Blue Euclase from Zimbabwe — a Review Susan Stocklmayer (Née Anderson), FGS, FGA Philip Antrobus Ltd., London

Total Page:16

File Type:pdf, Size:1020Kb

Blue Euclase from Zimbabwe — a Review Susan Stocklmayer (Née Anderson), FGS, FGA Philip Antrobus Ltd., London The Journal of Volume Gemmolog26 No. 4 October 1998 y The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8TN Tel: 0171 404 3334 Fax: 0171 4048843 e-mail: [email protected] Website: www.gagtl.ac.uk/gagtl President: Professor RA. Howie Vice-Presidents: E.M. Bruton, A.E. Farn, D.G Kent, RK. Mitchell Honorary Fellows: RA Howie, RT. Liddicoat Jnr, K. Nassau Honorary Life Members: D.J. Callaghan, E.A Jobbins, H. Tillander Council of Management: CR. Cavey, T.J. Davidson, N.W. Deeks, RR Harding, M.J. O'Donoghue, 1. Thomson, VP Watson Members' Council: AJ. Allnutt, P. Dwyer-Hickey, S.A. Everitt, R. Fuller, AG. Good, J. Greatwood, B. Jackson, J. Kessler, J. Monnickendam, 1. Music, J.B. Nelson, P.G Read, R Shepherd, P.J. Wates, CH. Winter Branch Chairmen: Midlands - G.M. Green, North West - 1. Knight, Scottish - B. Jackson Examiners: AJ. Allnutt, M.Sc., Ph.D., FCA, 1. Bartlett, BSc., M.Phil., FCA, DCA, E.M. Bruton, FCA, DCA, C.R Cavey, FCA, S. Coelho, BSc., FCA, DCA, Prof. AT. Collins, BSc., PhD, AG. Good, FCA, DCA, G.M. Howe, FCA, DCA, GH. Jones, BSc., Ph.D., FCA, M. Newton, BSc., D.Phil., CJ.E. Oldershaw, BSc. (Hons), FCA, H.L. Plumb, BSc., FCA, DCA, RD. Ross, BSc., FCA, DCA, PA Sadler, BSc., FCA, DCA, E. Stern, FCA, DCA, S.M. Stocklmayer, BSe. (Hons), FCA, Prof. I. Sunagawa, D.Sc., M. Tilley, cc, FCA, CM. Woodward, BSc., FCA, DCA The Journal of Gemmology Editor: Dr RR Harding Assistant Editors: M.J. O'Donoghue, P.G. Read Associate Editors: Dr CE.S. Arps (Leiden), G Bosshart (Zurich), Prof. AT. Collins (London), Dr J.W. Harris (Glasgow), Prof. R.A Howie (Derbyshire), Dr J.M. Ogden (Cambridge), Prof. AH. Rankin (Kingston upon Thames), Dr J.E. Shigley (Carlsbad), Prof. D.C Smith (Paris), E. Stern (London), S.M. Stocklmayer (Perth), Prof. I. Sunagawa (Tokyo), Dr M. Superchi (Milan), CM. Woodward (London) Production Editor: M.A Burland Vol 26, No.4, October 1998 ISSN: 1355-4565 Blue euclase from Zimbabwe — a review Susan Stocklmayer (née Anderson), FGS, FGA Philip Antrobus Ltd., London ABSTRACT: Blue euclase from Mwame, Hurungwe District, Zimbabwe, which was first collected in the late 1970s has recently been available for study. This paper presents information on mineral inclusions for the first time and the complex surface morphology of the crystals is shown in a series of photomicrographs. Keywords: euclase, inclusions, pegmatite, Zimbabwe Introduction Euclase in Africa uclase, a rare beryllium mineral Tanzania 174 (BeAlSi04 (OH)), occurs worldwide as Spencer (1934) first described euclase a late-stage hydrothermal mineral often from Africa. Spectacular crystals were found associated with beryl and other beryllium with quartz in pegmatite at Lukangasi Mica minerals in a variety of host rocks, usually Claims, 8 km south of Mikese Station, quartz veins, granitic pegmatites or greisens. Morogoro District. The largest of these 209 Although euclase can occur as a primary crystals measuring 72 x 38 x 35 mm (b axis mineral, more usually it is secondary in direction) is in the collection of the Natural origin formed by replacement of other History Museum, London. It is described as beryllium minerals. being white and cloudy but bluish green and First recorded from Brazil in 1785 (Dana, transparent on the face parallel to b. Other 1892; Bastos, 1969), euclase has been found crystals were sold in the 1930s to collections more recently from sources in Colombia, in the USA (Pough, 1991; see also Dirlam et al., Russia, Tanzania and Zimbabwe; spectacular 1992; McKie, 1955). crystals have been described from all these localities. Of less importance gemmologically, Mozambique occurrences with small crystals or non- A reference to the occurrence of euclase transparent types of euclase have been from Muiane pegmatite, Alto Ligonha recorded from New Zealand, USA (Sharp, District, was made by von Knorring et al. 1961), Europe, Guyana, Sri Lanka (Deen, (1964). This pegmatite was mined for micro- 1984), Kashmir, Mozambique, Uganda and lite and tantalite and was an important Namibia. source of gem beryl, producing both Euclase occurs in a range of colours aquamarine and pink beryl; it was also noted including pale green, pale to medium blue, for giant crystals of microcline. Two crystals, medium greenish blue, pale yellow and apparently similar in morphology to the colourless; the gemmological interest in the Zimbabwean euclase were described, one crystals from Zimbabwe is for the deep azure was used for analysis, and the other colour. reportedly weighed about 20 gm. No © Gemmological Association and Gem Testing Laboratory of Great Britain ISSN: 1355-4565 minerals, herderite and bertrandite. Beyer inferred that the euclase formed after a first generation of beryl but was older than the tabular crystals of bertrandite. The associated euclase and herderite showed no signs of etching or dissolution and euclase was not considered to be the source of beryllium for a younger generation of beryl (aquamarine) which also occurred in the pegmatite. Uganda In a report by von Knorring (1962) on the mineralogy of pegmatites in Uganda, euclase was recorded in the Namapherere tin mine, Ankole. Beryl is a common minor constituent in all the pegmatites mined in south-west Uganda and at Kihandu mine, an unusual form of beryl with acute bipyramidal form Figure 1: Partial euclase sheath on beryl crystal. has been pseudomorphed by muscovite and Photo: E.A. Jobbins albite together with crystals of clear flaky bertrandite. No further information was information was given about the found on this locality. 209210 accompanying minerals or the paragenesis of the euclase. Zimbabwe Euclase has been found in several of the Namibia pegmatites mined for mica since the 1920s and A report by Beyer (1980) described colour­ for beryl since the 1950s in the Mwame area less to slightly yellow crystals up to 5 mm long 19 km NNE of Karoi, in northern Zimbabwe from Spitzkopje. The euclase grew freely on (Figures 1, 2, 3 and 4). These occurrences are microcline together with quartz, green described in more detail in this paper. feldspar, fluorite, and the other beryllium Euc1ase in Zimbabwe Figure 2: Group of euclase crystals, each about 10 mm across. Photo: E.A. Jobbins History Euclase was first recorded in Zimbabwe in 1952, from a location 16 km east of Mwame (Geological Survey, 1952) and again (Wiles, 1961) where it is mentioned in a review of the economic minerals of the Mwame Mica Fields, Hurungwe District. Mwame was formerly known as Miami, Urungwe District, Rhodesia or Southern Rhodesia; most references cited give the earlier names, which are used in this paper where. relevant. Euclase is one of a group of rare beryllium minerals that had been found in pegmatites in this area; hurlbutite and herderite occur in the Grand Slam Beryl mine, phenakite in an unnamed beryl working and chrysoberyl in the Renda mine. No bertrandite J. Gemm., 1998, 26, 4, 209-218 has been recorded. Only chrysoberyl and euclase have been exploited commercially. The crystal aggregates and faceted gems of blue euclase described in 1978 (Gübelin) 1980 (Anderson) and in this paper, came from the Last Hope claims located on Haslemere and Momba Estates 13 km NNE of the town of Karoi. Recent information unsupported by geological reports refers to the production of some euclase specimens from the MWM claims, Haslemere and Momba Estates and from Trim, Mukwichi District. Both localities are within the general Mwame area. Samples of euclase at the Geological Museum, Harare, are recorded from the Eurythmie and Lion Hill claims, situated N and NNW of Mwame; the euclase from Last Hope claims, however, remains the Figure 3: Faceted euclase, 4 mm across. Photo: SM. Stocklmayer most significant source for the blue variety. Euclase specimens displayed in mineral collections at the Natural History Museum, granite plugs termed the Miami Granites. London, and the National Museum of Radiometric data gave K-Ar ages of 520 and Scotland in Edinburgh, originate from the 530 Ma on muscovite from the Catkin and Last Hope claims. Esquire pegmatites (Wiles, 1961) and K-Ar and Rb-Sr ages of 480 ± 20 Ma and 500 ± 20 Ma on biotite from the Miami 209211 Geology Granites (Clifford et al, 1967). The country rocks are sillimanite gneisses and sillimanite garnet schists; formed by Figure 4: Faceted euclase of Figure 3 immersed high-grade metamorphism of former to show the colour distribution. Photo: SM. argillaceous sediments of the mid- Stocklmayer Precambrian Piriwiri supergroup. There have been several metamorphic episodes, the most significant phase being the Palaeozoic to Proterozoic (400-650 Ma) event referred to as Miami metamorphism (Stagman, 1978). Pegmatites are of two main groups representing distinct episodes in the metamorphic history of the area. An 'older' group, secretionary in type and unzoned, are composed principally of plagioclase, quartz and some tourmaline and belong to a phase of sodic metasomatism; these are of no economic importance. The 'younger' group include the economic pegmatites and belong to a later potassic phase of metasomatism considered to be part of the Miami metamorphic event. These pegmatites contain abundant microcline and may also have mica, beryl and other gem species. They are clearly associated with late kinematic intrusive Blue euclase from Zimbabwe - a review The nature of the mineral content of these recrystallization and replacement of pegmatites is complex with source material pre-existing beryl by secondary euclase. The not only derived from the granites but, in the mineralogical sequence of replacement was case of the mica-bearing type, from described in a preliminary report (Anderson, assimilated country rock. The close 1980).
Recommended publications
  • Phase Equilibria and Thermodynamic Properties of Minerals in the Beo
    American Mineralogist, Volwne 71, pages 277-300, 1986 Phaseequilibria and thermodynamic properties of mineralsin the BeO-AlrO3-SiO2-H2O(BASH) system,with petrologicapplications Mlnx D. B.qnroN Department of Earth and SpaceSciences, University of California, Los Angeles,Los Angeles,California 90024 Ansrru,cr The phase relations and thermodynamic properties of behoite (Be(OH)r), bertrandite (BeoSirOr(OH)J, beryl (BerAlrSiuO,r),bromellite (BeO), chrysoberyl (BeAl,Oo), euclase (BeAlSiOo(OH)),and phenakite (BerSiOo)have been quantitatively evaluatedfrom a com- bination of new phase-equilibrium, solubility, calorimetric, and volumetric measurements and with data from the literature. The resulting thermodynamic model is consistentwith natural low-variance assemblagesand can be used to interpret many beryllium-mineral occurTences. Reversedhigh-pressure solid-media experimentslocated the positions of four reactions: BerAlrSiuO,,: BeAlrOo * BerSiOo+ 5SiO, (dry) 20BeAlSiOo(OH): 3BerAlrsi6or8+ TBeAlrOo+ 2BerSiOn+ l0HrO 4BeAlSiOo(OH)+ 2SiOr: BerAlrSiuO,,+ BeAlrOo+ 2H2O BerAlrSiuO,,+ 2AlrSiOs : 3BeAlrOa + 8SiO, (water saturated). Aqueous silica concentrationswere determined by reversedexperiments at I kbar for the following sevenreactions: 2BeO + H4SiO4: BerSiOo+ 2H2O 4BeO + 2HoSiOo: BeoSirO'(OH),+ 3HrO BeAlrOo* BerSiOo+ 5H4Sio4: Be3AlrSiuOr8+ loHro 3BeAlrOo+ 8H4SiO4: BerAlrSiuOrs+ 2AlrSiO5+ l6HrO 3BerSiOo+ 2AlrSiO5+ 7H4SiO4: 2BerAlrSiuOr8+ l4H2o aBeAlsioloH) + Bersio4 + 7H4sio4:2BerAlrsiuors + 14Hro 2BeAlrOo+ BerSiOo+ 3H4SiOo: 4BeAlSiOr(OH)+ 4HrO.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • High-Pressure Crystal Chemistry of Beryl (Beralrsi.Otr) and Euclase
    American Mineralogist, Volume 71, pages 977-984, 1986 High-pressurecrystal chemistry of beryl (BerAlrSi.Otr) and euclase(BeAlSiO4OH) Rosnnr M. HaznN, ANonpw Y. Au, Llnnv W. FrNcnn GeophysicalLaboratory, CarnegieInstitution of Washington, 2801 Upton Street,N.W., Washington, D.C. 20008 Ansrnlcr Compressibilities and high-pressurecrystal structures of beryl and euclasehave beon determined by X-ray methods at severalpressures. Beryl (hexagonal,space group P6/mcc) has nearly isotropic compressibility; linear compressibilitiesperpendicular and parallel to the c axis ateB':1.72 + 0.04 x l0-a kbar-'and B,:2.10 + 0.09 x 10-akbar-'. The correspondingbulk modulus is 1.70 + 0.05 Mbar if the pressurederivative of the bulk modulus K'is assumedto be 4. Euclase(monoclinic, spacegroup P2r/a)has anisotropic compression,with maximum compressibrlity of 2.44 + 0.05 x l0-a kbar-l parallel to the unique monoclinic b axis, and minimum compressibility of 1.50 + 0.03 x 10-a kbar-' approximately parallel to [01]. The intermediate axis of compressionhas a magnitude of 1.96 + 0.05 x lO-akbar-'in the a-c plane.The bulk modulus of euclaseis 1.59 t 0.03 Mbar if K' is assumedto be 4. The bulk moduli ofBe, Al, and Si cation coordination polyhedrain beryl are all consistent with 1.7 Mbar, which is the crystal bulk modulus. Beryl compressionoccurs primarily by shorteningof cation-anion bond distances.In euclase,the 2.3-Mbar polyhedralbulk moduli are significantly greater than the observed 1.6-Mbar crystal modulus. Compression in euclase,particularly along the b crystallographicaxis, results from a combination of poly- hedral compressionand changesin interpolyhedral angles.
    [Show full text]
  • Charlesite, a New Mineral of the Ettringite Group, from Franklin, New Jersey
    American Mineralogist, Volume 68, pages 1033-1037,1983 Charlesite, a new mineral of the ettringite group, from Franklin, New Jersey PBre J. DuxN Department of Mineral Sciences SmithsonianInstitution, Washington,D. C. 20560 DoNero R. Peecon Department of GeologicalSciences University of Michigan, Ann Arbor, Michigan 48109 PBrnn B. LBavBNs Departmentof Geology Universityof Delaware, Newark, Delaware l97ll eNo JonN L. Beuu Franklin Mineral Museum Franklin. New Jersey 07416 Abstract Charlesite,ideally C4(AI,Si)z(SO4)2(B(OH)4)(OH,O)r2.26H2Ois a member of the ettrin- gite group from Franklin, New Jersey, and is the Al analogueof sturmanite. Chemical analysisyielded CaO27.3, Al2O3 5.1, SiO2 3.1, SO3 12.8,B2o33.2, H2O 48.6, sum : 100.1 percent.-Charlesiteis hexagonal,probable spacegroup P3lc, with a = ll.16(l), c = 21.21(2)4. The strongest lines in the X-ray powder difraction pattern (d, IlIo, hkl) are: 9.70,100, 100;5.58, 80, 110;3.855,80, ll4;2.749,70,304;2.538,70,126;2.193,70,2261 404. Charlesite occurs as simple hexagonal crystals tabular on {0001} and has a perfect {10T0}cleavage. The densityis 1.77glcm3 (obs.) and 1.79glcms (calc.). Optically, charlesite is uniaxial( -) with a : | .492(3)and e : 1.475(3).It occurswith clinohedrite,ganophyllite, xonotlite, prehnite, roeblingite and other minerals in severalparageneses at Franklin, New Jersey. Charlesite is named in honor of the late Professor Charles Palache. Introduction were approved, prior to publication, by the Commission Minerals and Mineral Names. I. M. A. The An ettringite-like mineral was first described from on New specimenwas divided into three portions.
    [Show full text]
  • Hydroxylherderite Cabe(PO4)(OH) C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Monoclinic, Pseudo-Orthorhombic Or Pseudohexagonal
    Hydroxylherderite CaBe(PO4)(OH) c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic, pseudo-orthorhombic or pseudohexagonal. Point Group: 2/m. As stout prismatic crystals, elongated along [001] or [100], may be thick tabular {001}, typically with complex but rounded form development, to 17 cm; botryoidal to spherical, radial fibrous, in aggregates. Twinning: On {100} or {001} or both, as “fishtail” contact twins, common. Physical Properties: Cleavage: On {110}, irregular. Fracture: Subconchoidal. Hardness = 5–5.5 D(meas.) = 2.95 D(calc.) = 2.94–2.97 May fluoresce weak yellow under SW UV, perhaps with bright yellow-orange phosphorescence. Optical Properties: Transparent to translucent. Color: Colorless, gray, brown, pale yellow, greenish white, light blue, purple; colorless in transmitted light; may be blue-green or blue in daylight, lavender or light violet in incandescent light. Luster: Vitreous to subvitreous, resinous. Optical Class: Biaxial (–). Orientation: Y = b; X ∧ c ' 87◦; Z ∧ c ' –3◦. Dispersion: r> v, inclined. α = 1.59–1.615 β = 1.61–1.634 γ = 1.62–1.643 2V(meas.) = 70◦–77◦ ◦ Cell Data: Space Group: P 21/a. a = 9.789(2) b = 7.661(1) c = 4.804(1) β =90.02(1) Z=4 X-ray Powder Pattern: Palermo #1 mine, New Hampshire, USA; cannot be distinguished from herderite, and very similar to datolite. (ICDD 29-1403). 3.132 (100), 2.865 (70), 2.208 (60), 2.994 (50), 3.43 (40), 2.551 (30), 1.880 (25) Chemistry: (1) (2) (3) (1) (2) (3) P2O5 44.05 44.14 43.80 H2O 5.85 3.22 2.78 BeO 16.13 [15.45] 15.43 −O=F2 2.34 2.47 CaO 34.04 34.25 34.60 insol.
    [Show full text]
  • 38Th RMS Program Notes
    E.fu\wsoil 'og PROGRAM Thursday Evening, April 14, 2011 PM 4:00-6:00 Cocktails and Snacks – Hospitality Suite 400 (4th Floor) 6:00-7:45 Dinner – Baxter’s 8:00-9:15 THE GUALTERONI COLLECTION: A TIME CAPSULE FROM A CENTURY AGO – Dr. Renato Pagano In 1950, the honorary curator of the Museum of Natural History in Genoa first introduced Dr. Renato Pagano to mineral collecting as a Boy Scout. He has never looked back. He holds a doctorate in electrical engineering and had a distinguished career as an Italian industrialist. His passion for minerals has produced a collection of more than 13,000 specimens, with both systematic and aesthetic subcollections. His wife Adriana shares his passion for minerals and is his partner in collecting and curating. An excellent profile of Renato, Adriana, and their many collections appeared earlier this year in Mineralogical Record (42:41-52). Tonight Dr. Pagano will talk about an historic mineral collection assembled between 1861 and 1908 and recently acquired intact by the Museum of Natural History of Milan. We most warmly welcome Dr. Renato Pagano back to the speakers’ podium. 9:15 Cocktails and snacks in the Hospitality Suite on the 4th floor will be available throughout the rest of the evening. Dealers’ rooms will be open at this time. All of the dealers are located on the 4th floor. Friday Morning, April 15, 2011 AM 9:00 Announcements 9:15-10:15 CRACKING THE CODE OF PHLOGOPITE DEPOSITS IN QUÉBEC (PARKER MINE), MADAGASCAR (AMPANDANDRAVA) AND RUSSIA (KOVDOR) – Dr. Robert F. Martin Robert François Martin is an emeritus professor of geology at McGill University in Montreal.
    [Show full text]
  • Paragenesis of Thb Newry Pegmatite, Maine H
    PARAGENESIS OF THB NEWRY PEGMATITE, MAINE H. J. Fnnsnn, Haroard. Uniaersity. The Dunton tourmaline deposit, which occurs in the town of eral assemblagepresent. The deposit has been briefly described by Bastinl and certain rare phosphatesfound there have been discussedby palache.? The deposit was first opened during the summers of 1903 and 1904in a for commercial quantities of pollucite. satisiactory quantities were obtained but mining has now ceased. Due to the care with which Mr. Nevel collected all unusual minerals, it was possible to secure a very complete suite for the Harvard Mineralogical Museum. This suite formed the basis for the mineralogical data in this paper. Acxnowr,roGMENTs Thc writer wishes to acknowledge his great indebtedness to Professor Palache whoseconstant assistanceand constructive criti- cism were of the utmost value during the collection of the data and the preparation of this paper. professor palache made a crys- tallographic study of the tourmalines and constructed the figuies given in this paper. To Mr. H. Berman the writer is obligated for much assistance during the laboratory study of the minerals and the mineral se- quence, Mr. H. Butterfield visited and studied the Newry deposit in 1927 and the writer has drawn freely on his unpublished data. 34e 350 TH E AM ERIC A N M I N ERA LOGIST LocarroN lies at an elevation of about 1525 feet above sea level and 4600 feet west of the main highway. Mining operations were confined to two outcrops, about 250 feet apart, which occur on the western side of the crest of the hill. DBscnrPtroN or PBGuarrrB The wall rock surrounding the outcrops is a light green mica- schist composed essentially of muscovite, actinolite and quartz' This rock has been much disturbed so that near the outcrops, at least, the direction of schistosity is very variable.
    [Show full text]
  • Optical Properties of Common Rock-Forming Minerals
    AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref.
    [Show full text]
  • Epr Investigation of Carbonaceous Natural
    Canodian Mineralogist Yol. 27, pp. 219-224(1989) EPRINVESTIGATION OF CARBONACEOUSNATURAL OUARTZ SINGLE CRYSTALS PILLUTLA S. RAO, JOHN A. WEIL AND JOHN A.S. WILIAMS Departmentof Chemistry,University of Saskatchewan,Saskatoon, Saskatchewan S7N 0W0 ABSTRACT Nos donn€esne rdvblent aucune 6vidence de centresi liai- sonscarbone-oryglne daus lesquels le C pourrait substi- As part of an investigation of whether carbon can sub- tuer au Si. stitute for silicon in ming1sfu, electron paramagnetic resonancestudies were carried out on natural crystals of Clraduit par la Rddaction) a4;laftz from carbonaceous surroutrding.s, i.e., a cat- bonized log found in Utah, For these, as obtained, the Mots<lds:carbone, charbon, lacunes, r6sonance 6lectro- room-teNnperatureresufts at 9.6 GHz indicate f.hepresence nique paramagn€tique,quartz, dioxydede silicium. of the well-known oxygen vacancy (Er ') silicon center and an isotropic broad line with g-factor 2.@28(l) attributed to coal-like macro-regions in the crystals. No signals from INTRoDUCTIoN tAlo4lo or other 4lrrmins6 hole centers usually found in o-quartz were observable,even at low lemperaturs (35 XC We undertook the current investigation pasly in and after X-irradiation. Thus the dark color is not that of the hope of finding a paramagnetic center involving smoky quartz, but is due to macroscopic coal-like impuri- carbon occurring substitutionally for silicon in srys- ties. A weak Mn2+ spectrum could be observedat 2A C,Hz talline quartz. Certainly the question of whether car- but not at9.6 GHaIn concurrent masuremetrts of Her- bon ever enters silicate structures substitutionally is (New kimer "diamonds" York state), doubly terminated of considerable interest.
    [Show full text]
  • General Index
    CAL – CAL GENERAL INDEX CACOXENITE United States Prospect quarry (rhombs to 3 cm) 25:189– Not verified from pegmatites; most id as strunzite Arizona 190p 4:119, 4:121 Campbell shaft, Bisbee 24:428n Unanderra quarry 19:393c Australia California Willy Wally Gully (spherulitic) 19:401 Queensland Golden Rule mine, Tuolumne County 18:63 Queensland Mt. Isa mine 19:479 Stanislaus mine, Calaveras County 13:396h Mt. Isa mine (some scepter) 19:479 South Australia Colorado South Australia Moonta mines 19:(412) Cresson mine, Teller County (1 cm crystals; Beltana mine: smithsonite after 22:454p; Brazil some poss. melonite after) 16:234–236d,c white rhombs to 1 cm 22:452 Minas Gerais Cripple Creek, Teller County 13:395–396p,d, Wallaroo mines 19:413 Conselheiro Pena (id as acicular beraunite) 13:399 Tasmania 24:385n San Juan Mountains 10:358n Renison mine 19:384 Ireland Oregon Victoria Ft. Lismeenagh, Shenagolden, County Limer- Last Chance mine, Baker County 13:398n Flinders area 19:456 ick 20:396 Wisconsin Hunter River valley, north of Sydney (“glen- Spain Rib Mountain, Marathon County (5 mm laths donite,” poss. after ikaite) 19:368p,h Horcajo mines, Ciudad Real (rosettes; crystals in quartz) 12:95 Jindevick quarry, Warregul (oriented on cal- to 1 cm) 25:22p, 25:25 CALCIO-ANCYLITE-(Ce), -(Nd) cite) 19:199, 19:200p Kennon Head, Phillip Island 19:456 Sweden Canada Phelans Bluff, Phillip Island 19:456 Leveäniemi iron mine, Norrbotten 20:345p, Québec 20:346, 22:(48) Phillip Island 19:456 Mt. St-Hilaire (calcio-ancylite-(Ce)) 21:295– Austria United States
    [Show full text]
  • Rockhounding North America
    ROCKHOUNDING NORTH AMERICA Compiled by Shelley Gibbins Photos by Stefan and Shelley Gibbins California Sapphires — Montana *Please note that the Calgary Rock and Lapidary Quartz — Montana Club is not advertising / sponsoring these venues, but sharing places for all rock lovers. *Also, remember that rules can change; please check that these venues are still viable and permissible options before you go. *There is some risk in rockhounding, and preventative measures should be taken to avoid injury. The Calgary Rock and Lapidary Club takes no responsibility for any injuries should they occur. *I have also included some locations of interest, which are not for collecting Shells — Utah General Rules for Rockhounding (keep in mind that these may vary from place to place) ! • Rockhounding is allowed on government owned land (Crown Land in Canada and Bureau of Land Management in USA) ! • You can collect on private property only with the permission of the landowner ! • Collecting is not allowed in provincial or national parks ! • The banks along the rivers up to the high water mark may be rock hounded ! • Gold panning may or may not need a permit – in Alberta you can hand pan, but need a permit for sluice boxes ! • Alberta fossils are provincial property and can generally not be sold – you can surface collect but not dig. You are considered to be the temporary custodian and they need to stay within the province Fossilized Oysters — BC Canada ! Geology of Provinces ! Government of Canada. Natural resources Canada. (2012). Retrieved February 6/14 from http://atlas.gc.ca/site/ english/maps/geology.html#rocks.
    [Show full text]
  • Titanium, Fluorine, and Hydroxyl in the Hrrmite Minerals
    AmericanMineralogist, Volume 64, pages 1027-1035, 1979 Titanium, fluorine, and hydroxyl in the hrrmiteminerals Paul H. RBns Department of Geological Sciences Virginia Polytechnic Institute and State University Blacksburg, Virginia 24061 Abstract In the humite homologousseries, nMrSiO 4' M F,TL,(F,OH)2-2,O2,(where n : I for nor- bergite, 2 for chondrodite, 3 for humite, and 4 for clinohumite, M : Mg >> Fe > Mn > Ca,Zn,Ni and 0 < x < l), x appearsnever to exceed-0.5 Ti atomsper formula unit, because local electrostaticcharge imbalances at the 3-coordinated(F,OH,O) anion and the 4-coordi- nated oxygen atoms increasevery rapidly as Tia* substitutesfor trP*, even with the con- comitant substitutionof 3-coordinated02- for (F,OH)'-. Both electrostaticand geometricar- gumentssuggest that Ti ordersinto the M(F,OH)O "layer" of the humite structures,t.e., into the M(3)OIV(F,OH,O)|I octahedron,which is the smallestof all octahedrain all the humite minerals(cl Fujino and Tak€uchi, 1978). Refractive indices, density, unit-cell dimensions, and volume are dramatically affected by the substitution of OH for F, and this has been studied as chemistry varies from 1.0 < (F,oH)'ill[(F,oH)"' + o''] = 0.0and 0.0< silv/2(F,oH,o) < l,/8 from sellaiteMg(F'oH), (n : 0) through the humitesto forsterite(r : o1. The volume per anion increasesmuch more rapidly as OH substitutesfor F in theseminerals than would be expectedon the basisof ob- serveddifferences in individual M-(F,OH) distances.As Yamamoto (1977)noted, the effec- tive radius of OHIII would be -0.06A larger
    [Show full text]