MINERALS with a FRENCH CONNECTION François Fontan and Robert F
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Application of Near-Infrared and Mid-Infrared Spectroscopy to the Study of 3 Selected Tellurite Minerals: Xocomecatlite, Tlapallite and Rodalquilarite 4 5 Ray L
QUT Digital Repository: http://eprints.qut.edu.au/ Frost, Ray L. and Keeffe, Eloise C. and Reddy, B. Jagannadha (2009) An application of near-infrared and mid- infrared spectroscopy to the study of selected tellurite minerals: xocomecatlite, tlapallite and rodalquilarite. Transition Metal Chemistry, 34(1). pp. 23-32. © Copyright 2009 Springer 1 2 An application of near-infrared and mid-infrared spectroscopy to the study of 3 selected tellurite minerals: xocomecatlite, tlapallite and rodalquilarite 4 5 Ray L. Frost, • B. Jagannadha Reddy, Eloise C. Keeffe 6 7 Inorganic Materials Research Program, School of Physical and Chemical Sciences, 8 Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, 9 Australia. 10 11 Abstract 12 Near-infrared and mid-infrared spectra of three tellurite minerals have been 13 investigated. The structure and spectral properties of two copper bearing 14 xocomecatlite and tlapallite are compared with an iron bearing rodalquilarite mineral. 15 Two prominent bands observed at 9855 and 9015 cm-1 are 16 2 2 2 2 2+ 17 assigned to B1g → B2g and B1g → A1g transitions of Cu ion in xocomecatlite. 18 19 The cause of spectral distortion is the result of many cations of Ca, Pb, Cu and Zn the 20 in tlapallite mineral structure. Rodalquilarite is characterised by ferric ion absorption 21 in the range 12300-8800 cm-1. 22 Three water vibrational overtones are observed in xocomecatlite at 7140, 7075 23 and 6935 cm-1 where as in tlapallite bands are shifted to low wavenumbers at 7135, 24 7080 and 6830 cm-1. The complexity of rodalquilarite spectrum increases with more 25 number of overlapping bands in the near-infrared. -
Profesionální Referát
Journal of the Czech Geological Society, 42/4 (1997) 115 History of secondary minerals discovered in Jáchymov (Joachimsthal) Historie objevů sekundárních minerálů z Jáchymova (Czech summary) FRANTIŠEK VESELOVSKÝ1 - PETR ONDRUŠ1 - JAN HLOUŠEK2 1 Czech Geological Survey, Klárov 3, 118 21 Prague 1 2 U Roháčových kasáren 24, 110 00 Prague 10 Jáchymov is type locality for 22 minerals, including 17 secondary minerals. Data on history of discovery and description of new minerals was extracted by search in old literature. Minerals are arranged in the chronological sequence of discovery. Explanation of names of discredited or re-defined minerals and some historical names is included at the end of this paper. Key words: secondary minerals, history description, old mineral names, Jáchymov Introduction This work was continued a decade later by Schrauf. Larsen extensively studied the optical properties of Mining in Jáchymov experienced episodes of boom as Jáchymov minerals at the beginning of the twentieth well as periods of severe decline. Its prosperity was de- century.R. Nováček (1935-1941) studied in detail mainly pendent of mineral wealth and during ages the main secondary minerals from Jáchymov. X-ray diffraction, interest moved from silver to uranium ores. Mineralogy, widely introduced after 1945, provided a new powerful mining and ore dressing proved to be often mutually method of mineral identification. Frondel and Peacock interdependent. The beginnings of mineralogy in Jáchy- continued study of Jáchymov minerals. But only mu- mov date to mining development in early 16th century. seum specimens were available by that time. The first mineralogical notes appear in texts by Agricola The secrecy surrounding uranium mining in the pe- [86], Mathesius, Ercker, and others. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
Distribution of As, Ni and Co in Tailings and Surface Waters in the Cobalt Area, Ontario1
DISTRIBUTION OF AS, NI AND CO IN TAILINGS AND SURFACE 1 WATERS IN THE COBALT AREA, ONTARIO Jeanne B. Percival2, Y.T. John Kwong3, Charles G. Dumaresq4, Frederick A. Michel5 Abstract: From 1904 until the mid 1930’s and intermittently until 1989, over 450 million troy ounces of silver was mined from the Cobalt area, Ontario. Currently there is no active mining of silver, but the area has seen recent exploration activities for other commodities such as diamonds. Cobalt, however, has not only a renowned mining history, but also an environmental legacy. The area is characterized by remnant historic mine workings and numerous waste rock piles and tailings ponds. Several elements of concern including arsenic, nickel and cobalt continually enter the local watershed from the tailings and waste rock piles. These elements are transported through surface waters to the wetlands in the Farr Creek drainage basin and ultimately enter Lake Timiskaming. Tailings samples are composed of abundant plagioclase with subordinate quartz, chlorite, calcite and dolomite. Less common are K-feldspar, amphibole and mica as well as trace minerals such as erythrite, scorodite and pharmocolite. When efflorescent mineral crusts form on tailings surfaces they are dominated by either gypsum or thenardite. The tailings may contain up to 3.5 wt % Co and 2.2 wt% Ni. Lake sediment and tailings cores show concentrations up to 1.8 wt% As, 0.62 wt% Co and 0.27 wt% Ni in the solids, and 160 mg/L As, 74 mg/L Co and 42 mg/L Ni in the pore waters. One core collected from the infilled Hebert Pond situated within the Nipissing Low Grade Mill tailings impoundment show pore water concentrations in excess of 1,500 mg/L As associated with an organic- rich layer. -
Utahite, a New Mineral and Associated Copper Tellurates from the Centennial Eureka Mine, Tintic District, Juab County, Utah
UTAHITE, A NEW MINERAL AND ASSOCIATED COPPER TELLURATES FROM THE CENTENNIAL EUREKA MINE, TINTIC DISTRICT, JUAB COUNTY, UTAH Andrew C. Roberts and John A. R. Stirling Geological Survey of Canada 601 Booth Street Ottawa, Ontario, Canada K IA OE8 Alan J. Criddle Martin C. Jensen Elizabeth A. Moffatt Department of Mineralogy 121-2855 Idlewild Drive Canadian Conservation Institute The Natural History Museum Reno, Nevada 89509 1030 Innes Road Cromwell Road Ottawa, Ontario, Canada K IA OM5 London, England SW7 5BD Wendell E. Wilson Mineralogical Record 4631 Paseo Tubutama Tucson, Arizona 85750 ABSTRACT Utahite, idealized as CusZn;(Te6+04JiOH)8·7Hp, is triclinic, fracture. Utahite is vitreous, brittle and nonfluorescent; hardness space-group choices P 1 or P 1, with refined unit-cell parameters (Mohs) 4-5; calculated density 5.33 gtcm' (for empirical formula), from powder data: a = 8.794(4), b = 9996(2), c = 5.660(2);\, a = 5.34 glcm' (for idealized formula). In polished section, utahite is 104.10(2)°, f3 = 90.07(5)°, y= 96.34(3YO, V = 479.4(3) ;\3, a:b:c = slightly bireflectant and nonpleochroic. 1n reflected plane-polar- 0.8798:1 :0.5662, Z = 1. The strongest five reflections in the X-ray ized light in air it is very pale brown, with ubiquitous pale emerald- powder pattern are (dA(f)(hkl)]: 9.638(100)(010); 8.736(50)(100); green internal reflections. The anisotropy is unknown because it is 4.841(100)(020); 2.747(60)(002); 2.600(45)(301, 311). The min- masked by the internal reflections. Averaged electron-microprobe eral is an extremely rare constituent on the dumps of the Centen- analyses yielded CuO = 25.76, ZnO = 15.81, Te03 = 45.47, H20 nial Eureka mine, Tintic district, Juab County, Utah, where it (by difference) {12.96], total = {100.00] weight %, corresponding occurs both as isolated 0.6-mm clusters of tightly bound aggre- to CU49;Zn29lTe6+04)39l0H)79s' 7.1H20, based on 0 = 31. -
Geochemistry, Mineralogy and Microbiology of Cobalt in Mining-Affected Environments
minerals Article Geochemistry, Mineralogy and Microbiology of Cobalt in Mining-Affected Environments Gabriel Ziwa 1,2,*, Rich Crane 1,2 and Karen A. Hudson-Edwards 1,2 1 Environment and Sustainability Institute, University of Exeter, Penryn TR10 9FE, UK; [email protected] (R.C.); [email protected] (K.A.H.-E.) 2 Camborne School of Mines, University of Exeter, Penryn TR10 9FE, UK * Correspondence: [email protected] Abstract: Cobalt is recognised by the European Commission as a “Critical Raw Material” due to its irreplaceable functionality in many types of modern technology, combined with its current high-risk status associated with its supply. Despite such importance, there remain major knowledge gaps with regard to the geochemistry, mineralogy, and microbiology of cobalt-bearing environments, particu- larly those associated with ore deposits and subsequent mining operations. In such environments, high concentrations of Co (up to 34,400 mg/L in mine water, 14,165 mg/kg in tailings, 21,134 mg/kg in soils, and 18,434 mg/kg in stream sediments) have been documented. Co is contained in ore and mine waste in a wide variety of primary (e.g., cobaltite, carrolite, and erythrite) and secondary (e.g., erythrite, heterogenite) minerals. When exposed to low pH conditions, a number of such minerals are 2+ known to undergo dissolution, typically forming Co (aq). At circumneutral pH, such aqueous Co can then become immobilised by co-precipitation and/or sorption onto Fe and Mn(oxyhydr)oxides. This paper brings together contemporary knowledge on such Co cycling across different mining environments. -
Raman and Infrared Spectroscopy of Arsenates of the Roselite and Fairfeldite Mineral Subgroups
This may be the author’s version of a work that was submitted/accepted for publication in the following source: Frost, Ray (2009) Raman and infrared spectroscopy of arsenates of the roselite and fair- feldite mineral subgroups. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(5), pp. 1788-1794. This file was downloaded from: https://eprints.qut.edu.au/17596/ c Copyright 2009 Elsevier Reproduced in accordance with the copyright policy of the publisher. Notice: Please note that this document may not be the Version of Record (i.e. published version) of the work. Author manuscript versions (as Sub- mitted for peer review or as Accepted for publication after peer review) can be identified by an absence of publisher branding and/or typeset appear- ance. If there is any doubt, please refer to the published source. https://doi.org/10.1016/j.saa.2008.06.039 QUT Digital Repository: http://eprints.qut.edu.au/ Frost, Ray L. (2009) Raman and infrared spectroscopy of arsenates of the roselite and fairfieldite mineral subgroups. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71(5). pp. 1788-1794. © Copyright 2009 Elsevier Raman and infrared spectroscopy of arsenates of the roselite and fairfieldite mineral subgroups Ray L. Frost• Inorganic Materials Research Program, School of Physical and Chemical Sciences, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia. Abstract Raman spectroscopy complimented with infrared spectroscopy has been used to determine the molecular structure of the roselite arsenate minerals of the roselite and 2+ fairfieldite subgroups of formula Ca2B(AsO4)2.2H2O (where B may be Co, Fe , Mg, 2- Mn, Ni, Zn). -
Cobalt Mineral Ecology
American Mineralogist, Volume 102, pages 108–116, 2017 Cobalt mineral ecology ROBERT M. HAZEN1,*, GRETHE HYSTAD2, JOSHUA J. GOLDEN3, DANIEL R. HUMMER1, CHAO LIU1, ROBERT T. DOWNS3, SHAUNNA M. MORRISON3, JOLYON RALPH4, AND EDWARD S. GREW5 1Geophysical Laboratory, Carnegie Institution, 5251 Broad Branch Road NW, Washington, D.C. 20015, U.S.A. 2Department of Mathematics, Computer Science, and Statistics, Purdue University Northwest, Hammond, Indiana 46323, U.S.A. 3Department of Geosciences, University of Arizona, 1040 East 4th Street, Tucson, Arizona 85721-0077, U.S.A. 4Mindat.org, 128 Mullards Close, Mitcham, Surrey CR4 4FD, U.K. 5School of Earth and Climate Sciences, University of Maine, Orono, Maine 04469, U.S.A. ABSTRACT Minerals containing cobalt as an essential element display systematic trends in their diversity and distribution. We employ data for 66 approved Co mineral species (as tabulated by the official mineral list of the International Mineralogical Association, http://rruff.info/ima, as of 1 March 2016), represent- ing 3554 mineral species-locality pairs (www.mindat.org and other sources, as of 1 March 2016). We find that cobalt-containing mineral species, for which 20% are known at only one locality and more than half are known from five or fewer localities, conform to a Large Number of Rare Events (LNRE) distribution. Our model predicts that at least 81 Co minerals exist in Earth’s crust today, indicating that at least 15 species have yet to be discovered—a minimum estimate because it assumes that new minerals will be found only using the same methods as in the past. Numerous additional cobalt miner- als likely await discovery using micro-analytical methods. -
Mottramite Pbcu(VO4)(OH) C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Orthorhombic
Mottramite PbCu(VO4)(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. As crystals, equant or dipyramidal {111}, prismatic [001] or [100], with {101}, {201}, many others, to 3 mm, in drusy crusts, botryoidal, usually granular to compact, massive. Physical Properties: Fracture: Small conchoidal to uneven. Tenacity: Brittle. Hardness = 3–3.5 D(meas.) = ∼5.9 D(calc.) = 6.187 Optical Properties: Transparent to nearly opaque. Color: Grass-green, olive-green, yellow- green, siskin-green, blackish brown, nearly black. Streak: Yellowish green. Luster: Greasy. Optical Class: Biaxial (–), rarely biaxial (+). Pleochroism: Weak to strong; X = Y = canary-yellow to greenish yellow; Z = brownish yellow. Orientation: X = c; Y = b; Z = a. Dispersion: r> v,strong; rarely r< v.α= 2.17(2) β = 2.26(2) γ = 2.32(2) 2V(meas.) = ∼73◦ Cell Data: Space Group: P nma. a = 7.667–7.730 b = 6.034–6.067 c = 9.278–9.332 Z=4 X-ray Powder Pattern: Mottram St. Andrew, England; close to descloizite. 3.24 (vvs), 5.07 (vs), 2.87 (vs), 2.68 (vs), 2.66 (vs), 2.59 (vs), 1.648 (vs) Chemistry: (1) (2) (1) (2) CrO3 0.50 ZnO 0.31 10.08 P2O5 0.24 PbO 55.64 55.30 As2O5 1.33 H2O 3.57 2.23 V2O5 21.21 22.53 insol. 0.17 CuO 17.05 9.86 Total 100.02 100.00 (1) Bisbee, Arizona, USA; average of three analyses. (2) Pb(Cu, Zn)(VO4)(OH) with Zn:Cu = 1:1. -
Note on Lavendulan from Joachimstal, Bohemia
TOURNAL XIINERALOG}CAL SOCIET'Y OF A]IERICA 29 NOTE ON LAVENDULAN FROM JOACHIMSTAL, BOHEMIA \Vrrrrnu F. Fosnac,l Llnited, Stotes National Museu,m Under the name lavendulan, Breithaupt2 described a mineral from Annaberg in the Erzgebirge' The mineral formed thin crusts of a lavender blue color and botryoidal structure. Sufficient material apparently was not available for a quantitative analysis but the blowpipe characteristics were determined by Plattner' The collection of Colonel Washington A. Roebling contains a specimen of lavendulan from Joachimstal which probably repre- sents the same mineral described by Breithaupt. It is entirely similar in general appearances and blowpipe characteristics to the Annaberg material. The lavendulan forms very thin crusts with botryoidal surlace upon a seam of qvartz in a mica schist. Its color is patent blue (Ridgeway) with a vitreous to waxy lustre. Although the crust appears amorphous, under the microscopeit is seento be made up of minute radiated fibers or plates. They are slightly pleochroic, the colors being patent to oxide blue. The plates are so small that the optical properties could not be determined with exactness' The followingconstants were measured: B: 1'715+ 005;t: l'725+003' Z is in the direction of the length of the fibers. The extinction is inclined to the length of the fibers. The mineral is distinctly made up of bands of varying composition and the indices of refraction show a corresponding variation. Breithaupt's mineral was essentially a hydrous cobalt arsenate with some copper and nickel. Before the blowpipe the mineral colored the flame light blue (arsenic) and fused easily to a mass that assumedcrystalline form upon cooling. -
New Mineral Names*
American Mineralogist, Volume 62, pages 173-176, 1977 NEW MINERAL NAMES* MrcHlrI- Fr-BlscHrnAND J. A. MeNnn'ntNo and Institute Agrellite* Museum of Canada, Geological Survey of Canada, for the Mineralogy, Geochemistryand Crystal Chemistry of the J. GrrrrNs, M. G. BowN .qNoB. D. Srunlt.ltt (1976)Agrellite, a Rare Elements(Moscow). J. A. M. new rock-forming mineral in regionally metamorphosed agpaitic alkafic rocks Can. Mineral. 14, 120-126. Fedorovskite+ The mineral occurs as lensesand pods in mafic gneissescom- posed of albite, microcline, alkalic amphibole, aegirine-augite, S. V. MeltNro, D P SsrsurlN and K V. YunrtN'l (1976) eudialyte,and nepheline.Other mineralspresent are: hiortdahlite, Fedorovskite,a new boron mineral,and the isomorphousseries other members of the w<ihleritegroup, mosandrite, miserite, brith- roweite-fedorovskite olite, vlasovite, calcite, fluorite, clinohumite, norbergite, zircon, Zap. Vses Mineral- O'uo 105,71-85 (in Russian)' biotite, phlogopite, galena, and a new unnamed mineral, CaZr- SirO, [seeabstract in Am. Mineral 61, 178-179 (1976)]. The local- ity is on the Kipawa River, Villedieu Township, T6miscamingue County, Quebei, Canada, at about Lat.46" 4'7' 49" N, and Long 78" 29'3l" W (Note by J.A.M.: The Lat. and Long. figuresare interchangedin the paper,and the figurefor the latitudeshould be 46" not 45" ) Agrellite occurs as crystals up to 100 mm in length. They are HCI elongatedparallel to [001] and are flattened on either {010} or X-ray powder data are given for the first 3 samplesanalyzed For { I l0} The color is white to greyishor greenishwhite The lusteron sample(Mg*Mn.u), the strongestlines (41 given) are 3'92 cleavagesis pearly. -
A Review of the Structural Architecture of Tellurium Oxycompounds
Mineralogical Magazine, May 2016, Vol. 80(3), pp. 415–545 REVIEW OPEN ACCESS A review of the structural architecture of tellurium oxycompounds 1 2,* 3 A. G. CHRISTY ,S.J.MILLS AND A. R. KAMPF 1 Research School of Earth Sciences and Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia 2 Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia 3 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA [Received 24 November 2015; Accepted 23 February 2016; Associate Editor: Mark Welch] ABSTRACT Relative to its extremely low abundance in the Earth’s crust, tellurium is the most mineralogically diverse chemical element, with over 160 mineral species known that contain essential Te, many of them with unique crystal structures. We review the crystal structures of 703 tellurium oxysalts for which good refinements exist, including 55 that are known to occur as minerals. The dataset is restricted to compounds where oxygen is the only ligand that is strongly bound to Te, but most of the Periodic Table is represented in the compounds that are reviewed. The dataset contains 375 structures that contain only Te4+ cations and 302 with only Te6+, with 26 of the compounds containing Te in both valence states. Te6+ was almost exclusively in rather regular octahedral coordination by oxygen ligands, with only two instances each of 4- and 5-coordination. Conversely, the lone-pair cation Te4+ displayed irregular coordination, with a broad range of coordination numbers and bond distances.