Distribution of As, Ni and Co in Tailings and Surface Waters in the Cobalt Area, Ontario1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Profesionální Referát
Journal of the Czech Geological Society, 42/4 (1997) 115 History of secondary minerals discovered in Jáchymov (Joachimsthal) Historie objevů sekundárních minerálů z Jáchymova (Czech summary) FRANTIŠEK VESELOVSKÝ1 - PETR ONDRUŠ1 - JAN HLOUŠEK2 1 Czech Geological Survey, Klárov 3, 118 21 Prague 1 2 U Roháčových kasáren 24, 110 00 Prague 10 Jáchymov is type locality for 22 minerals, including 17 secondary minerals. Data on history of discovery and description of new minerals was extracted by search in old literature. Minerals are arranged in the chronological sequence of discovery. Explanation of names of discredited or re-defined minerals and some historical names is included at the end of this paper. Key words: secondary minerals, history description, old mineral names, Jáchymov Introduction This work was continued a decade later by Schrauf. Larsen extensively studied the optical properties of Mining in Jáchymov experienced episodes of boom as Jáchymov minerals at the beginning of the twentieth well as periods of severe decline. Its prosperity was de- century.R. Nováček (1935-1941) studied in detail mainly pendent of mineral wealth and during ages the main secondary minerals from Jáchymov. X-ray diffraction, interest moved from silver to uranium ores. Mineralogy, widely introduced after 1945, provided a new powerful mining and ore dressing proved to be often mutually method of mineral identification. Frondel and Peacock interdependent. The beginnings of mineralogy in Jáchy- continued study of Jáchymov minerals. But only mu- mov date to mining development in early 16th century. seum specimens were available by that time. The first mineralogical notes appear in texts by Agricola The secrecy surrounding uranium mining in the pe- [86], Mathesius, Ercker, and others. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Geologica Macedonica
UDC 55 In print: ISSN 0352–1206 CODEN – GEOME 2 On line: ISSN 1857–8586 GEOLOGICA MACEDONICA Geologica Macedonica Vol. No pp. Štip 2 91–176 2018 Geologica Macedonica Год. 32 Број стр. Штип Geologica Macedonica Vol. No pp. Štip 2 91–176 2018 Geologica Macedonica Год. 32 Број стр. Штип GEOLOGICA MACEDONICA Published by: – Издава: "Goce Delčev" University in Štip, Faculty of Natural and Technical Sciences, Štip, Republic of Macedonia Универзитет „Гоце Делчев“ во Штип, Факултет за природни и технички науки, Штип, Република Македонија EDITORIAL BOARD Todor Serafimovski (R. Macedonia, Editor in Chief), Blažo Boev (R. Macedonia, Editor), David Alderton (UK), Tadej Dolenec (R. Slovenia), Ivan Zagorchev (R. Bulgaria), Wolfgang Todt (Germany), Nikolay S. Bortnikov (Russia), Clark Burchfiel (USA), Thierry Augé (France), Todor Delipetrov (R. Macedonia), Vlado Bermanec (Croatia), Milorad Jovanovski (R. Macedonia), Spomenko Mihajlović (Serbia), Dragan Milovanović (Serbia), Dejan Prelević (Germany), Albrecht von Quadt (Switzerland) УРЕДУВАЧКИ ОДБОР Тодор Серафимовски (Р. Македонија, главен уредник), Блажо Боев (Р. Македонија, уредник), Дејвид Олдертон (В. Британија), Тадеј Доленец (Р. Словенија), Иван Загорчев (Р. Бугарија), Волфганг Тод (Германија), акад. Николај С. Бортников (Русија), Кларк Барчфил (САД), Тиери Оже (Франција), Тодор Делипетров (Р. Македонија), Владо Берманец (Хрватска), Милорад Јовановски (Р. Македонија), Споменко Михајловиќ (Србија), Драган Миловановиќ (Србија), Дејан Прелевиќ (Германија), Албрехт фон Квад (Швајцарија) Language editor Лектура Marijana Kroteva Маријана Кротева (English) (англиски) Georgi Georgievski Георги Георгиевски (Macedonian) (македонски) Technical editor Технички уредник Blagoja Bogatinoski Благоја Богатиноски Proof-reader Коректор Alena Georgievska Алена Георгиевска Address Адреса GEOLOGICA MACEDONICA GEOLOGICA MACEDONICA EDITORIAL BOARD РЕДАКЦИЈА Faculty of Natural and Technical Sciences Факултет за природни и технички науки P. -
Download Download
338 Geologica Macedonica, Vol. 32, No. 2, pp. 95–117 (2018) GEOME 2 IISSN 0352 – 1206 Manuscript received: August 5, 2018 e-ISSN 1857 – 8586 Accepted: November 7, 2018 UDC: 553.46:550.43.08]:504(497.721) 553.497:550.43.08]:504(497.721) Original scientific paper SUPERGENE MINERALOGY OF THE LOJANE Sb-As-Cr DEPOSIT, REPUBLIC OF MACEDONIA: TRACING THE MOBILIZATION OF TOXIC METALS Uwe Kolitsch1,2, Tamara Đorđević2, Goran Tasev3, Todor Serafimovski3, Ivan Boev3, Blažo Boev3 1Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A-1010 Wien, Austria 2Institut für Mineralogie und Kristallographie, Universität Wien, Althanstr. 14, A-1090 Wien, Austria 3Department of Mineral Deposits, Faculty of Natural and Technical Sciences, “Goce Delčev” University in Štip, Blvd. Goce Delčev 89, 2000 Štip, Republic of Macedonia [email protected] A b s t r a c t: As part of a larger project on the environmental mineralogy and geochemistry of the Lojane Sb- As-Cr deposit, Republic of Macedonia, which was mined for chromite and, later, stibnite until 1979 and is a substantial source of arsenic and antimony pollution, the supergene mineralogy of the deposit was studied. Samples collected on ore and waste dumps were used to identify and characterize the previously uninvestigated suite of supergene mineral phases by standard mineralogical techniques. The following species were determined (in alphabetical order): annaber- gite, arseniosiderite(?), gypsum, hexahydrite, hörnesite, pararealgar, roméite-group minerals, rozenite, scorodite, sen- armontite, stibiconite, sulphur, tripuhyite and valentinite. Their occurrences are described and their local conditions of formation are discussed. High-resolution Raman spectra of hörnesite, hexahydrite and rozenite are provided and com- pared with literature data. -
6H2O, a New Mineral and a Possible Sink for Sb During
1 Revision #1 2 Smamite, Ca2Sb(OH)4[H(AsO4)2]·6H2O, a new mineral and a possible sink for Sb during 3 weathering of fahlore 4 1§ 2 3 4 5 JAKUB PLÁŠIL , ANTHONY R. KAMPF , NICOLAS MEISSER , CÉDRIC LHEUR , THIERRY 5 6 6 BRUNSPERGER AND RADEK ŠKODA 7 8 1 Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic 9 2 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition 10 Boulevard, Los Angeles, CA 90007, USA 11 3 Musée cantonal de géologie, Université de Lausanne, Anthropole, Dorigny, CH-1015 12 Lausanne, Switzerland 13 4 1 rue du St. Laurent, 54280 Seichamps, France 14 5 22 route de Wintzenheim, 68000 Colmar, France 15 6 Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 16 37, Brno, Czech Republic 17 18 ABSTRACT 19 Smamite, Ca2Sb(OH)4[H(AsO4)2]·6H2O, is a new mineral species from the Giftgrube mine, 20 Rauenthal, Sainte-Marie-Aux-Mines ore-district, Haut-Rhin department, France. It is a supergene 21 mineral found in quartz-carbonate gangue with disseminated to massive tennantite-tetrahedrite 22 series minerals, native arsenic, Ni-Co arsenides and supergene minerals picropharmacolite, 23 fluckite and pharmacolite. Smamite occurs as lenticular crystals growing in aggregates up to 0.5 24 mm across. The new mineral is whitish to colorless, transparent with vitreous luster and white 25 streak; non-fluorescent under UV radiation. The Mohs hardness is ~3½ ; the tenacity is brittle, 26 the fracture is curved, and there is no apparent cleavage. -
Haidingerite Ca(Aso3oh)•
Haidingerite Ca(AsO3OH) • H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. As short prismatic to equant crystals, to 1 mm; typically as botyroidal or fibrous coatings, scaly. Twinning: Rare on {110}. Physical Properties: Cleavage: Perfect on {010}. Tenacity: Sectile, thin laminae slightly flexible. Hardness = 2–2.5 D(meas.) = 2.85–2.96 D(calc.) = 2.96–2.97 Optical Properties: Transparent to translucent. Color: Colorless to white. Luster: Vitreous; pearly on cleavages. Optical Class: Biaxial (+). Orientation: X = b; Y = a; Z = c. Dispersion: r> v,weak. α = 1.590(3) β = 1.602(3) γ = 1.638(3) 2V(meas.) = 58(3)◦ Cell Data: Space Group: P cnb. a = 6.904–6.935 b = 16.150–16.161 c = 7.935–7.940 Z=8 X-ray Powder Pattern: “Baden”, Germany. 5.217 (FFFF), 2.981 (FFF), 8.059 (FF), 5.254 (FF), 3.843 (FF), 3.185 (FF), 3.151 (FF) Chemistry: (1) (2) As2O5 57.52 58.03 CaO 28.39 28.32 H2O 14.32 13.65 Total 100.23 100.00 • (1) J´achymov, Czech Republic. (2) Ca(AsO3OH) H2O. Occurrence: Formed by dehydration of pharmacolite (Getchell mine, Nevada, USA). Association: Pharmacolite, pitticite, weilite. Distribution: At J´achymov (Joachimsthal), Czech Republic. In Germany, from the Anton mine, Heubachtal, near Schiltach, and near Wittichen, Black Forest; at Richelsdorf, Hesse. At the Gabe-Gottes mine, Rauenthal, near Sainte-Marie-aux-Mines, Haut-Rhin, France. From the Ruben mine, Kohlendorf, Poland. At the Khaydarkan deposit, Fergana Valley, Alai Range, Kyrgyzstan. -
MINERALS with a FRENCH CONNECTION François Fontan and Robert F
MINERALS with a FRENCH CONNECTION François Fontan and Robert F. Martin The Canadian Mineralogist Special Publication 13 TABLE OF CONTENTS Préface vii Preface viii Introduction 1 The scope and contents of this book 1 Early discoveries 1 The three museums in Paris 2 Previous surveys of minerals discovered in France 5 The profile of mineralogy in France today 6 The information to be reported in each entry 6 Bibliography 7 Acknowledgements: special mentions 8 Acknowledgements prepared by François Fontan (2005–2007) 9 Acknowledgements prepared by Robert F. Martin (2007–2017) 9 Hold the presses: new arrivals! 11 Minerals with a type locality in France 13 Minerals discovered elsewhere and named after French citizens 267 Six irregular cases 525 Appendices and indexes 539 The appendices 540 Appendix 1. Minerals with a type locality in France, including New Caledonia: alphabetical listing 541 Appendix 2. Minerals (n = 127) with a type locality in France, including New Caledonia: chronological listing 544 Figure A1. Geographic distribution of mineral discoveries in France 545 Figure A2. Geographic distribution of mineral discoveries in New Caledonia 546 Figure A3. The number of type localities of minerals, grouped by decade 546 Appendix 3. Minerals with a type locality in France, including New Caledonia: geographic distribution 547 Appendix 4. Minerals discovered elsewhere than in France and named after French citizens: alphabetical list 549 Appendix 5. Minerals (n = 128) discovered elsewhere than in France and named after French citizens: chronological listing 552 Appendix 6. Minerals discovered elsewhere than in France and named after French citizens: geographic distribution 553 Appendix 7. The top 21 countries ranked according to the number of new mineral species discovered 556 Appendix 8. -
New Mineral Names*
The American Mineralogist, Volume60, pages945-947, l9Z5 NEW MINERAL NAMES* Mlcttnrl FLerscurn AND J. A. MnuonRrNo Brassite* The mineral,associated with realgar,native As, and a little orpi- FneNcors FoNTAN,Mencsl Onlrnc, FnnNcors prnurNcrer, ment,occurs as grains up to 0.2mm in calciteveinlets in marlsand RoleNo Prrnnor, nNo RsleNr Sre,nr_(1973) La brassite, siliceouslimestones at Duranus,Alpes-Maritimes, France. MgHAsO..4HrO. Bull. Soc. Franc. Mineral. Cristallogr. 96, The nameis for the locality.Type materialis at the EcoleNatl. 365-370. Superieuredes Mines, Paris.M.F. Analysisby M.O. on 15.4mg from Jachymovgave AsrOr 4g.1, Jagowerite* MgO 15.6,CaO 0.9, HrO (by ditr.)35.4 percent, corresponding to the formula above.The mineralcan be synthesizedfrom solutions E. P. Mencsen,M. E. Conrns,AND A. E.Ano (1973)Jagowerite: with pH 24 andis readilyobtained by the spontaneousdehydra- A new barium phosphatemineral from the yukon Territory. tion of roesslerite.The Drl curve showsa small endothermic Can. Mineral. 12, 135-136. breakat 95o,a largeone at 135o,and an exothermiipeak at 570.. A gravimetricanalysis (H. Sharples,analyst) gave: BaO 38.41, X-ray studyshows the mineralto be orthorhombic,space group P,O631.41, Al,Os 25.87, Fe,O, 0.26, S 0.15,H,O+ 4.09,total Pbca,a 7.472+0.001,,l0.E9l +0.001, c 16.585+0.005A,Z:8. c 100.19percent. Emission and solid sourcemass spectrographic ca1c.2.326,meas 2.28*0.04 (data on syntheticcrystals, Brasse and analysesindicated the followingelems,rts present in amountsless Pemy,Bull. Soc. Chim. Franc. -
Weilite Cahaso4 C 2001-2005 Mineral Data Publishing, Version 1
Weilite CaHAsO4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Triclinic. Point Group: 1. Powdery, massive, typically pseudomorphous after pharmacolite or haidingerite. Physical Properties: Hardness = n.d. D(meas.) = 3.48(5); 3.54 (synthetic). D(calc.) = 3.45; 3.541 (synthetic). Optical Properties: Semitransparent. Color: White. Luster: Porcelaneous, may be greasy to slightly pearly. Optical Class: Biaxial (–). Orientation: X ∧{001} = 20(2)◦; Y ∧{001} = 27(2)◦; Z ∧⊥{001} = 34(2)◦. α = 1.664(2) (α 0) β = n.d. γ = 1.688(2) (γ 0) 2V(meas.) = 82(1)◦ Cell Data: Space Group: P 1 (synthetic). a = 7.0591(8) b = 6.8906(9) c = 7.2006(16) α =97◦26(1)0 β = 103◦33(1)0 γ =87◦45(1)0 Z=4 X-ray Powder Pattern: Gabe-Gottes mine, France. 3.43 (FFF), 3.07 (FFF), 3.42 (F), 2.80 (F), 2.58 (mF), 2.28 (mf), 3.60 (f), 3.21 (f) Chemistry: (1) (2) (3) As2O5 64.1 61.7 63.85 CaO 30.7 33.1 31.15 H2O 5.2 5.2 5.00 Total [100.0] [100.0] 100.00 (1) Gabe-Gottes mine, France; recalculated to 100% after deduction of SiO2 1% and pharmacolite 10% from an original total of 99.7%. (2) Schneeberg, Germany; recalculated to 100% after deduction of pharmacolite 10% from an original total of 100.0%. (3) CaHAsO4. Occurrence: A rare secondary mineral in the oxidized zone of arsenic-bearing hydrothermal mineral deposits. Association: Pharmacolite, haidingerite, picropharmacolite. Distribution: In Germany, from Schneeberg, at the Daniel mine, and at Schlema-Hartenstein, Saxony; from Wittichen, Black Forest; in the Bauhaus district, Richelsdorf Mountains, Hesse. -
IMA–CNMNC Approved Mineral Symbols
Mineralogical Magazine (2021), 85, 291–320 doi:10.1180/mgm.2021.43 Article IMA–CNMNC approved mineral symbols Laurence N. Warr* Institute of Geography and Geology, University of Greifswald, 17487 Greifswald, Germany Abstract Several text symbol lists for common rock-forming minerals have been published over the last 40 years, but no internationally agreed standard has yet been established. This contribution presents the first International Mineralogical Association (IMA) Commission on New Minerals, Nomenclature and Classification (CNMNC) approved collection of 5744 mineral name abbreviations by combining four methods of nomenclature based on the Kretz symbol approach. The collection incorporates 991 previously defined abbreviations for mineral groups and species and presents a further 4753 new symbols that cover all currently listed IMA minerals. Adopting IMA– CNMNC approved symbols is considered a necessary step in standardising abbreviations by employing a system compatible with that used for symbolising the chemical elements. Keywords: nomenclature, mineral names, symbols, abbreviations, groups, species, elements, IMA, CNMNC (Received 28 November 2020; accepted 14 May 2021; Accepted Manuscript published online: 18 May 2021; Associate Editor: Anthony R Kampf) Introduction used collection proposed by Whitney and Evans (2010). Despite the availability of recommended abbreviations for the commonly Using text symbols for abbreviating the scientific names of the studied mineral species, to date < 18% of mineral names recog- chemical elements -
New Insight Into the Local Structure of Hydrous Ferric Arsenate Using Full
New Insight into the Local Structure of Hydrous Ferric Arsenate Using Full-Potential Multiple Scattering Analysis, Density Functional Theory Calculations, and Vibrational Spectroscopy Shaofeng Wang, Xu Ma, Guoqing Zhang, Yongfeng Jia, Keisuke Hatada To cite this version: Shaofeng Wang, Xu Ma, Guoqing Zhang, Yongfeng Jia, Keisuke Hatada. New Insight into the Local Structure of Hydrous Ferric Arsenate Using Full-Potential Multiple Scattering Analysis, Density Func- tional Theory Calculations, and Vibrational Spectroscopy. Environmental Science and Technology, American Chemical Society, 2016, 50 (22), pp.12114-12121. 10.1021/acs.est.6b02703. hal-01437439 HAL Id: hal-01437439 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01437439 Submitted on 12 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Page 1 of 36 Environmental Science & Technology 1 New insight into the local structure of hydrous ferric arsenate using 2 full-potential multiple scattering analysis, density functional theory calculations, 3 and vibrational spectroscopy 4 5 Shaofeng Wang 1, Xu Ma 1, Guoqing Zhang 1, Yongfeng Jia 2, *, Keisuke Hatada 3 6 7 1. Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of 8 Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, China 9 2. -
Identification of Diagenetic Calcium Arsenates Using Synchrotron-Based Micro X-Ray Diffraction
Identification of diagenetic calcium arsanates 1 Boletín de la Sociedad Geológica Mexicana Volumen 67, núm. 3, 2015, p. ###-### D GEOL DA Ó E G I I C C O A S 1904 M 2004 . C EX . ICANA A C i e n A ñ o s Identification of diagenetic calcium arsenates using synchrotron-based micro X-ray diffraction Francisco Castillo1,2,3, Miguel Avalos-Borja4,5, Heather Jamieson6, Gerardo Hernández-Bárcenas1, Nadia Martínez-Villegas1,* 1 IPICyT, Instituto Potosino de Investigación Científica y Tecnológica, División de Geociencias Aplicadas, Camino a la Presa San José No. 2055, Col. Lomas 4a Sec. 78216, San Luis Potosí, SLP, México. 2 IPICyT, Instituto Potosino de Investigación Científica y Tecnológica, División de Materiales Avanzados, San Luis Potosí, SLP, México. 3 CONACYT Research Fellow, Instituto de Geología, Universidad Autónoma de San Luis Potosí. 4 Centro de Nanociencias y Nanotecnología-UNAM, Ensenada, BC, México. 5 On leave at IPICyT, Instituto Potosino de Investigación Cientifica y Tecnológica, División de Materiales Avanzados, San Luis Potosí, SLP, México. 6 Department of Geological Engineering, Queen´s University, Kingston, ON, Canada. * [email protected] proof Abstract In this work, we identify the type of calcium arsenates found in sediment samples from an aquifer located in Matehuala, San Luis Potosí, México. Sediments in contact with levels up to 158 mg/L of arsenic in neutral pH water were studied by X-ray diffraction, scanning electron microscopy coupled to energy dispersive X-ray analyses (SEM-EDS), and synchrotron based X-ray diffraction. Identification of these calcium arsenates by X-ray analysis has proved to be very difficult to achieve because the precipitates of interest are on the microscale and immerse in a matrix of calcite, gypsum, and quartz comprising nearly 100 % of the samples.