding author: Lily C. Hughes, [email protected]. 18 Current address: Department of Organismal Biology and Anatomy, University of Chicago, 19 Chicago, IL. 20 21 Keywords: Actinopterygii, Protein coding, Systematics, Phylogenetics, Evolution, Target 22 capture 23 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.02.18.949735; this version posted February 19, 2020.
    [Show full text]
  • Marine Fish Conservation Global Evidence for the Effects of Selected Interventions
    Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca0 K. Smith & William J. Sutherland CONSERVATION EVIDENCE SERIES SYNOPSES Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca K. Smith and William J. Sutherland Conservation Evidence Series Synopses 1 Copyright © 2021 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Taylor, N., Clarke, L.J., Alliji, K., Barrett, C., McIntyre, R., Smith, R.K., and Sutherland, W.J. (2021) Marine Fish Conservation: Global Evidence for the Effects of Selected Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK. Further details about CC BY licenses are available at https://creativecommons.org/licenses/by/4.0/ Cover image: Circling fish in the waters of the Halmahera Sea (Pacific Ocean) off the Raja Ampat Islands, Indonesia, by Leslie Burkhalter. Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/
    [Show full text]
  • Fishes of the King Edward River in the Kimberley Region, Western Australia
    Records of the Western Australian Museum 25: 351–368 (2010). Fishes of the King Edward River in the Kimberley region, Western Australia David L. Morgan Freshwater Fish Group, Centre for Fish and Fisheries Research, Murdoch University, Murdoch, Western Australia 6150, Australia. E-mail: [email protected] Abstract – The King Edward River, in the far north of the Kimberley region of Western Australia drains approximately 10,000 km2 and discharges into the Timor Sea near the town of Kalumburu. This study represents an ichthyological survey of the river’s freshwaters and revealed that the number of freshwater fishes of the King Edward River is higher than has previously been recorded for a Western Australian river. Twenty-six strictly freshwater fish species were recorded, which is three species higher than the much larger Fitzroy River in the southern Kimberley. The study also identified a number of range extensions, including Butler’s Grunter and Shovel-nosed Catfish to the west, and the Slender Gudgeon to the north and east. A possibly undescribed species of glassfish, that differs morphologically from described species in arrangement of head spines, fin rays, as well as relative body measurements, is reported. A considerable proportion of Jenkins’ Grunter, which is widespread throughout the system but essentially restricted to main channel sites, had ‘blubber-lips’. There were significant differences in the prevailing fish fauna of the different reaches of the King Edward River system. Thus fish associations in the upper King Edward River main channel were significantly different to those in the tributaries and the main channel of the Carson River.
    [Show full text]
  • Monophyly and Interrelationships of Snook and Barramundi (Centropomidae Sensu Greenwood) and five New Markers for fish Phylogenetics ⇑ Chenhong Li A, , Betancur-R
    Molecular Phylogenetics and Evolution 60 (2011) 463–471 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Monophyly and interrelationships of Snook and Barramundi (Centropomidae sensu Greenwood) and five new markers for fish phylogenetics ⇑ Chenhong Li a, , Betancur-R. Ricardo b, Wm. Leo Smith c, Guillermo Ortí b a School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA b Department of Biological Sciences, The George Washington University, Washington, DC 200052, USA c The Field Museum, Department of Zoology, Fishes, 1400 South Lake Shore Drive, Chicago, IL 60605, USA article info abstract Article history: Centropomidae as defined by Greenwood (1976) is composed of three genera: Centropomus, Lates, and Received 24 January 2011 Psammoperca. But composition and monophyly of this family have been challenged in subsequent Revised 3 May 2011 morphological studies. In some classifications, Ambassis, Siniperca and Glaucosoma were added to the Accepted 5 May 2011 Centropomidae. In other studies, Lates + Psammoperca were excluded, restricting the family to Available online 12 May 2011 Centropomus. Recent analyses of DNA sequences did not solve the controversy, mainly due to limited taxonomic or character sampling. The present study is based on DNA sequence data from thirteen Keywords: genes (one mitochondrial and twelve nuclear markers) for 57 taxa, representative of all relevant Centropomidae species. Five of the nuclear markers are new for fish phylogenetic studies. The monophyly of Centrop- Lates Psammoperca omidae sensu Greenwood was supported by both maximum likelihood and Bayesian analyses of a Ambassidae concatenated data set (12,888 bp aligned). No support was found for previous morphological hypothe- Niphon spinosus ses suggesting that ambassids are closely allied to the Centropomidae.
    [Show full text]
  • Laboratory Evaluation of the Predation Efficacy of Native Australian Fish on Culex Annulirostris (Diptera: Culicidae)
    Journal of the Americctn Mosquito Control Association, 20(3):2g6_291,2OO4 Copyright A 2OO4by the American Mosquib Control Association, Inc. LABORATORY EVALUATION OF THE PREDATION EFFICACY OF NATIVE AUSTRALIAN FISH ON CULEX ANNULIROSTRIS (DIPTERA: CULICIDAE) TIMOTHY P HURST, MICHAEL D. BRowNI eNo BRIAN H. KAY Australian Centre International for and Tropical Health and Nutrition at the eueensland Institute of Medical pO Research, Royal Brisbane H<tspital, eueensland 4029, Austalia ABSTRACT. The introduction and establishment of fish populations can provide long-term, cost-effective mosquito control in habitats such as constructed wetlands and ornamental lakes. The p.idution efficacy of 7 native Brisbane freshwater fish on I st and 4th instars of the freshwater arbovirus vector culex annulirostris was evaluated in a series of 24-h laboratory trials. The trials were conducted in 30-liter plastic carboys at 25 + l"C urder a light:dark cycle of l4:10 h. The predation eflcacy of native crimson-spotted rainbowfish Melanotaenia (Melanotaeniidae), cluboulayi Australian smelt Retropinna semoni (Retropinnadae), pacific blue-eye pseudomugil (Atherinidae), signfer fly-specked hardyhead Craterocephalus stercusmLtscarum (Atherinidae), hretail gudgeon Hypseleotris gttlii (Eleotridae), empire gudgeon Hypseleotris compressa (Eleotridae), and estuary percilet Am- bassis marianus (Ambassidae) was compared with the exotic eaitern mosquitofish Getmbusia iolbrooki (poe- ciliidae). This environmentally damaging exotic has been disseminated worldwide and has been declared noxrous in Queensland. Melanotaenia duboulayi was found to consume the greatest numbers of both lst and 4th instars of Cx. annuliro.t/ri.t. The predation efficacy of the remaining Australian native species was comparable with that of the exotic G. holbrooki. With the exception of A- marianu^s, the maximum predation rates of these native species were not statistically different whether tested individually or in a school of 6.
    [Show full text]
  • Lakes Argyle and Kununurra Wetlands Ramsar Site Ecological Character Description
    Lakes Argyle and Kununurra Ramsar Site Ecological Character Description Citation: Hale, J. and Morgan, D., 2010, Ecological Character Description for the Lakes Argyle and Kununurra Ramsar Site. Report to the Department of Sustainability, Environment, Water, Population and Communities, Canberra. Acknowledgements: Danny Rogers, Australasian Waders Studies Group (expert advice) Halina Kobryn, Murdoch University (mapping and GIS) The steering committee was comprised of representatives of the following organisations: • Department of the Environment, Water, Heritage and the Arts • WA Department of Environment and Conservation (Kununurra) • WA Department of Water (Kununurra) • Shire of Wyndham East Kimberley Introductory Notes This Ecological Character Description (ECD Publication) has been prepared in accordance with the National Framework and Guidance for Describing the Ecological Character of Australia’s Ramsar Wetlands (National Framework) (Department of the Environment, Water, Heritage and the Arts, 2008). The Environment Protection and Biodiversity Conservation Act 1999 (EPBC Act) prohibits actions that are likely to have a significant impact on the ecological character of a Ramsar wetland unless the Commonwealth Environment Minister has approved the taking of the action, or some other provision in the EPBC Act allows the action to be taken. The information in this ECD Publication does not indicate any commitment to a particular course of action, policy position or decision. Further, it does not provide assessment of any particular action within the meaning of the Environment Protection and Biodiversity Conservation Act 1999 (Cth), nor replace the role of the Minister or his delegate in making an informed decision to approve an action. The Water Act 2007 requires that in preparing the [Murray-Darling] Basin Plan, the Murray Darling Basin Authority (MDBA) must take into account Ecological Character Descriptions of declared Ramsar wetlands prepared in accordance with the National Framework.
    [Show full text]
  • Southern Gulf, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Original Article Seascape Context Modifies How Fish Respond to Restored Oyster Reef Structures
    ICES Journal of Marine Science (2019), 76(4), 1131–1139. doi:10.1093/icesjms/fsz019 Downloaded from https://academic.oup.com/icesjms/article-abstract/76/4/1131/5333156 by Griffith University user on 02 September 2019 Original Article Seascape context modifies how fish respond to restored oyster reef structures Ben L. Gilby 1,2*, Andrew D. Olds1,2, Christopher J. Henderson1,2, Nicholas L. Ortodossi1, Rod M. Connolly3, and Thomas A. Schlacher1,2 1The Animal Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia 2School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia 3Australian Rivers Institute—Coasts and Estuaries, School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia *Corresponding author: tel: +61 7 5430 2891; e-mail: [email protected]. Gilby, B. L., Olds, A. D., Henderson, C. J., Ortodossi, N. L., Connolly, R. M., and Schlacher, T. A. Seascape context modifies how fish re- spond to restored oyster reef structures. – ICES Journal of Marine Science, 76: 1131–1139. Received 14 October 2018; revised 13 January 2019; accepted 24 January 2019; advance access publication 18 February 2019. The seascape context of coastal ecosystems plays a pivotal role in shaping patterns in fish recruitment, abundance, and diversity. It might also be a principal determinant in structuring the recruitment of fish assemblages to restored habitats, but the trajectories of these relationships require further testing. In this study, we surveyed fish assemblages from 14 restored oyster reefs and 14 control sites in the Noosa River, Queensland, Australia, that differed in the presence or absence of seagrass within 500 m, over four periods using baited cameras.
    [Show full text]
  • Freshwater Fishes of Kakadu National Park and the Impact of Sea Level Rise
    Freshwater fishes of Kakadu National Park and the impact of sea level rise What is the issue? (both brackish and freshwater) may persist in the landscape for less time. While some estuarine species Sixty two species of freshwater fish have been may potentially benefit from expanded tidal habitat, recorded from Kakadu National Park. For 11 of some lowland freshwater species, particularly those these species, between 15% and 40% of their total largely confined to this habitat type, would appear to predicted distribution occurs within the Park. Many be vulnerable. This study, funded under the Northern freshwater fish species in the Park are likely to be Australia Hub of the Australian Government’s impacted by climate change, especially saltwater National Environmental Research Program, examined intrusion onto freshwater floodplains as a result of the direct effects of sea level rise on floodplain sea level rise and increased storm surge. freshwater fish species. Sea level rise is predicted to cause rapid and substantial habitat changes. In particular, affected What did the research do? freshwater wetlands are predicted to change to To predict the extent of impact of sea level rise open saline mudflats. Floodplain and mudflat on floodplain fishes the team developed a model habitats may also experience higher temperatures incorporating topographic information for the and faster evaporation rates and seasonal wetlands lowland rivers, floodplains and estuaries of the Park and the predicted distribution data for 55 freshwater fish species. While climate change scientists are confident that sea levels will rise, due to the complexity of climate systems, the exact rate and amount of change is unknown.
    [Show full text]
  • Wainwright-Et-Al.-2012.Pdf
    Copyedited by: ES MANUSCRIPT CATEGORY: Article Syst. Biol. 61(6):1001–1027, 2012 © The Author(s) 2012. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: [email protected] DOI:10.1093/sysbio/sys060 Advance Access publication on June 27, 2012 The Evolution of Pharyngognathy: A Phylogenetic and Functional Appraisal of the Pharyngeal Jaw Key Innovation in Labroid Fishes and Beyond ,∗ PETER C. WAINWRIGHT1 ,W.LEO SMITH2,SAMANTHA A. PRICE1,KEVIN L. TANG3,JOHN S. SPARKS4,LARA A. FERRY5, , KRISTEN L. KUHN6 7,RON I. EYTAN6, AND THOMAS J. NEAR6 1Department of Evolution and Ecology, University of California, One Shields Avenue, Davis, CA 95616; 2Department of Zoology, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605; 3Department of Biology, University of Michigan-Flint, Flint, MI 48502; 4Department of Ichthyology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024; 5Division of Mathematical and Natural Sciences, Arizona State University, Phoenix, AZ 85069; 6Department of Ecology and Evolution, Peabody Museum of Natural History, Yale University, New Haven, CT 06520; and 7USDA-ARS, Beneficial Insects Introduction Research Unit, 501 South Chapel Street, Newark, DE 19713, USA; ∗ Correspondence to be sent to: Department of Evolution & Ecology, University of California, One Shields Avenue, Davis, CA 95616, USA; E-mail: [email protected]. Received 22 September 2011; reviews returned 30 November 2011; accepted 22 June 2012 Associate Editor: Luke Harmon Abstract.—The perciform group Labroidei includes approximately 2600 species and comprises some of the most diverse and successful lineages of teleost fishes.
    [Show full text]
  • Fishes of the King Edward and Carson Rivers with Their Belaa and Ngarinyin Names
    Fishes of the King Edward and Carson Rivers with their Belaa and Ngarinyin names By David Morgan, Dolores Cheinmora Agnes Charles, Pansy Nulgit & Kimberley Language Resource Centre Freshwater Fish Group CENTRE FOR FISH & FISHERIES RESEARCH Kimberley Language Resource Centre Milyengki Carson Pool Dolores Cheinmora: Nyarrinjali, kaawi-lawu yarn’ nyerreingkana, Milyengki-ngûndalu. Waj’ nyerreingkana, kaawi-ku, kawii amûrike omûrung, yilarra a-mûrike omûrung. Agnes Charles: We are here at Milyengki looking for fish. He got one barramundi, a small one. Yilarra is the barramundi’s name. Dolores Cheinmora: Wardi-di kala’ angbûnkû naa? Agnes Charles: Can you see the fish, what sort of fish is that? Dolores Cheinmora: Anja kûkûridingei, Kalamburru-ngûndalu. Agnes Charles: This fish, the Barred Grunter, lives in the Kalumburu area. Title: Fishes of the King Edward and Carson Rivers with their Belaa and Ngarinyin names Authors: D. Morgan1 D. Cheinmora2, A. Charles2, Pansy Nulgit3 & Kimberley Language Resource Centre4 1Centre for Fish & Fisheries Research, Murdoch University, South St Murdoch WA 6150 2Kalumburu Aboriginal Corporation 3Kupungari Aboriginal Corporation 4Siobhan Casson, Margaret Sefton, Patsy Bedford, June Oscar, Vicki Butters - Kimberley Language Resource Centre, Halls Creek, PMB 11, Halls Creek WA 6770 Project funded by: Land & Water Australia Photographs on front cover: Lower King Edward River Long-nose Grunter (inset). July 2006 Land & Water Australia Project No. UMU22 Fishes of the King Edward River - Centre for Fish & Fisheries Research, Murdoch University / Kimberley Language Resource Centre 2 Acknowledgements Most importantly we would like to thank the people of the Kimberley, particularly the Traditional Owners at Kalumburu and Prap Prap. This project would not have been possible without the financial support of Land & Water Australia.
    [Show full text]