Download Download
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Profesionální Referát
Journal of the Czech Geological Society, 42/4 (1997) 115 History of secondary minerals discovered in Jáchymov (Joachimsthal) Historie objevů sekundárních minerálů z Jáchymova (Czech summary) FRANTIŠEK VESELOVSKÝ1 - PETR ONDRUŠ1 - JAN HLOUŠEK2 1 Czech Geological Survey, Klárov 3, 118 21 Prague 1 2 U Roháčových kasáren 24, 110 00 Prague 10 Jáchymov is type locality for 22 minerals, including 17 secondary minerals. Data on history of discovery and description of new minerals was extracted by search in old literature. Minerals are arranged in the chronological sequence of discovery. Explanation of names of discredited or re-defined minerals and some historical names is included at the end of this paper. Key words: secondary minerals, history description, old mineral names, Jáchymov Introduction This work was continued a decade later by Schrauf. Larsen extensively studied the optical properties of Mining in Jáchymov experienced episodes of boom as Jáchymov minerals at the beginning of the twentieth well as periods of severe decline. Its prosperity was de- century.R. Nováček (1935-1941) studied in detail mainly pendent of mineral wealth and during ages the main secondary minerals from Jáchymov. X-ray diffraction, interest moved from silver to uranium ores. Mineralogy, widely introduced after 1945, provided a new powerful mining and ore dressing proved to be often mutually method of mineral identification. Frondel and Peacock interdependent. The beginnings of mineralogy in Jáchy- continued study of Jáchymov minerals. But only mu- mov date to mining development in early 16th century. seum specimens were available by that time. The first mineralogical notes appear in texts by Agricola The secrecy surrounding uranium mining in the pe- [86], Mathesius, Ercker, and others. -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
Theoretical Studies on As and Sb Sulfide Molecules
Mineral Spectroscopy: A Tribute to Roger G. Bums © The Geochemical Society, Special Publication No.5, 1996 Editors: M. D. Dyar, C. McCammon and M. W. Schaefer Theoretical studies on As and Sb sulfide molecules J. A. TOSSELL Department of Chemistry and Biochemistry University of Maryland, College Park, MD 20742, U.S.A. Abstract-Dimorphite (As4S3) and realgar and pararealgar (As4S4) occur as crystalline solids con- taining As4S3 and As4S4 molecules, respectively. Crystalline As2S3 (orpiment) has a layered structure composed of rings of AsS3 triangles, rather than one composed of discrete As4S6 molecules. When orpiment dissolves in concentrated sulfidic solutions the species produced, as characterized by IR and EXAFS, are mononuclear, e.g. ASS3H21, but solubility studies suggest trimeric species in some concentration regimes. Of the antimony sulfides only Sb2S3 (stibnite) has been characterized and its crystal structure does not contain Sb4S6 molecular units. We have used molecular quantum mechanical techniques to calculate the structures, stabilities, vibrational spectra and other properties of As S , 4 3 As4S4, As4S6, As4SIO, Sb4S3, Sb4S4, Sb4S6 and Sb4SlO (as well as S8 and P4S3, for comparison with previous calculations). The calculated structures and vibrational spectra are in good agreement with experiment (after scaling the vibrational frequencies by the standard correction factor of 0.893 for polarized split valence Hartree-Fock self-consistent-field calculations). The calculated geometry of the As4S. isomer recently characterized in pararealgar crystals also agrees well with experiment and is calculated to be about 2.9 kcal/mole less stable than the As4S4 isomer found in realgar. The calculated heats of formation of the arsenic sulfide gas-phase molecules, compared to the elemental cluster molecules As., Sb, and S8, are smaller than the experimental heats of formation for the solid arsenic sulfides, but shown the same trend with oxidation state. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Distribution of As, Ni and Co in Tailings and Surface Waters in the Cobalt Area, Ontario1
DISTRIBUTION OF AS, NI AND CO IN TAILINGS AND SURFACE 1 WATERS IN THE COBALT AREA, ONTARIO Jeanne B. Percival2, Y.T. John Kwong3, Charles G. Dumaresq4, Frederick A. Michel5 Abstract: From 1904 until the mid 1930’s and intermittently until 1989, over 450 million troy ounces of silver was mined from the Cobalt area, Ontario. Currently there is no active mining of silver, but the area has seen recent exploration activities for other commodities such as diamonds. Cobalt, however, has not only a renowned mining history, but also an environmental legacy. The area is characterized by remnant historic mine workings and numerous waste rock piles and tailings ponds. Several elements of concern including arsenic, nickel and cobalt continually enter the local watershed from the tailings and waste rock piles. These elements are transported through surface waters to the wetlands in the Farr Creek drainage basin and ultimately enter Lake Timiskaming. Tailings samples are composed of abundant plagioclase with subordinate quartz, chlorite, calcite and dolomite. Less common are K-feldspar, amphibole and mica as well as trace minerals such as erythrite, scorodite and pharmocolite. When efflorescent mineral crusts form on tailings surfaces they are dominated by either gypsum or thenardite. The tailings may contain up to 3.5 wt % Co and 2.2 wt% Ni. Lake sediment and tailings cores show concentrations up to 1.8 wt% As, 0.62 wt% Co and 0.27 wt% Ni in the solids, and 160 mg/L As, 74 mg/L Co and 42 mg/L Ni in the pore waters. One core collected from the infilled Hebert Pond situated within the Nipissing Low Grade Mill tailings impoundment show pore water concentrations in excess of 1,500 mg/L As associated with an organic- rich layer. -
REVISION 1 an Insight at the Inverse Transformation of Realgar Altered By
REVISION 1 An insight at the inverse transformation of realgar altered by light Giovanni Pratesi1,2 and Matteo Zoppi1* 1Museo di Storia Naturale - Sezione Mineralogia e Litologia, Università di Firenze, via La Pira 4, I- 50121 Firenze, Italy. 2Dipartimento di Scienze della Terra, Università di Firenze, via La Pira 4, I-50121 Firenze, Italy. * E-mail: [email protected] ABSTRACT The light-induced alteration of realgar and β-As4S4 is a well known phenomenon but still displays interesting aspects not completely explained. In the transformation from realgar to pararealgar the molecule As4S4 undergoes a structural modification, and ever since the initial studies two important issues have been highlighted: the influence of the oxygen and the reversibility of the process. The previous study on the reversibility of the altered β-As4S4 points out that this polymorph exhibits a dual behaviour. When the light-induced alteration occurs with the presence of the air, pararealgar and arsenolite, along with amorphous material, are the products, while if the air is not present β-As4S4 turns completely into pararealgar. Moreover, when annealing the altered material in the realgar stability fields (220 °C), in the first case pararealgar and amorphous material turn into stoichiometric alacranite, while in the second case the alteration is completely reversible. Similarly, the present study focuses the attention on the question if realgar, when altered by means of the light and when annealed, might behave as β-As4S4 does. These results display that the phenomenon is more complex. The alteration of realgar with the presence of the air yields pararealgar along with arsenolite, a small quantity of uzonite and amorphous material, and when the air is not present pararealgar is the only product. -
Geological Controls on Pit Lake Chemistry: Implications for the Assessment of Water Quality in Inactive Open Pits
IMWA Proceedings 1998 | © International Mine Water Association 2012 | www.IMWA.info Geological Controls on Pit Lake Chemistry: Implications for the assessment of Water Quality in Inactive Open Pits 1 2 2 2 3 R.J.Bowell , J. Barta , M.Gringrich , W.Mansanares and J. Parshley 'Steffen, Robertson & Kirsten (UK) Limited, Stunmit House, 9 Windsor Place, CardiffCFI 3BX, Wales 2Getchell Gold Corporation, Golconda, Nevada NV89414, USA 3Steffen, Robertson & Kirsten (US) Inc., 1755 E. Plumb Lane, Reno, Nevada NV89502, USA ABSTRACT Open pitting is a method of mining used to exploit many mineral commodities. In many instances mining occurs below the water table leading to active dewatering of the pit during mining. On suspension of activity, pumping is terminated and as infilling of the pit is not always economic the pit is flooded, forming a pit lake. Pit Lakes are viewed as a significant environmental issue owing to their visible presence. It is often, erroneously assumed that all pit lakes will be acid and of poor quality. Consequently in many cases extensive water quality modelling is undertaken to determine the chemical characteristics of a pit lake, with only scant geological knowledge of the pit walls. However, the water quality of a mine pit lake is largely predictable from geological knowledge of the ore deposit, the host rocks and mineralogy. In this paper we present a case study from Nevada of an inactive open pit on which a detailed study was conducted to determine the environmental impacts. This study was greatly enhanced by using geological and geochemical mapping of the pit walls in order to determine controls on pit lake chemistry. -
Geologica Macedonica
UDC 55 In print: ISSN 0352–1206 CODEN – GEOME 2 On line: ISSN 1857–8586 GEOLOGICA MACEDONICA Geologica Macedonica Vol. No pp. Štip 2 91–176 2018 Geologica Macedonica Год. 32 Број стр. Штип Geologica Macedonica Vol. No pp. Štip 2 91–176 2018 Geologica Macedonica Год. 32 Број стр. Штип GEOLOGICA MACEDONICA Published by: – Издава: "Goce Delčev" University in Štip, Faculty of Natural and Technical Sciences, Štip, Republic of Macedonia Универзитет „Гоце Делчев“ во Штип, Факултет за природни и технички науки, Штип, Република Македонија EDITORIAL BOARD Todor Serafimovski (R. Macedonia, Editor in Chief), Blažo Boev (R. Macedonia, Editor), David Alderton (UK), Tadej Dolenec (R. Slovenia), Ivan Zagorchev (R. Bulgaria), Wolfgang Todt (Germany), Nikolay S. Bortnikov (Russia), Clark Burchfiel (USA), Thierry Augé (France), Todor Delipetrov (R. Macedonia), Vlado Bermanec (Croatia), Milorad Jovanovski (R. Macedonia), Spomenko Mihajlović (Serbia), Dragan Milovanović (Serbia), Dejan Prelević (Germany), Albrecht von Quadt (Switzerland) УРЕДУВАЧКИ ОДБОР Тодор Серафимовски (Р. Македонија, главен уредник), Блажо Боев (Р. Македонија, уредник), Дејвид Олдертон (В. Британија), Тадеј Доленец (Р. Словенија), Иван Загорчев (Р. Бугарија), Волфганг Тод (Германија), акад. Николај С. Бортников (Русија), Кларк Барчфил (САД), Тиери Оже (Франција), Тодор Делипетров (Р. Македонија), Владо Берманец (Хрватска), Милорад Јовановски (Р. Македонија), Споменко Михајловиќ (Србија), Драган Миловановиќ (Србија), Дејан Прелевиќ (Германија), Албрехт фон Квад (Швајцарија) Language editor Лектура Marijana Kroteva Маријана Кротева (English) (англиски) Georgi Georgievski Георги Георгиевски (Macedonian) (македонски) Technical editor Технички уредник Blagoja Bogatinoski Благоја Богатиноски Proof-reader Коректор Alena Georgievska Алена Георгиевска Address Адреса GEOLOGICA MACEDONICA GEOLOGICA MACEDONICA EDITORIAL BOARD РЕДАКЦИЈА Faculty of Natural and Technical Sciences Факултет за природни и технички науки P. -
Growth and Raman Spectroscopic Characterization of As4s4 (II) Single Crystals
*4. Manuscript Click here to view linked References Growth and Raman spectroscopic characterization of As4S4 (II) single crystals Atsushi Kyono Division of Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai Tsukuba, Ibaraki 305-8572, Japan Corresponding author: A. Kyono Present Address: Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015-1305, USA Email: [email protected] Phone: +1-202-478-8940, Fax: +1-202-478-8901 pg. 1 ABSTRACT As described by Kutoglu (1976), single crystals of As4S4 (II) phase have been grown using a new two-step synthesis that drastically increases the reproducibility that is attainable in synthetic experiments. First, through photoinduced phase transformation, pararealgar powder is prepared as a precursor instead of AsS melt. Then it is dissolved and recrystallized from CS2 solvent. Results show that single crystals of the As4S4 (II) phase were obtained reproducibly through the dissolution–recrystallization process. Single crystals of As4S4 (II) obtained using the method were translucent and showed a uniform yellow–orange color. The crystal exhibits a platelet-like shape as a thin film with well-developed faces (0 1 0) and (0 -1 0). The grown crystals are as large as 0.50 × 0.50 × 0.01 mm. They were characterized using powder and single crystal X-ray diffraction techniques to confirm the phase identification and the lattice parameters. The As4S4 (II) phase crystallizes in monoclinic system with cell parameters a = 11.202(4) Å, b = 9.954(4) Å, c = 7.142(4) Å, β = 92.81(4)°, V = 795.4(6) Å3, which shows good agreement with the former value. -
6H2O, a New Mineral and a Possible Sink for Sb During
1 Revision #1 2 Smamite, Ca2Sb(OH)4[H(AsO4)2]·6H2O, a new mineral and a possible sink for Sb during 3 weathering of fahlore 4 1§ 2 3 4 5 JAKUB PLÁŠIL , ANTHONY R. KAMPF , NICOLAS MEISSER , CÉDRIC LHEUR , THIERRY 5 6 6 BRUNSPERGER AND RADEK ŠKODA 7 8 1 Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic 9 2 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition 10 Boulevard, Los Angeles, CA 90007, USA 11 3 Musée cantonal de géologie, Université de Lausanne, Anthropole, Dorigny, CH-1015 12 Lausanne, Switzerland 13 4 1 rue du St. Laurent, 54280 Seichamps, France 14 5 22 route de Wintzenheim, 68000 Colmar, France 15 6 Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 16 37, Brno, Czech Republic 17 18 ABSTRACT 19 Smamite, Ca2Sb(OH)4[H(AsO4)2]·6H2O, is a new mineral species from the Giftgrube mine, 20 Rauenthal, Sainte-Marie-Aux-Mines ore-district, Haut-Rhin department, France. It is a supergene 21 mineral found in quartz-carbonate gangue with disseminated to massive tennantite-tetrahedrite 22 series minerals, native arsenic, Ni-Co arsenides and supergene minerals picropharmacolite, 23 fluckite and pharmacolite. Smamite occurs as lenticular crystals growing in aggregates up to 0.5 24 mm across. The new mineral is whitish to colorless, transparent with vitreous luster and white 25 streak; non-fluorescent under UV radiation. The Mohs hardness is ~3½ ; the tenacity is brittle, 26 the fracture is curved, and there is no apparent cleavage. -
Allchar Mineral Assemblage 3
Geologica Macedonica, Vol. 15-16, p. 1-23 (2001-2002) Suppl. GEOME2 SSN 0352 - 1206 Manuscript received: December 15, 200 1 UDC: 553.08 (497 .7) Accepted: March 3, 2002 Original scientific paper ~• ALLCHAR l\1INERAL ASSEMBLAGE l 3 l 4 Blazo Boev , Vladimir Bermanec , Todor Serafimovski\ Sonja Lepitkova , Snezana Mikulcic , 5 5 5 Marin ~oufek\ Gligor Jovanovski , Trajce Stafilov , Metodija Najdoski IDepartment ofPetrology, Mineralogy and Geochemistry, Faculty ofMining and Geology, "Sv. Kiril i Metodij" University, Goce Delcev 89, MK-2000 Stip, Republic ofMacedonia 2Department ofMineral Deposits, Faculty ofMining and Geology, "Sv. Kiril i Metodij" University, Goce Delcev 89, MK-2000 Stip, Republic of Macedonia 3Institute ofMineralogy and Petrology, Department ofGeology, Faculty ofScience, University ofZagreb, Horvatovac bb, HR-JOOOO Zagreb, Croatia 4Department ofMineralogy and Petrology, Croatian Natural History Museum, Demetrova I, HR-JOOOO Zagreb, Croatia 5Institute of Chemistry, Faculty ofScience, "Sv. Kiril i Metodij" University, P.o. Box 162, MK-JOOI Skopje, Republic ofMacedonia Abstract. The paper is a summary of investigatioris carried out on minerals of the Allchar deposit. It discusses the TI-As-Sb-Au mineral ill emblage after detailed and intense research work. Four types of mineralization have been distinguished based on the mineral assemblage present: I. The first ly pe is characterised by high c ment of iron and sulphur, but lower arsenic and thalli um contenl. The pyrite-marcasite mineral assemblage is characterized by the presence of some quantities of arsenic-pyrite. 2. The second type is characterized by the high antimony and low iron and thallium content. Stibnite is the most common mineral in the group. -
A Specific Gravity Index for Minerats
A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).