Edge Habitat

Total Page:16

File Type:pdf, Size:1020Kb

Edge Habitat frc environmental Edge Habitat In edge habitat, PET richness was low (<4) at each site and no PET taxa were caught at site ST5 (Figure 6.6). PET taxa are sensitive to pollutants and changes in water quality and / or environmental degradation. It must be noted that stonefly larvae are unlikely to occur in the region as their preferred habitat is alpine and semi-alpine streams (Gooderham & Tsyrlin 2002). The absence of stoneflies negatively affects PET richness calculations at all sites. 5 – dry site 4.5 4 3.5 3 2.5 2 Mean PET Richness 1.5 1 0.5 – – – – – – – 0 ST1 ST3 NT13a NT14 W12 ST2 ST6 ST7 W11 ST4 ST5 NT9 NT13 C1 C2 Within Site Boundary Within Development Downstream of Site Comparative Footprint Boundary Sites Figure 6.6 Mean PET richness in edge habitat at each site. Boral Gold Coast Quarry EIS: Aquatic Ecology Assessment 83 frc environmental 6.5 Mean SIGNAL 2 Scores Bed Habitat In bed habitat, mean SIGNAL 2 scores varied between sites (Figure 6.7). Mean SIGNAL 2 scores were low (<4) at all sites, except comparative site C1, and indicative of pollution (DSEWPC 2005); although the low scores may also reflect the harsh physical conditions of ephemeral waterbodies. However, the low scores at the perennial wetlands were likely to be related to the high cover of finer substrates (i.e. sand and silt and / or clay) at these sites. 4.5 – dry site x habitat not present 4 3.5 3 2.5 2 1.5 Mean SIGNAL 2 Scores Mean SIGNAL 1 0.5 – – – – – – x – x 0 C1 C2 ST1 ST3 ST2 ST6 ST7 ST5 ST4 NT9 W11 W11 W12 NT13 NT14 NT13a Within Site Boundary Within Development Downstream of Site Comparative Footprint Boundary Sites Figure 6.7 Mean SIGNAL 2 scores in bed habitat at each site. Boral Gold Coast Quarry EIS: Aquatic Ecology Assessment 84 frc environmental Edge Habitat In edge habitat, SIGNAL 2 scores were relatively similar between sites (Figure 6.8). Similar to bed habitat, mean SIGNAL 2 scores were low (<4), except at comparative site C1. This was also likely to be related to the ephemeral nature of these waterways and / or low substrate and habitat diversity at the wetland sites. 5 – dry site 4.5 4 – 3.5 – 3 2.5 2 1.5 Mean SIGNAL 2 Scores Mean SIGNAL 1 0.5 – – – – – 0 ST1 ST3 NT13a NT14 W12 ST2 ST6 ST7 W11 ST4 ST5 NT9 NT13 C1 C2 Within Site Boundary Within Development Downstream of Site Comparative Footprint Boundary Sites Figure 6.8 Mean SIGNAL 2 scores in edge habitat at each site. 6.6 Macrocrustaceans Three species of macrocrustaceans were caught, including: ⋅ freshwater shrimp (family Atyidae) (Figure 6.9) ⋅ freshwater prawns (family Palaemonidae) (Figure 6.10), and ⋅ yabbies (family Parastacidae) (Figure 6.11). The abundance of macrocrustaceans was zero to low at most sites with water, except sites W11, NT9 and C1 (Table 6.1). High abundaces of macrocrustaceans at these sites were due to the larger amount of water retained in these watercourses. No species listed under the Commonwealth’s EPBC Act or Queensland’s NCWR were found. Boral Gold Coast Quarry EIS: Aquatic Ecology Assessment 85 frc environmental Figure 6.9 Freshwater shrimp. Figure 6.10 Freshwater prawn. Figure 6.11 Yabby. Boral Gold Coast Quarry EIS: Aquatic Ecology Assessment 86 frc environmental Table 6.1 Abundance of macrocrustaceans at each site. Within Site Boundary Downstream of Site Boundary Comparative Sites Family Common Name ST1 ST2 ST3 ST6 ST7 W11 W12 NT13a NT14 ST4 ST5 NT9 NT13 C1 C2 Atyidae 1 – – – – 0 0 – – 7 0 709 – 102 0 Freshwater shrimp Palaemonidae 0 – – – – 137 0 – – 0 0 0 – 88 0 Freshwater prawn Parastacidae 1 – – – – 0 0 – – 0 0 31 – 0 0 Yabbies Total 2 – – – – 137 0 – – 7 0 740 – 190 0 – dry site Boral Gold Coast Quarry EIS: Aquatic Ecology Assessment 87 frc environmental 6.7 Macroinvertebrates of the Region The Ecosystem Health Monitoring Program (EHMP), a comprehensive aquatic ecosystem monitoring program for South east Queensland, conducted Spring and Autumn surveys of edge habitat in the region from 2002 to 2012. EHMP only surveyed edge habitat for macroinvertebrates; the current survey sampled both edge and bank habitats. EHMP sample macroinvertebrates using the Australian River Assessment System (AUSRIVAS), which includes one 10 m long sections of habitat and is designed to provide a broad description of macroinvertebrate communities, rather than a quantitative assessment used in this survey (DNRM 2001). EHMP surveyed five sites within the Nerang River catchment and five sites within the Tallebudgera / Currumbin catchment. Therefore results from EHMP may differ slightly to those of this survey. All sites surveyed had mean taxonomic richness above the biological WQO; however, the mean taxonomic richness at sites surveyed by EHMP in Spring was higher than the total taxonomic richness (based on data pooled from the five samples) in the current survey (Figure 6.12). The mean PET richness at sites survyed by EHMP was similar to or higher than the total PET richness at sites in the current survey, and at or above the WQO at each site, except for sites ST4 and ST5 downstream of the site boundary (Figure 6.13). The mean SIGNAL 2 scores were comparable to or higher than the total SIGNAL 2 scores in the current survey (Figure 6.14). All sites, except for site NT9 downstream of the site boundary and comparative site C1, had SIGNAL 2 scores below the WQO. Mean SIGNAL 2 scores for all sites surveyed by EHMP in 2010 and 2011 had mean SIGNAL 2 scores above the biological WQO. Previous studies by frc environmental in the region have also found relatively diverse macroinvertebrate communities with a similar species composition, with between four and 25 species recorded at sites surveyed. It should be noted that the highest number of species, 25, were recorded at riffle habitat, which was not sampled in this survey (frc environmental 2006; 2007). The results of this study are relatively consistent with these results; however, the sites downstream of the proposed disturbance area have been negatively affected by surrounding residential land uses. Overall, the results indicate that the macroinvertebrate communities in the survey area typically meet the WQOs for richness and PET richness, but communities are dominated by relatively tolerant taxa (as indicated by the low SIGNAL 2 scores). Communities in the survey area are indicative of slightly poorer habitat and water quality condition than communities sampled from other sites within the catchment. Boral Gold Coast Quarry EIS: Aquatic Ecology Assessment 88 frc environmental 35 30 25 20 15 10 WQO 5 Taxonomic Richness Taxonomic 0 C1 C2 ST1 ST5 NT9 ST4 W11 W11 W12 2011 2011 2010 Nerang River Nerang River Tallebudgera / Tallebudgera Tallebudgera / Tallebudgera Currumbin 2011 Currumbin 2011 Currumbin 2010 Within Site Downstream of Site Comparative Sites EHMP Boundary Boundary Within Development Footprint Figure 6.12 Total taxonomic richness in edge habitat in the current survey compared with mean taxonomic richness in EHMP surveys in the Nerang River and Tallebudgera / Currumbin catchments. 9 8 7 6 5 4 3 2 WQO PET Richness 1 0 C1 C2 ST5 ST1 NT9 ST4 W11 W11 W12 2011 2011 2010 Nerang River Nerang River Tallebudgera / Tallebudgera Tallebudgera / Tallebudgera Currumbin 2011 Currumbin 2011 Currumbin 2010 Within Site Downstream of Site Comparative Sites EHMP Boundary Boundary Within Development Footprint Figure 6.13 Total PET richness in edge habitat in the current survey compared with mean PET richness in the EHMP surveys in the Nerang River and Tallebudgera / Currumbin catchments. Boral Gold Coast Quarry EIS: Aquatic Ecology Assessment 89 frc environmental 5 4.5 4 WQO 3.5 3 2.5 2 1.5 1 SIGNAL 2 scores SIGNAL 0.5 0 C1 C2 ST5 ST1 NT9 ST4 W11 W11 W12 2011 2011 2010 Nerang River Nerang River Tallebudgera / Tallebudgera Tallebudgera / Tallebudgera Currumbin 2011 Currumbin 2011 Currumbin 2010 Within Site Boundary Downstream of Site Boundary Comparative Sites EHMP Within Developmentopm Footprint Figure 6.14 Total SIGNAL 2 scores in edge habitat in the current survey compared with mean SIGNAL 2 scores in the EHMP surveys in the Nerang River and Tallebudgera / Currumbin catchments. Boral Gold Coast Quarry EIS: Aquatic Ecology Assessment 90 frc environmental 7 Aquatic Vertebrates 7.1 Fish Communities 7.1.1 Fish Community Composition A total of seven species of fish were caught: ⋅ common carp gudgeons (Hypseleotris spp.) (Figure 7.1) ⋅ flathead gudgeon (Philypnodon grandiceps) (Figure 7.2) ⋅ striped gudgeon (Gobiomorphus australis) (Figure 7.3) ⋅ marbled eel (Anguilla reinhardtii) (Figure 7.4) ⋅ mosquitofish (Gambusia holbrooki) (Figure 7.5) ⋅ Australian smelt (Retropinna semoni) (Figure 7.6), and ⋅ mullet (Mugil cephalus) (Figure 7.7). Figure 7.1 Common carp gudgeon. Boral Gold Coast Quarry EIS: Aquatic Ecology Assessment 91 frc environmental Figure 7.2 Flathead gudgeon. Figure 7.3 Striped gudgeon. Figure 7.4 Marbled eel. Boral Gold Coast Quarry EIS: Aquatic Ecology Assessment 92 frc environmental Figure 7.5 Mosquitofish. Figure 7.6 Australian smelt. Figure 7.7 Juvenile mullet. Boral Gold Coast Quarry EIS: Aquatic Ecology Assessment 93 frc environmental 7.1.2 Fish Abundance The most abundant species and most widespread (caught at most sites) was the striped gudgeon and common carp gudgeons (Table 7.1). Waterways and wetlands within Lot 105 had a low abundance of fish compared with sites downstream. No fish were caught at site W12, which is likely to be due to the lack of connectivity to any inflow or outflowing creeks and / or tributaries. However, it is likely that sites in Lot 105 provide breeding habitat during the wet season. Boral Gold Coast Quarry EIS: Aquatic Ecology Assessment 94 frc environmental Table 7.1 Abundance of each fish species at each site.
Recommended publications
  • Reintroduction Plan for the Purple- Spotted Gudgeon in the Southern Murray–Darling Basin
    Reintroduction plan for the Purple- spotted Gudgeon in the southern Murray–Darling Basin Photo: Arthur Mostead Authors - Michael Hammer, Thomas Barnes, Leanne Piller & Dylan Sortino Aquasave Consultants, Adelaide Published by Murray–Darling Basin Authority. MDBA Publication No 45/12 ISBN 978-1-922068-54-5 (online) © Murray–Darling Basin Authority for and on behalf of the Commonwealth of Australia, 2012. With the exception of the Commonwealth Coat of Arms, the MDBA logo, all photographs, graphics and trademarks, this publication is provided under a Creative Commons Attribution 3.0 Australia Licence. http://creativecommons.org/licenses/by/3.0/au The MDBA’s preference is that you attribute this publication (and any material sourced from it) using the following wording: Title: Reintroduction Plan for the Southern Purple-spotted Gudgeon in the southern Murray— Darling Basin Source: Licensed from the Murray–Darling Basin Authority, under a Creative Commons Attribution 3.0 Australia Licence. Authors: Michael Hammer, Thomas Barnes, Leanne Pillar and Dylan Sortino. Editor: Jane Tuckwell The MDBA provides this information in good faith but to the extent permitted by law, the MDBA and the Commonwealth exclude all liability for adverse consequences arising directly or indirectly from using any information or material contained within this publication. Cover Image: Lower Murray Southern Purple-spotted Gudgeon in captivity–adults, eggs and juveniles. Photos by Michael Hammer i Reintroduction plan for the Southern Purple-spotted Gudgeon in the southern Murray—Darling Basin. Summary The Southern Purple-spotted Gudgeon is a small, colourful freshwater fish with a distinct genetic conservation unit in the southern Murray–Darling Basin (MDB).
    [Show full text]
  • Marine Fish Conservation Global Evidence for the Effects of Selected Interventions
    Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca0 K. Smith & William J. Sutherland CONSERVATION EVIDENCE SERIES SYNOPSES Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca K. Smith and William J. Sutherland Conservation Evidence Series Synopses 1 Copyright © 2021 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Taylor, N., Clarke, L.J., Alliji, K., Barrett, C., McIntyre, R., Smith, R.K., and Sutherland, W.J. (2021) Marine Fish Conservation: Global Evidence for the Effects of Selected Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK. Further details about CC BY licenses are available at https://creativecommons.org/licenses/by/4.0/ Cover image: Circling fish in the waters of the Halmahera Sea (Pacific Ocean) off the Raja Ampat Islands, Indonesia, by Leslie Burkhalter. Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/
    [Show full text]
  • Long Swamp Fish and Frog Baseline Survey 2012
    AQUASAVE CONSULTANTS Ecology, Monitoring and Conservation A registered business of: Regional, Focussed, On-ground Long Swamp Fish and Frog Baseline Survey 2012 A report to t he Glenelg Hopkins CMA By: Mark Bachmann, Nick Whiterod and Lachlan Farrington January 2013 Aquasave - NGT: Long Swamp Fish and Frog Baseline Survey 2012 This report may be cited as: Bachmann, M., Whiterod, N. & Farrington, L. (2013) Long Swamp Fish and Frog Baseline Survey 2012. A report to the Glenelg Hopkins CMA. Aquasave Consultants – Nature Glenelg Trust. Table of Contents EXECUTIVE SUMMARY .......................................................................................................................... 4 1. Introduction ...................................................................................................................................... 5 2. Site Locations and Sampling Methods .............................................................................................. 5 2.1 Native Fish ........................................................................................................................... 5 2.2 Frogs .................................................................................................................................... 9 3. Results............................................................................................................................................. 11 3.1 Native Fish ........................................................................................................................
    [Show full text]
  • Gwydir Waterbird and Fish Habitat Study: Final Reportdownload
    Gwydir Waterbird and Fish Habitat Study Final report Cover photographs Front page: Boyanga Waterhole, Gingham Watercourse (Credit: J. Spencer); Golden perch, Mehi River (Credit: J. Spencer); Great egret (Credit: M. Carpenter). Citation This report can be cited as follows: Spencer, J.A., Heagney, E.C. and Porter, J.L. 2010. Final report on the Gwydir waterbird and fish habitat study. NSW Wetland Recovery Program. Rivers and Wetlands Unit, Department of Environment, Climate Change and Water NSW and University of New South Wales, Sydney. Acknowledgments Funding for this project was provided by the NSW Government and the Australian Government’s Water for the Future – Water Smart Australia program. Richard Allman, Sharon Bowen, Kirsty Brennan, Ben Daly, Simon Hunter, Jordan Iles, Jeff Kelleway, Lisa Knowles, Yoshi Kobayashi, Natalia Perera, Shannon Simpson, Rachael Thomas (DECCW), Neal Foster (NOW), Gus Porter and Ainslee Lions provided field support. Thanks to our pilots Richard Byrne (DECCW) and James Rainger (Fleet Helicopters) for their assistance with aerial waterbird surveys. Daryl Albertson (DECCW), Neal Foster, Liz Savage and James Houlahan (Border Rivers–Gwydir CMA) and Glenn Wilson (UNE) gave advice on field site locations. Jennifer and Bruce Southeron (Old Dromana), Sam Kirkby (Bunnor), Howard Blackburn (Crinolyn), Bill Johnson (DECCW), Liz Savage (Border Rivers–Gwydir CMA), Neal Foster, Tara Schalk (NOW), Richard Ping Kee (Moree fishing club), Dick Cooper, Greg Clancy and the NSW Bird Atlassers contributed historical information on waterbird and fish populations in the Gwydir. Sue Powell (ANU) supplied information on the flooding history and flow data for the Gwydir Wetlands. Mark McGrouther and Sally Reader (Australian Museum, Sydney) assisted with the identification of fish species.
    [Show full text]
  • THE BIDGEE BULLETIN Quarterly Newsletter of the Murrumbidgee Monitoring Program
    M A R C H 2 0 2 0 I S S U E 3 THE BIDGEE BULLETIN Quarterly Newsletter of the Murrumbidgee Monitoring Program WATERING OUTCOMES Welcome to Issue 3 of The Bidgee Bulletin. The field monitoring season is now complete, with As in previous years Commonwealth environmental water the last of the four wetland surveys conducted is being used to support aquatic plants and animals in the over the last two weeks of March. In this issue Murrumbidgee Selected Area. This year environmental we review the highlights of the season and water was largely used to target floodplains and wetlands summarise the outcomes from Commonwealth to improve water quality, support populations of water environmental watering actions during the 2019- dependent plants and animals, maintain frog populations 20 water year. We also introduce our Chief and create breeding opportunities for threatened species Twitcher from the NSW DPIE, Dr Jennifer including the southern bell frog and Australasian bittern. Spencer. Continued dry conditions in Spring 2019 meant that The Bidgee Bulletin is a quarterly newsletter environmental water needed to be carefully managed and designed to provide updates on our progress as focused on high priority outcomes. These included we monitor the ecological outcomes of maintaining critical refuge habitats - Wagourah Lagoon, Commonwealth environmental water flows in the Yarradda Lagoon, Telephone Creek and Tala Creek. Murrumbidgee Selected Area. The 2019-2022 Maintenance of these wetland habitats is important for program builds on the previous five year native fish and turtles, and the Murrumbidgee refuge sites monitoring period (2014-2019) and uses many continue to support high native fish diversity with large of the same methods.
    [Show full text]
  • Southern Bell Frog
    June 2011 South Australian Murray-Darling Basin Natural Resources Management Southern Bell Frog Monitoring (Litoria raniformisBoard) in the Lower Lakes Goolwa River Murray Channel, Tributaries of Currency Creek and Finniss River and Lakes Alexandrina and Albert Kate Mason and Karl Hillyard The project was funded by Department for Environment and Natural Resources, Coorong, Lower Lakes and Murray Mouth Program Cover Photo: Survey site ‘Pelican Lagoon Site 1’ February 2011. This document can be cited as: Mason, K & Hillyard, K. 2011. Southern Bell Frog (L. raniformis) monitoring in the Lower Lakes. Goolwa River Murray Channel, tributaries of Currency Creek and Finniss River and Lakes Alexandrina and Albert. Report to Department for Environment and Natural Resources. The South Australian Murray Darling Basin Natural Resources Management Board, Murray Bridge. South Australia. Disclaimer The authors do not warrant or make any representation regarding the use, or results of the use, of the information contained herein as regards to its correctness, accuracy, reliability, currency or otherwise. The authors expressly disclaim all liability or responsibility to any person using the information or advice. © Government of South Australia This work is copyright. Unless permitted under the Copyright Act 1968 (Cwlth), no part may be reproduced by any process without prior written permission from the Authors and the South Australian Murray-Darling Basin Natural Resources Management Board (SA MDB NRM Board). Requests and inquiries concerning reproduction and rights should be addressed to the SA MDB NRM Board, Mannum Road, Murray Bridge SA 5253 Summary Over the past five years, Lake Alexandrina, Lake Albert and the Eastern Mount Lofty Ranges tributaries experienced significant changes as a result of reduced freshwater flows and over-allocation of water resources and recently, the first stages of recovery to a functioning freshwater and estuary system, following increased freshwater flows into the system.
    [Show full text]
  • East Gippsland, Victoria
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Laboratory Evaluation of the Predation Efficacy of Native Australian Fish on Culex Annulirostris (Diptera: Culicidae)
    Journal of the Americctn Mosquito Control Association, 20(3):2g6_291,2OO4 Copyright A 2OO4by the American Mosquib Control Association, Inc. LABORATORY EVALUATION OF THE PREDATION EFFICACY OF NATIVE AUSTRALIAN FISH ON CULEX ANNULIROSTRIS (DIPTERA: CULICIDAE) TIMOTHY P HURST, MICHAEL D. BRowNI eNo BRIAN H. KAY Australian Centre International for and Tropical Health and Nutrition at the eueensland Institute of Medical pO Research, Royal Brisbane H<tspital, eueensland 4029, Austalia ABSTRACT. The introduction and establishment of fish populations can provide long-term, cost-effective mosquito control in habitats such as constructed wetlands and ornamental lakes. The p.idution efficacy of 7 native Brisbane freshwater fish on I st and 4th instars of the freshwater arbovirus vector culex annulirostris was evaluated in a series of 24-h laboratory trials. The trials were conducted in 30-liter plastic carboys at 25 + l"C urder a light:dark cycle of l4:10 h. The predation eflcacy of native crimson-spotted rainbowfish Melanotaenia (Melanotaeniidae), cluboulayi Australian smelt Retropinna semoni (Retropinnadae), pacific blue-eye pseudomugil (Atherinidae), signfer fly-specked hardyhead Craterocephalus stercusmLtscarum (Atherinidae), hretail gudgeon Hypseleotris gttlii (Eleotridae), empire gudgeon Hypseleotris compressa (Eleotridae), and estuary percilet Am- bassis marianus (Ambassidae) was compared with the exotic eaitern mosquitofish Getmbusia iolbrooki (poe- ciliidae). This environmentally damaging exotic has been disseminated worldwide and has been declared noxrous in Queensland. Melanotaenia duboulayi was found to consume the greatest numbers of both lst and 4th instars of Cx. annuliro.t/ri.t. The predation efficacy of the remaining Australian native species was comparable with that of the exotic G. holbrooki. With the exception of A- marianu^s, the maximum predation rates of these native species were not statistically different whether tested individually or in a school of 6.
    [Show full text]
  • Status Review, Disease Risk Analysis and Conservation Action Plan for The
    Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle (Myuchelys georgesi) December, 2016 1 Workshop participants. Back row (l to r): Ricky Spencer, Bruce Chessman, Kristen Petrov, Caroline Lees, Gerald Kuchling, Jane Hall, Gerry McGilvray, Shane Ruming, Karrie Rose, Larry Vogelnest, Arthur Georges; Front row (l to r) Michael McFadden, Adam Skidmore, Sam Gilchrist, Bruno Ferronato, Richard Jakob-Hoff © Copyright 2017 CBSG IUCN encourages meetings, workshops and other fora for the consideration and analysis of issues related to conservation, and believes that reports of these meetings are most useful when broadly disseminated. The opinions and views expressed by the authors may not necessarily reflect the formal policies of IUCN, its Commissions, its Secretariat or its members. The designation of geographical entities in this book, and the presentation of the material, do not imply the expression of any opinion whatsoever on the part of IUCN concerning the legal status of any country, territory, or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. Jakob-Hoff, R. Lees C. M., McGilvray G, Ruming S, Chessman B, Gilchrist S, Rose K, Spencer R, Hall J (Eds) (2017). Status Review, Disease Risk Analysis and Conservation Action Plan for the Bellinger River Snapping Turtle. IUCN SSC Conservation Breeding Specialist Group: Apple Valley, MN. Cover photo: Juvenile Bellinger River Snapping Turtle © 2016 Brett Vercoe This report can be downloaded from the CBSG website: www.cbsg.org. 2 Executive Summary The Bellinger River Snapping Turtle (BRST) (Myuchelys georgesi) is a freshwater turtle endemic to a 60 km stretch of the Bellinger River, and possibly a portion of the nearby Kalang River in coastal north eastern New South Wales (NSW).
    [Show full text]
  • Fisheries Guidelines for Design of Stream Crossings
    Fish Habitat Guideline FHG 001 FISH PASSAGE IN STREAMS Fisheries guidelines for design of stream crossings Elizabeth Cotterell August 1998 Fisheries Group DPI ISSN 1441-1652 Agdex 486/042 FHG 001 First published August 1998 Information contained in this publication is provided as general advice only. For application to specific circumstances, professional advice should be sought. The Queensland Department of Primary Industries has taken all reasonable steps to ensure the information contained in this publication is accurate at the time of publication. Readers should ensure that they make appropriate enquiries to determine whether new information is available on the particular subject matter. © The State of Queensland, Department of Primary Industries 1998 Copyright protects this publication. Except for purposes permitted by the Copyright Act, reproduction by whatever means is prohibited without the prior written permission of the Department of Primary Industries, Queensland. Enquiries should be addressed to: Manager Publishing Services Queensland Department of Primary Industries GPO Box 46 Brisbane QLD 4001 Fisheries Guidelines for Design of Stream Crossings BACKGROUND Introduction Fish move widely in rivers and creeks throughout Queensland and Australia. Fish movement is usually associated with reproduction, feeding, escaping predators or dispersing to new habitats. This occurs between marine and freshwater habitats, and wholly within freshwater. Obstacles to this movement, such as stream crossings, can severely deplete fish populations, including recreational and commercial species such as barramundi, mullet, Mary River cod, silver perch, golden perch, sooty grunter and Australian bass. Many Queensland streams are ephemeral (they may flow only during the wet season), and therefore crossings must be designed for both flood and drought conditions.
    [Show full text]
  • Condition Monitoring of Threatened Fish Populations in Lake Alexandrina and Lake Albert
    Condition Monitoring of Threatened Fish Populations in Lake Alexandrina and Lake Albert Report to the Murray–Darling Basin Authority and the South Australian Department for Environment and Water Scotte Wedderburn and Thomas Barnes June 2018 © The University of Adelaide and the Department for Environment and Water With the exception of the Commonwealth Coat of Arms, the Murray–Darling Basin Authority logo, photographs and presented data, all material presented in this document is provided under a Creative Commons Attribution 4.0 International licence (https://creativecommons.org/licences/by/4.0/). For the avoidance of any doubt, this licence only applies to the material set out in this document. The details of the licence are available on the Creative Commons website (accessible using the links provided) as is the full legal code for the CC BY 4.0 licence (https://creativecommons.org/licences/by/4.0/legalcode). MDBA’s preference is that this publication be attributed (and any material sourced from it) using the following: Publication title: Condition Monitoring of Threatened Fish Populations in Lake Alexandrina and Lake Albert Source: Licensed from the Department for Environment and Water under a Creative Commons Attribution 4.0 International Licence The contents of this publication do not purport to represent the position of the Commonwealth of Australia or the MDBA in any way and are presented for the purpose of informing and stimulating discussion for improved management of Basin's natural resources. To the extent permitted by law, the copyright holders (including its employees and consultants) exclude all liability to any person for any consequences, including but not limited to all losses, damages, costs, expenses and any other compensation, arising directly or indirectly from using this report (in part or in whole) and any information or material contained in it.
    [Show full text]
  • Original Article Seascape Context Modifies How Fish Respond to Restored Oyster Reef Structures
    ICES Journal of Marine Science (2019), 76(4), 1131–1139. doi:10.1093/icesjms/fsz019 Downloaded from https://academic.oup.com/icesjms/article-abstract/76/4/1131/5333156 by Griffith University user on 02 September 2019 Original Article Seascape context modifies how fish respond to restored oyster reef structures Ben L. Gilby 1,2*, Andrew D. Olds1,2, Christopher J. Henderson1,2, Nicholas L. Ortodossi1, Rod M. Connolly3, and Thomas A. Schlacher1,2 1The Animal Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia 2School of Science and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia 3Australian Rivers Institute—Coasts and Estuaries, School of Environment and Science, Griffith University, Gold Coast, Queensland 4222, Australia *Corresponding author: tel: +61 7 5430 2891; e-mail: [email protected]. Gilby, B. L., Olds, A. D., Henderson, C. J., Ortodossi, N. L., Connolly, R. M., and Schlacher, T. A. Seascape context modifies how fish re- spond to restored oyster reef structures. – ICES Journal of Marine Science, 76: 1131–1139. Received 14 October 2018; revised 13 January 2019; accepted 24 January 2019; advance access publication 18 February 2019. The seascape context of coastal ecosystems plays a pivotal role in shaping patterns in fish recruitment, abundance, and diversity. It might also be a principal determinant in structuring the recruitment of fish assemblages to restored habitats, but the trajectories of these relationships require further testing. In this study, we surveyed fish assemblages from 14 restored oyster reefs and 14 control sites in the Noosa River, Queensland, Australia, that differed in the presence or absence of seagrass within 500 m, over four periods using baited cameras.
    [Show full text]