Aquatic Insect Ecophysiological Traits Reveal Phylogenetically Based Differences in Dissolved Cadmium Susceptibility
Aquatic insect ecophysiological traits reveal phylogenetically based differences in dissolved cadmium susceptibility David B. Buchwalter*†, Daniel J. Cain‡, Caitrin A. Martin*, Lingtian Xie*, Samuel N. Luoma‡, and Theodore Garland, Jr.§ *Department of Environmental and Molecular Toxicology, Campus Box 7633, North Carolina State University, Raleigh, NC 27604; ‡Water Resources Division, U.S. Geological Survey, 345 Middlefield Road, MS 465, Menlo Park, CA 94025; and §Department of Biology, University of California, Riverside, CA 92521 Edited by George N. Somero, Stanford University, Pacific Grove, CA, and approved April 28, 2008 (received for review February 20, 2008) We used a phylogenetically based comparative approach to evaluate ecosystems today (e.g., trace metals) (6). This variation in the potential for physiological studies to reveal patterns of diversity susceptibility has practical implications, because the ecological in traits related to susceptibility to an environmental stressor, the structure of aquatic insect communities is often used to indicate trace metal cadmium (Cd). Physiological traits related to Cd bioaccu- the ecological conditions in freshwater systems (7–9). Differ- mulation, compartmentalization, and ultimately susceptibility were ences among species’ responses to environmental stressors can measured in 21 aquatic insect species representing the orders be profound, but it is uncertain whether the cause is related to Ephemeroptera, Plecoptera, and Trichoptera. We mapped these ex- functional ecology [usually the assumption (10, 11)] or physio- perimentally derived physiological traits onto a phylogeny and quan- logical traits (5, 12–14), which have received considerably less tified the tendency for related species to be similar (phylogenetic attention. To the degree that either is involved, their link to signal).
[Show full text]