Information to Users

Total Page:16

File Type:pdf, Size:1020Kb

Information to Users INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from aiy type of computer printer. The quality of this reproduction is dqiendent upon the qnality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard marging, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note wiH indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, begiiming at the upper left-hand comer and contimiing from left to light in equal sections with «mall overk^ Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscrit have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for zny pbot<^rsq}hs or illustrations appearing in this copy for an additional charge. Contact UMI directfy to order. UMI A Bell & Howell Information Company 300 North Zeeb Poad. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600 OXYANION-MINERAL SURFACE INTERACTIONS IN ALKALINE ENVIRONMENTS: ASO4 AND C1O4 SORPTION AND DESORPTION IN ETTRINGITE Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Satish Chandra Babu Myneni, M.S., M.Tech. The Ohio State University 1995 Dissertation Committee T.J.Logan S.J.Traina Approved By G.A.Waychunas J.M.Bigham G.Faure Advisor Y.Chin Environmental Sciences Graduate Program UMI Number: 9612249 UMI Microform 9612249 Copyright 1996, by UMI Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. UMI 300 North Zeeb Road Ann Arbor, MI 48103 DEDICATION PAGE ACKNOWLEDGEMENTS I am indebted to several people for their support and encouragement, who deserve special recognition. I would like to express deepest gratitude to my advisers Drs. Terry J. Logan and Samuel J. Traina for their support, and encouragement throughout the three and half years of my stay in Kottmaa I would like to thank Dr. Logan for introducing me to the subject of oxyanions and their play at the mineral-water interfaces. Special thanks to my coadviser (‘Sam’) who created interests in microscopic studies and introducing me to the world of spectroscopy. His unselfishness in sharing his time for discussions is commendable and appreciated. I would like to share with them what ever good that comes out of this dissertation. Although Dr. Waychunas joined the ^execution committee' little later, he has influenced my research career greatly. I would like to thank him for teaching x-ray absorption spectroscopy and showing how to view the experimental data in several different ways. Dr. Bigham and Dr. Faure needs special mention for their encouraging me in this research. I would like to thank Dr. Bigham for introducing me to the mineral world of ‘ettringite’, without which this dissertation would have been directed in some other direction. Dr. Yo Chin showed me the other side of inorganic world and admire him for all the discussions we had in the journal club. Although Dr. Krissek is not a member of my dissertation committee, he needs a special recognition for seeing a ‘potential researcher’ (euphanism for a Ph. D. student ?) in me. His 111 unselfishness in guiding a student is really appreciated. He gave me a new life in my research career. Special thanks to my good friends, Gustavo for technical discussions and encouragement, and Eric and Matt, for sharing my views and introducing me to the American society and culture. I would like to thank Quirine and Valerie (dectron-electron pair correlations) for keeping the life in Rm 409 very social. Ubi, Doug, Brad boy, Billy and Jagat need a special acknowledgment for helping me in several different laboratory analyses. Thanks to all my other friends of Rm 409 for their support and encouragement. I would like to thank Dr. Paul Powliat (Smithsonian Museums), Dr. Douglas Pride, and Dr. Tettenhorst for loaning me mineral samples; and Dr. Ingrid Pickering for EXAFS data collection and analysis. Ultimately, a special acknowledgment goes to my school teacher Donepudi Janakiram, who invigorated my interests in science from my childhood. Now I realize that he is very optimistic about me becoming a scientist. In additioa, the unselfish people of my village, who together started a small school in the comermost untained village in India, are acknowldged, without which 1 would probably have been an illiterate. IV VITA June 24,1966..................................................... Bom- Mynenivaripalem, India 1987 ....................................................................M.Sc., Indian Institute of Technology, Bombay, India 1990 .................................................................... M.Tech., Indian Institute of Technology, Kharagpur, India 1990-199 1 .......................................................... .Research Scientist, Steel Authority of India Ltd., India 1991-199 5 ...........................................................Teaching & Research Associate, The Ohio State University FIELDS OF STUDY Major Field: Environmental Sciences Studies in oxyanion vibrational and XAS spectroscopy, mineral-water interface chemistry, solubility and mineral equilibria, and alkaline waste materials. TABLE OF CONTENTS ACKNOWLEDGMENTS..................................................................................... iii VITA....................................................................................................................... V LIST OF TABLES................................................................................................. ix LISTOFHOURES............................................................................................... xi CHAPTER PAGE I. INTRODUCTION Ettringite: Occurrence, and Crystal Structure........................... 2 Oxyanion Coordination Sites in Ettringite ................................ 3 Resarch Objectives ..................................................................... 8 Approach .................................................................................... 8 Organization ............................................................................... 10 n. SOLUBILITY AND WEATHERING OF ETTRINGITE: GEOCHEMISTRY OF Ca-Al-S04-H20 SYSTEM Introduction................................................................................. 11 Previous Studies on Ettringite Solubility and Geochemistry of the Ca-Al-S 0 4 -H2 0 system............... 12 Experimental Materials and Methods ........................................ 17 Results and Discussion............................................................... 24 Solubility Product of Ettringite.................................................. 24 Incongruent Dissolution of Ettringite and Geochemistry of Ca-Al-S0 4 -H2 0 System................................................ 32 Geochemistry of the Ca-Al-S 0 4 -H2 0 System: Open to Fe^*, M g^ Si( 0 H)4°, and COj^ ............................................... 46 Conclusions................................................................................. 48 m . INTERACTIONS OF ASO4 WITH ETTRINGITE Introduction................................................................................. 49 vi Experimental Materials and Methods ........................................ 51 Results and Discussion............................................................... 54 As0 4 Adsoiption ......................................................................... 55 As0 4 Coprecipitation ................................................................. 6 6 ASO4 Desorption ......................................................................... 6 8 ASO4 Interactions with Ettringite ............................................... 72 Conclusions................................................................................. 76 IV. INTERACTIONS OF C1O 4 WITH ETTRINGITE Introduction................................................................................. 78 Experimental Materials and Methods ........................................ 79 Results and Discussion............................................................... 81 Cr0 4 Adsorption ......................................................................... 82 C1O4 Coprecipitation .................................................................. 8 6 C1O4 Desorption .......................................................................... 89 Cr0 4 Interactions with Ettringite................................................ 89 V. VIBRATIONAL SPECTROSCOPY OF OXYANIONS IN ETTRINGITE Introduction................................................................................ 92 Data Collection and Analysis ..................................................... 95 Results and Discussion............................................................... 99 Coordination Environment of Ca, Al, SO 4, OH and H 2O in Ettringite ................................................................... 99 ASO4 Complexation
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Distribution of As, Ni and Co in Tailings and Surface Waters in the Cobalt Area, Ontario1
    DISTRIBUTION OF AS, NI AND CO IN TAILINGS AND SURFACE 1 WATERS IN THE COBALT AREA, ONTARIO Jeanne B. Percival2, Y.T. John Kwong3, Charles G. Dumaresq4, Frederick A. Michel5 Abstract: From 1904 until the mid 1930’s and intermittently until 1989, over 450 million troy ounces of silver was mined from the Cobalt area, Ontario. Currently there is no active mining of silver, but the area has seen recent exploration activities for other commodities such as diamonds. Cobalt, however, has not only a renowned mining history, but also an environmental legacy. The area is characterized by remnant historic mine workings and numerous waste rock piles and tailings ponds. Several elements of concern including arsenic, nickel and cobalt continually enter the local watershed from the tailings and waste rock piles. These elements are transported through surface waters to the wetlands in the Farr Creek drainage basin and ultimately enter Lake Timiskaming. Tailings samples are composed of abundant plagioclase with subordinate quartz, chlorite, calcite and dolomite. Less common are K-feldspar, amphibole and mica as well as trace minerals such as erythrite, scorodite and pharmocolite. When efflorescent mineral crusts form on tailings surfaces they are dominated by either gypsum or thenardite. The tailings may contain up to 3.5 wt % Co and 2.2 wt% Ni. Lake sediment and tailings cores show concentrations up to 1.8 wt% As, 0.62 wt% Co and 0.27 wt% Ni in the solids, and 160 mg/L As, 74 mg/L Co and 42 mg/L Ni in the pore waters. One core collected from the infilled Hebert Pond situated within the Nipissing Low Grade Mill tailings impoundment show pore water concentrations in excess of 1,500 mg/L As associated with an organic- rich layer.
    [Show full text]
  • Charlesite, a New Mineral of the Ettringite Group, from Franklin, New Jersey
    American Mineralogist, Volume 68, pages 1033-1037,1983 Charlesite, a new mineral of the ettringite group, from Franklin, New Jersey PBre J. DuxN Department of Mineral Sciences SmithsonianInstitution, Washington,D. C. 20560 DoNero R. Peecon Department of GeologicalSciences University of Michigan, Ann Arbor, Michigan 48109 PBrnn B. LBavBNs Departmentof Geology Universityof Delaware, Newark, Delaware l97ll eNo JonN L. Beuu Franklin Mineral Museum Franklin. New Jersey 07416 Abstract Charlesite,ideally C4(AI,Si)z(SO4)2(B(OH)4)(OH,O)r2.26H2Ois a member of the ettrin- gite group from Franklin, New Jersey, and is the Al analogueof sturmanite. Chemical analysisyielded CaO27.3, Al2O3 5.1, SiO2 3.1, SO3 12.8,B2o33.2, H2O 48.6, sum : 100.1 percent.-Charlesiteis hexagonal,probable spacegroup P3lc, with a = ll.16(l), c = 21.21(2)4. The strongest lines in the X-ray powder difraction pattern (d, IlIo, hkl) are: 9.70,100, 100;5.58, 80, 110;3.855,80, ll4;2.749,70,304;2.538,70,126;2.193,70,2261 404. Charlesite occurs as simple hexagonal crystals tabular on {0001} and has a perfect {10T0}cleavage. The densityis 1.77glcm3 (obs.) and 1.79glcms (calc.). Optically, charlesite is uniaxial( -) with a : | .492(3)and e : 1.475(3).It occurswith clinohedrite,ganophyllite, xonotlite, prehnite, roeblingite and other minerals in severalparageneses at Franklin, New Jersey. Charlesite is named in honor of the late Professor Charles Palache. Introduction were approved, prior to publication, by the Commission Minerals and Mineral Names. I. M. A. The An ettringite-like mineral was first described from on New specimenwas divided into three portions.
    [Show full text]
  • General Index
    CAL – CAL GENERAL INDEX CACOXENITE United States Prospect quarry (rhombs to 3 cm) 25:189– Not verified from pegmatites; most id as strunzite Arizona 190p 4:119, 4:121 Campbell shaft, Bisbee 24:428n Unanderra quarry 19:393c Australia California Willy Wally Gully (spherulitic) 19:401 Queensland Golden Rule mine, Tuolumne County 18:63 Queensland Mt. Isa mine 19:479 Stanislaus mine, Calaveras County 13:396h Mt. Isa mine (some scepter) 19:479 South Australia Colorado South Australia Moonta mines 19:(412) Cresson mine, Teller County (1 cm crystals; Beltana mine: smithsonite after 22:454p; Brazil some poss. melonite after) 16:234–236d,c white rhombs to 1 cm 22:452 Minas Gerais Cripple Creek, Teller County 13:395–396p,d, Wallaroo mines 19:413 Conselheiro Pena (id as acicular beraunite) 13:399 Tasmania 24:385n San Juan Mountains 10:358n Renison mine 19:384 Ireland Oregon Victoria Ft. Lismeenagh, Shenagolden, County Limer- Last Chance mine, Baker County 13:398n Flinders area 19:456 ick 20:396 Wisconsin Hunter River valley, north of Sydney (“glen- Spain Rib Mountain, Marathon County (5 mm laths donite,” poss. after ikaite) 19:368p,h Horcajo mines, Ciudad Real (rosettes; crystals in quartz) 12:95 Jindevick quarry, Warregul (oriented on cal- to 1 cm) 25:22p, 25:25 CALCIO-ANCYLITE-(Ce), -(Nd) cite) 19:199, 19:200p Kennon Head, Phillip Island 19:456 Sweden Canada Phelans Bluff, Phillip Island 19:456 Leveäniemi iron mine, Norrbotten 20:345p, Québec 20:346, 22:(48) Phillip Island 19:456 Mt. St-Hilaire (calcio-ancylite-(Ce)) 21:295– Austria United States
    [Show full text]
  • Geologica Macedonica
    UDC 55 In print: ISSN 0352–1206 CODEN – GEOME 2 On line: ISSN 1857–8586 GEOLOGICA MACEDONICA Geologica Macedonica Vol. No pp. Štip 2 91–176 2018 Geologica Macedonica Год. 32 Број стр. Штип Geologica Macedonica Vol. No pp. Štip 2 91–176 2018 Geologica Macedonica Год. 32 Број стр. Штип GEOLOGICA MACEDONICA Published by: – Издава: "Goce Delčev" University in Štip, Faculty of Natural and Technical Sciences, Štip, Republic of Macedonia Универзитет „Гоце Делчев“ во Штип, Факултет за природни и технички науки, Штип, Република Македонија EDITORIAL BOARD Todor Serafimovski (R. Macedonia, Editor in Chief), Blažo Boev (R. Macedonia, Editor), David Alderton (UK), Tadej Dolenec (R. Slovenia), Ivan Zagorchev (R. Bulgaria), Wolfgang Todt (Germany), Nikolay S. Bortnikov (Russia), Clark Burchfiel (USA), Thierry Augé (France), Todor Delipetrov (R. Macedonia), Vlado Bermanec (Croatia), Milorad Jovanovski (R. Macedonia), Spomenko Mihajlović (Serbia), Dragan Milovanović (Serbia), Dejan Prelević (Germany), Albrecht von Quadt (Switzerland) УРЕДУВАЧКИ ОДБОР Тодор Серафимовски (Р. Македонија, главен уредник), Блажо Боев (Р. Македонија, уредник), Дејвид Олдертон (В. Британија), Тадеј Доленец (Р. Словенија), Иван Загорчев (Р. Бугарија), Волфганг Тод (Германија), акад. Николај С. Бортников (Русија), Кларк Барчфил (САД), Тиери Оже (Франција), Тодор Делипетров (Р. Македонија), Владо Берманец (Хрватска), Милорад Јовановски (Р. Македонија), Споменко Михајловиќ (Србија), Драган Миловановиќ (Србија), Дејан Прелевиќ (Германија), Албрехт фон Квад (Швајцарија) Language editor Лектура Marijana Kroteva Маријана Кротева (English) (англиски) Georgi Georgievski Георги Георгиевски (Macedonian) (македонски) Technical editor Технички уредник Blagoja Bogatinoski Благоја Богатиноски Proof-reader Коректор Alena Georgievska Алена Георгиевска Address Адреса GEOLOGICA MACEDONICA GEOLOGICA MACEDONICA EDITORIAL BOARD РЕДАКЦИЈА Faculty of Natural and Technical Sciences Факултет за природни и технички науки P.
    [Show full text]
  • Σ3O12, Henritermierite, Ca3mn2[(Sio4)2(O4H4)1]Σ3, (OH,F)-Spessartine, Mn2+3Al2[(Sio4)2(O4H4,F4)1]Σ3, and Hausmannite, Mn3o4
    University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2018-08-21 Crystal Chemistry and Structure of kimzeyite, Ca3Zr2[Al2Si]Σ3O12, henritermierite, Ca3Mn2[(SiO4)2(O4H4)1]Σ3, (OH,F)-spessartine, Mn2+3Al2[(SiO4)2(O4H4,F4)1]Σ3, and hausmannite, Mn3O4 Cruickshank, Laura Ann Cruickshank, L. A. (2018). Crystal Chemistry and Structure of kimzeyite, Ca3Zr2[Al2Si]Σ3O12, henritermierite, Ca3Mn2[(SiO4)2(O4H4)1]Σ3, (OH,F)-spessartine, Mn2+ 3Al2[(SiO4)2(O4H4,F4)1]Σ3, and hausmannite, Mn3O4 (Unpublished master's thesis).. University of Calgary, Calgary, AB. doi:10.11575/PRISM/32836 http://hdl.handle.net/1880/107656 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Crystal Chemistry and Structure of kimzeyite, Ca3Zr2[Al2Si]Σ3O12, henritermierite, 2+ Ca3Mn2[(SiO4)2(O4H4)1]Σ3, (OH,F)-spessartine, Mn 3Al2[(SiO4)2(O4H4,F4)1]Σ3, and hausmannite, Mn3O4 by Laura Ann Cruickshank A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS CALGARY, ALBERTA AUGUST, 2018 © Laura Ann Cruickshank 2018 ii ABSTRACT This study considers the crystal chemistry of some rare garnet-group minerals of the general [8] [6] [4] formula X3 Y2 Z3O12 including kimzeyite, Ca3Zr2[Al2Si]Σ3O12, henritermierite, 2+ Ca3Mn2[(SiO4)2(O4H4)1]Σ3, and (OH,F)-spessartine, Mn 3Al2[(SiO4)2(O4H4,F4)1]Σ3.
    [Show full text]
  • Download Download
    338 Geologica Macedonica, Vol. 32, No. 2, pp. 95–117 (2018) GEOME 2 IISSN 0352 – 1206 Manuscript received: August 5, 2018 e-ISSN 1857 – 8586 Accepted: November 7, 2018 UDC: 553.46:550.43.08]:504(497.721) 553.497:550.43.08]:504(497.721) Original scientific paper SUPERGENE MINERALOGY OF THE LOJANE Sb-As-Cr DEPOSIT, REPUBLIC OF MACEDONIA: TRACING THE MOBILIZATION OF TOXIC METALS Uwe Kolitsch1,2, Tamara Đorđević2, Goran Tasev3, Todor Serafimovski3, Ivan Boev3, Blažo Boev3 1Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A-1010 Wien, Austria 2Institut für Mineralogie und Kristallographie, Universität Wien, Althanstr. 14, A-1090 Wien, Austria 3Department of Mineral Deposits, Faculty of Natural and Technical Sciences, “Goce Delčev” University in Štip, Blvd. Goce Delčev 89, 2000 Štip, Republic of Macedonia [email protected] A b s t r a c t: As part of a larger project on the environmental mineralogy and geochemistry of the Lojane Sb- As-Cr deposit, Republic of Macedonia, which was mined for chromite and, later, stibnite until 1979 and is a substantial source of arsenic and antimony pollution, the supergene mineralogy of the deposit was studied. Samples collected on ore and waste dumps were used to identify and characterize the previously uninvestigated suite of supergene mineral phases by standard mineralogical techniques. The following species were determined (in alphabetical order): annaber- gite, arseniosiderite(?), gypsum, hexahydrite, hörnesite, pararealgar, roméite-group minerals, rozenite, scorodite, sen- armontite, stibiconite, sulphur, tripuhyite and valentinite. Their occurrences are described and their local conditions of formation are discussed. High-resolution Raman spectra of hörnesite, hexahydrite and rozenite are provided and com- pared with literature data.
    [Show full text]
  • Olmiite, Camn[Sio3(OH)](OH), the Mn-Dominant Analogue of Poldervaartite, a New Mineral Species from Kalahari Manganese Fields (Republic of South Africa)
    Mineralogical Magazine, April 2007, Vol. 71(2), pp. 193–201 Olmiite, CaMn[SiO3(OH)](OH), the Mn-dominant analogue of poldervaartite, a new mineral species from Kalahari manganese fields (Republic of South Africa) 1, 2 3 4 1 1 P. BONAZZI *, L. BINDI ,O.MEDENBACH ,R.PAGANO ,G.I.LAMPRONTI AND S. MENCHETTI 1 Dipartimento di Scienze della Terra, Universita` degli Studi di Firenze, Via La Pira, 4, I-50121, Firenze, Italy 2 Museo di Storia Naturale, sezione di Mineralogia, Universita` di Firenze, Via La Pira 4, I-50121 Firenze, Italy 3 Institut fu¨r Geologie, Mineralogie und Geophysik, Ruhr-Universita¨t Bochum, Universita¨tsstraße 150, D-44780 Bochum, Germany 4 P.O. Box 37, I-20092 Cinisello, Milano, Italy [Received 10 April 2007; Accepted 12 July 2007] ABSTRACT Olmiite, ideally CaMn[SiO3(OH)](OH), is a newly identified mineral from the N’Chwaning II mine of the Kalahari manganese fields (Republic of South Africa), which occurs as a product of hydrothermal alteration associated with poldervaartite, celestine, sturmanite, bultfonteinite and hematite. The mineral occurs as wheat-sheaf aggregates consisting of pale to intense reddish pink minute crystals. Olmiite is transparent with vitreous lustre, and exhibits deep-red fluorescence under short-wave UV-light. The mineral is brittle, with irregular fracture. Streak is white and Mohs hardness is 5À5Ý. No cleavage was observed. The measured density (pycnometer method) is 3.05(3) g/cm3. The calculated density is 3.102 g/cm3 or 3.109 g/cm3 using the unit-cell volume from single-crystal or powder data, respectively. Olmiite is biaxial positive, with refractive indices a = 1.663(1), b = 1.672(1), g = 1.694(1) (589 nm), 2Vmeas = 71.8(1)º, 2Vcalc = 66(8)º.
    [Show full text]
  • 6H2O, a New Mineral and a Possible Sink for Sb During
    1 Revision #1 2 Smamite, Ca2Sb(OH)4[H(AsO4)2]·6H2O, a new mineral and a possible sink for Sb during 3 weathering of fahlore 4 1§ 2 3 4 5 JAKUB PLÁŠIL , ANTHONY R. KAMPF , NICOLAS MEISSER , CÉDRIC LHEUR , THIERRY 5 6 6 BRUNSPERGER AND RADEK ŠKODA 7 8 1 Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Prague 8, Czech Republic 9 2 Mineral Sciences Department, Natural History Museum of Los Angeles County, 900 Exposition 10 Boulevard, Los Angeles, CA 90007, USA 11 3 Musée cantonal de géologie, Université de Lausanne, Anthropole, Dorigny, CH-1015 12 Lausanne, Switzerland 13 4 1 rue du St. Laurent, 54280 Seichamps, France 14 5 22 route de Wintzenheim, 68000 Colmar, France 15 6 Department of Geological Sciences, Faculty of Science, Masaryk University, Kotlářská 2, 611 16 37, Brno, Czech Republic 17 18 ABSTRACT 19 Smamite, Ca2Sb(OH)4[H(AsO4)2]·6H2O, is a new mineral species from the Giftgrube mine, 20 Rauenthal, Sainte-Marie-Aux-Mines ore-district, Haut-Rhin department, France. It is a supergene 21 mineral found in quartz-carbonate gangue with disseminated to massive tennantite-tetrahedrite 22 series minerals, native arsenic, Ni-Co arsenides and supergene minerals picropharmacolite, 23 fluckite and pharmacolite. Smamite occurs as lenticular crystals growing in aggregates up to 0.5 24 mm across. The new mineral is whitish to colorless, transparent with vitreous luster and white 25 streak; non-fluorescent under UV radiation. The Mohs hardness is ~3½ ; the tenacity is brittle, 26 the fracture is curved, and there is no apparent cleavage.
    [Show full text]
  • Haidingerite Ca(Aso3oh)•
    Haidingerite Ca(AsO3OH) • H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. As short prismatic to equant crystals, to 1 mm; typically as botyroidal or fibrous coatings, scaly. Twinning: Rare on {110}. Physical Properties: Cleavage: Perfect on {010}. Tenacity: Sectile, thin laminae slightly flexible. Hardness = 2–2.5 D(meas.) = 2.85–2.96 D(calc.) = 2.96–2.97 Optical Properties: Transparent to translucent. Color: Colorless to white. Luster: Vitreous; pearly on cleavages. Optical Class: Biaxial (+). Orientation: X = b; Y = a; Z = c. Dispersion: r> v,weak. α = 1.590(3) β = 1.602(3) γ = 1.638(3) 2V(meas.) = 58(3)◦ Cell Data: Space Group: P cnb. a = 6.904–6.935 b = 16.150–16.161 c = 7.935–7.940 Z=8 X-ray Powder Pattern: “Baden”, Germany. 5.217 (FFFF), 2.981 (FFF), 8.059 (FF), 5.254 (FF), 3.843 (FF), 3.185 (FF), 3.151 (FF) Chemistry: (1) (2) As2O5 57.52 58.03 CaO 28.39 28.32 H2O 14.32 13.65 Total 100.23 100.00 • (1) J´achymov, Czech Republic. (2) Ca(AsO3OH) H2O. Occurrence: Formed by dehydration of pharmacolite (Getchell mine, Nevada, USA). Association: Pharmacolite, pitticite, weilite. Distribution: At J´achymov (Joachimsthal), Czech Republic. In Germany, from the Anton mine, Heubachtal, near Schiltach, and near Wittichen, Black Forest; at Richelsdorf, Hesse. At the Gabe-Gottes mine, Rauenthal, near Sainte-Marie-aux-Mines, Haut-Rhin, France. From the Ruben mine, Kohlendorf, Poland. At the Khaydarkan deposit, Fergana Valley, Alai Range, Kyrgyzstan.
    [Show full text]
  • New Mineral Names*
    The American Mineralogist, Volume60, pages945-947, l9Z5 NEW MINERAL NAMES* Mlcttnrl FLerscurn AND J. A. MnuonRrNo Brassite* The mineral,associated with realgar,native As, and a little orpi- FneNcors FoNTAN,Mencsl Onlrnc, FnnNcors prnurNcrer, ment,occurs as grains up to 0.2mm in calciteveinlets in marlsand RoleNo Prrnnor, nNo RsleNr Sre,nr_(1973) La brassite, siliceouslimestones at Duranus,Alpes-Maritimes, France. MgHAsO..4HrO. Bull. Soc. Franc. Mineral. Cristallogr. 96, The nameis for the locality.Type materialis at the EcoleNatl. 365-370. Superieuredes Mines, Paris.M.F. Analysisby M.O. on 15.4mg from Jachymovgave AsrOr 4g.1, Jagowerite* MgO 15.6,CaO 0.9, HrO (by ditr.)35.4 percent, corresponding to the formula above.The mineralcan be synthesizedfrom solutions E. P. Mencsen,M. E. Conrns,AND A. E.Ano (1973)Jagowerite: with pH 24 andis readilyobtained by the spontaneousdehydra- A new barium phosphatemineral from the yukon Territory. tion of roesslerite.The Drl curve showsa small endothermic Can. Mineral. 12, 135-136. breakat 95o,a largeone at 135o,and an exothermiipeak at 570.. A gravimetricanalysis (H. Sharples,analyst) gave: BaO 38.41, X-ray studyshows the mineralto be orthorhombic,space group P,O631.41, Al,Os 25.87, Fe,O, 0.26, S 0.15,H,O+ 4.09,total Pbca,a 7.472+0.001,,l0.E9l +0.001, c 16.585+0.005A,Z:8. c 100.19percent. Emission and solid sourcemass spectrographic ca1c.2.326,meas 2.28*0.04 (data on syntheticcrystals, Brasse and analysesindicated the followingelems,rts present in amountsless Pemy,Bull. Soc. Chim. Franc.
    [Show full text]
  • Weilite Cahaso4 C 2001-2005 Mineral Data Publishing, Version 1
    Weilite CaHAsO4 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Triclinic. Point Group: 1. Powdery, massive, typically pseudomorphous after pharmacolite or haidingerite. Physical Properties: Hardness = n.d. D(meas.) = 3.48(5); 3.54 (synthetic). D(calc.) = 3.45; 3.541 (synthetic). Optical Properties: Semitransparent. Color: White. Luster: Porcelaneous, may be greasy to slightly pearly. Optical Class: Biaxial (–). Orientation: X ∧{001} = 20(2)◦; Y ∧{001} = 27(2)◦; Z ∧⊥{001} = 34(2)◦. α = 1.664(2) (α 0) β = n.d. γ = 1.688(2) (γ 0) 2V(meas.) = 82(1)◦ Cell Data: Space Group: P 1 (synthetic). a = 7.0591(8) b = 6.8906(9) c = 7.2006(16) α =97◦26(1)0 β = 103◦33(1)0 γ =87◦45(1)0 Z=4 X-ray Powder Pattern: Gabe-Gottes mine, France. 3.43 (FFF), 3.07 (FFF), 3.42 (F), 2.80 (F), 2.58 (mF), 2.28 (mf), 3.60 (f), 3.21 (f) Chemistry: (1) (2) (3) As2O5 64.1 61.7 63.85 CaO 30.7 33.1 31.15 H2O 5.2 5.2 5.00 Total [100.0] [100.0] 100.00 (1) Gabe-Gottes mine, France; recalculated to 100% after deduction of SiO2 1% and pharmacolite 10% from an original total of 99.7%. (2) Schneeberg, Germany; recalculated to 100% after deduction of pharmacolite 10% from an original total of 100.0%. (3) CaHAsO4. Occurrence: A rare secondary mineral in the oxidized zone of arsenic-bearing hydrothermal mineral deposits. Association: Pharmacolite, haidingerite, picropharmacolite. Distribution: In Germany, from Schneeberg, at the Daniel mine, and at Schlema-Hartenstein, Saxony; from Wittichen, Black Forest; in the Bauhaus district, Richelsdorf Mountains, Hesse.
    [Show full text]