Download the Scanned

Total Page:16

File Type:pdf, Size:1020Kb

Download the Scanned American Mineralogist, Volume 63, pages 664_676, l97g Multisyste_msanalysis of beryiliumminerar stabilities: the systemBeO-A[rOa_SiO2_H2O DoNer.n M. Bunr Department of Geology, Arizona State (Jniuersitv Tempe,Arizona8528I Abstract seven commonly associatedminerals in the systemBeo-Alror-Sior-Hro includechry- soberyl,phenakite, euclase,bertrandite, beryl, kaolinite,and qiuit . The phaserule implies that not more than six of theseminerals can coexistat an invariantpoint, and, with the addition of an aqueousphase, the associationconstitutes an (n * 4; ptrase(negative two d-egreesof freedom)multisystem. The apparentincompatibility of taotinite with phenakite allowsthe splitting of this unwieldymultisystem into two smaller(n + 3) phasemultisystems, which may belabeled (Kao) and (phe).Moiar volumedata, compuier program RrlcrroN, and naturalassemblages can then be usedto derivethe presumablystabie cJnfiguration of these multisystemson p"-minus an isothermal pHro diagram. n, p-r diagramprojected through theaqueous phase shouldhave the sametopology, and cansimilarlf be drawn. on the resultingdiagrams, three . invariant-butpoinis rabeled tchrl, tBr;;, and [etz] arestable in the.multisystem (Kao), and threedistinct identically-fuU"i.Opoint, u.. stablein rhe multisystem(Phe). An implicationof this topologyvia ihe "r.tu.tubl"-rtable correspon- dence,"is that the assemblagephenakite + euclase* beryl(* aqueousphase) has a finite i'I;ix, ii,l'J.?lT"t' ::ff,,,j :r;: :":.T' ? ts why" euclase is muchrarer than bertrandite. and its stabilityfield, especially in the presence p t low and T. Most reactionsinvolving the bly occur at temperaturestoo low for conve_ 0.c). Introduction The present paper representsa first attempt to derivethe topology of the stability fieldsof these berylliumminerals. The derivationdepends on natu- ral assemblages(cf. Beus, 1960; Vlasov, 1966: Burnol. t968; Cerny, t963), Fortran program RrncrroN (Fingerand Burt, 1972),molar volume data (Robie el al., 1967),and multisystemsanalysis (Korzhinskii, 1957).Reliable thermochemical or experimentaldata on mostof the phasesare lacking, so that the results areofnecessity topological rather than quantitative. Many of the resultswere collectivelyderived as a laboratoryassignment by my springterm 1977class in ore deposits at Arizona State University. The method, heresummarized in advance,consisted bas- icallyof the followingfive steps: (l) Thesystem BeO- AlrOs-SiOr-HrOwas searched for all possiblephases that occur as mineralsor that havebeen synthesized. A numberof thesephases were eliminated from con- 0o03-004x/ 7 8 /0708_0664$02. 00 664 BURT:BERYLLIUM MINERAL STABILITIES 66s sideration,leaving seven minerals plus an aqueous Table 2 Abbreviations,formulas, and molar volumes* of eight in the systemBeO-Al,Og-SiOz-H,O fluid. (2) The resultingeight-phase multisystem was additionalminerals pseudoternary system by simplified to a six-phase Nee Abblev. FotEula Molar Volwe* projectingthrough HrO and by noting that phenakite ( I oules/bar) Be0 0.831 and bertranditethen plot at the samepoint. (3) An Bronellite Bro Behoite Beh Be (OH) 2.22 isothermal P,-minus pHrO diagram was plotted for 2 corundun Cor A12O3 2.558 (4) Natural assemblages this simpler multisystem. Dlaspore Dsp A1o (OH) t.776 most likely intersectionof A1(ori) 3.196 were usedto determinethe Gibbsite 3 (on) .Hro the degeneratedehydration reaction of bertranditeto Beryllite B1r BerSlo4 2 phenakitewith the multisystem.(5) The resultingP"- Andalusite AI6 Ar2sio5 PvP At2si40lo(oH) 12.83 minus pHrO diagram was transformedinto a topo- Pyrophyllire 2 logically identical schematic Pr"o-T diagram. *Data from Roble et al-. (1967) excepE for behoite and pyrophytllte. Beholi-e from x-ray data for B-Be(OH)2 ln Rosa (isOi); pvropnvrlite recalcurated fron Dav (1975)' Phases The quaternarysystem BeO-AlrOr-SiOr-HrO con- and water,mainly in channelpositions (Bakakin and tains, among others, the sevencommonly associ- Befov, 1962: Cerny, 1975; Hawthorne and Cerny, ated phaseslisted in Table l. Correspondingmolar 1977), and natural beryl and chrysoberyl may also volumes are given in joules/bar. Eight additional contain Cr3+, Fe3*, V3+, Sc3+,and other ions sub- phases have been omitted from the present study, stituting for A13+.Based on availabledata, there are largely becausethey have never been reported in as- no indicationsof major compositionalvariations in sociation with beryl (Table 2). The compositionsand naturaleuclase, bertrandite, or phenakite' assumednatural compatibilitiesof anhydrousminer- als in the system BeO-AlrOr-SiOz are shown in Fig- Review of exPerimental studies ure I (Burt, 1975a a summary of evidenceappears studiesand the follow" under the discussionof natural assemblages).Simi- This reviewof experimental have been made as larly, the compositionsand known compatibilitiesof ing review of natural occurrences in order to succinctlysumma- most phases in the system BeO-AlzOs-SiO2-H2O, complete as possible, data initiallyavailable projectedthrough excessquartz, are shown in Figure rizein oneplace the conflicting Much of this 2. The dashedlines on this figurerefer to uncertainor on the system BeO-AlzOr-SiOr-HrO. for the multisystems conflicting assemblagesvariously reported in the lit- data is seen to be unnecessary and these two sections may erature (again, consult the sectionon natural assem- analysis that follows, during a first reading without blages). therefore be skimmed In the following discussion,the phasesin Table I much lossof continuitY. system AIrOB-SiOr-HrO will be assumedto be stoichiometric.Natural beryl Phase equilibria in the (1976'1978) may contain considerablealkalis (Na, Cs, and Li) have recentlybeen summarized by Burt Table I Abbreviations. formulas, and molar volumes* of seven mineralsin the systemBeO-AlrOr-SiO,-H,O Nane Abbrev. MoIa! volune 0""1eel!eE) Chrysoberyl Ch! BeAI204 3.432 +,002 Phenakite Phe Be2si04 3.719+.004 EucIa6e Euc BeAlSioO (Ol{) 4.657+.010 Btr Be4S1207 (0H) 9.217+.050(?) Bertrandite 2 Beryl BrI Be^A1^Si.O- ^ 20,355 +.O25 J 2 OL6 A12S1205(oH) 9 .952 +.026 Kao 1 init e Kao 4 quartz Qtz si02 2.2688+.0001 *Data flom Roble et af. (1957) except for berttandite' The Cor bertrandite value vas calculated fron unit cel-I dinensions given BeO Chr by Solovreva and Belov (1951), and cited in Ross (1954). Sttghlly different unit cell dimenslons in Solov'ewa and Belov (1964) give a value of 9,177; use of densitles measured on natulal Eaterials Fig l. Moderate P and f mineral compatibilitiesdeduced for (2.60+.03) gives a value of 9.16+.10. lhe system BeO-AlrOr-SiOr, based on natural assemblages' BURT,, BERYLLIUM MINERAL STABILITIES determinedthat beryl breaksdown to chrysoberyl, phenakite, and cristobalite between 1300 and 1400.c. Studiesof beryl synthesisat high pressureswere initiatedby Wilson (1965),who reporteddirect syn- thesisof beryl from its melt at pressuresto 20 kbar. Beryl and phenakitereportedly were synthesizedby ----:115:: Takuboet al. (1971)to 20 kbar at 1600.C.The phase characterizations(or quenchingprocedures) in the abovetwo studiesare questionable(cf, Nassau, 1976) in light of the resultsof Munson(1967). His recon- naissancestudies indicated that naturalberyl breaks Hzo down to chrysoberyl,phenakite, and quartz at ap- proximately15.5 kbar and l340oCand to chrysobe- Fig. 2. Compatibilitiesamong some minerals in the system ryl, phenakite,and coesiteat 45.5kb, 1050"C.As BeO-AlrOr-SiO,-HzO, basedon natural assemblages.euartz is discussedbelow, this high p subsolidusbreakdown of assumedpresent. Dashed lines indicateuncertain or conflictins berylis consistentwith molarvolume data (Table mineralcompatibilities. I ). Studiesof the completequaternary BeO_AlzOr_ SiOr-HrO initially involvedhydrothermal syntheses and Day (1976,1978),and little needbe addedhere. of beryl and emerald.Van Valkenburgand Weir (1957)synthesized beryl between 500 and g50"C at I to 2 kbar, but reportedlyobtained phenakite plus glassabove 900"C. Wyart and Scavnicar(1957) syn- thesizedberyl between400 and 600oCat 400-1500 bars.At 600'C theyobtained beryl * chrysoberyl* assumedto be unstable at low to moderatetemper_ phenakite,and with the additionof CrrO, to replace atures.Studies of therelated binary system BeO_SiO, Al2Os,beryl * phenakitet quartz* Cr2O3.Frondel by Morgan and Hummel (1949) phenakiti revealed and Ito (1968)readily obtained beryl at 6g0oand 2 as the only intermediatephase; it melts incongru- kbar, and also synthesizedthe Sc-Fe analogueof ently.In thebinary systemBeO-HrO, Newkirk (1964) beryl(bassite), with phenakite,quartz, and hematite. dehydrated behoiteto bromelliteat l70oC, 1.3kbar Other synthesesare reviewedby Nassau(1976). and200oC, 4. I kbar,but thisreaction was not reversed. Beuse, al. (1963)studied the hydrothermalaltera- In the ternary BeO-SiOr-HrO,Bukin (1967)readily tion of berylin variousHF-bearing solutions between synthesized both bertranditeand phenakitebetween 500 and 600"C. They alteredberyl to quartz,to ber- 300 and 500oC, 720 atm, but bertranditeappeared trandite,and to bertrandite* muscovite.A similar favoredbelow 400"C. seriesof leachingexperiments was performed by Syr- The anhydrousternary BeO-AlrOr-SiO,has been omyamnikovet al. (1972).They alteredberyl to chry- soberyl* phenakiteat temperaturesabove 300"C and 500 kg/cm2(approximately 500 bar). They also leachedphenakite in alkalinesolutions to producea surfacecoating of chkalovite,NarBeSi2Ou. A synthesisstudy of the completesystem BeO_ hydrothermalsyntheses underunspecified conditions AI,OB-SiOz-HrObetween 300 and 700"C. I kbar is (500-600'C,
Recommended publications
  • Phase Equilibria and Thermodynamic Properties of Minerals in the Beo
    American Mineralogist, Volwne 71, pages 277-300, 1986 Phaseequilibria and thermodynamic properties of mineralsin the BeO-AlrO3-SiO2-H2O(BASH) system,with petrologicapplications Mlnx D. B.qnroN Department of Earth and SpaceSciences, University of California, Los Angeles,Los Angeles,California 90024 Ansrru,cr The phase relations and thermodynamic properties of behoite (Be(OH)r), bertrandite (BeoSirOr(OH)J, beryl (BerAlrSiuO,r),bromellite (BeO), chrysoberyl (BeAl,Oo), euclase (BeAlSiOo(OH)),and phenakite (BerSiOo)have been quantitatively evaluatedfrom a com- bination of new phase-equilibrium, solubility, calorimetric, and volumetric measurements and with data from the literature. The resulting thermodynamic model is consistentwith natural low-variance assemblagesand can be used to interpret many beryllium-mineral occurTences. Reversedhigh-pressure solid-media experimentslocated the positions of four reactions: BerAlrSiuO,,: BeAlrOo * BerSiOo+ 5SiO, (dry) 20BeAlSiOo(OH): 3BerAlrsi6or8+ TBeAlrOo+ 2BerSiOn+ l0HrO 4BeAlSiOo(OH)+ 2SiOr: BerAlrSiuO,,+ BeAlrOo+ 2H2O BerAlrSiuO,,+ 2AlrSiOs : 3BeAlrOa + 8SiO, (water saturated). Aqueous silica concentrationswere determined by reversedexperiments at I kbar for the following sevenreactions: 2BeO + H4SiO4: BerSiOo+ 2H2O 4BeO + 2HoSiOo: BeoSirO'(OH),+ 3HrO BeAlrOo* BerSiOo+ 5H4Sio4: Be3AlrSiuOr8+ loHro 3BeAlrOo+ 8H4SiO4: BerAlrSiuOrs+ 2AlrSiO5+ l6HrO 3BerSiOo+ 2AlrSiO5+ 7H4SiO4: 2BerAlrSiuOr8+ l4H2o aBeAlsioloH) + Bersio4 + 7H4sio4:2BerAlrsiuors + 14Hro 2BeAlrOo+ BerSiOo+ 3H4SiOo: 4BeAlSiOr(OH)+ 4HrO.
    [Show full text]
  • High-Pressure Crystal Chemistry of Beryl (Beralrsi.Otr) and Euclase
    American Mineralogist, Volume 71, pages 977-984, 1986 High-pressurecrystal chemistry of beryl (BerAlrSi.Otr) and euclase(BeAlSiO4OH) Rosnnr M. HaznN, ANonpw Y. Au, Llnnv W. FrNcnn GeophysicalLaboratory, CarnegieInstitution of Washington, 2801 Upton Street,N.W., Washington, D.C. 20008 Ansrnlcr Compressibilities and high-pressurecrystal structures of beryl and euclasehave beon determined by X-ray methods at severalpressures. Beryl (hexagonal,space group P6/mcc) has nearly isotropic compressibility; linear compressibilitiesperpendicular and parallel to the c axis ateB':1.72 + 0.04 x l0-a kbar-'and B,:2.10 + 0.09 x 10-akbar-'. The correspondingbulk modulus is 1.70 + 0.05 Mbar if the pressurederivative of the bulk modulus K'is assumedto be 4. Euclase(monoclinic, spacegroup P2r/a)has anisotropic compression,with maximum compressibrlity of 2.44 + 0.05 x l0-a kbar-l parallel to the unique monoclinic b axis, and minimum compressibility of 1.50 + 0.03 x 10-a kbar-' approximately parallel to [01]. The intermediate axis of compressionhas a magnitude of 1.96 + 0.05 x lO-akbar-'in the a-c plane.The bulk modulus of euclaseis 1.59 t 0.03 Mbar if K' is assumedto be 4. The bulk moduli ofBe, Al, and Si cation coordination polyhedrain beryl are all consistent with 1.7 Mbar, which is the crystal bulk modulus. Beryl compressionoccurs primarily by shorteningof cation-anion bond distances.In euclase,the 2.3-Mbar polyhedralbulk moduli are significantly greater than the observed 1.6-Mbar crystal modulus. Compression in euclase,particularly along the b crystallographicaxis, results from a combination of poly- hedral compressionand changesin interpolyhedral angles.
    [Show full text]
  • Heat Capacities and Thermodynamic Functions for Beryl, Beralrsiuotr
    American Mineralogist, Volume 7I, pages 557-568, 1986 Heat capacitiesand thermodynamicfunctions for beryl, BerAlrSiuOtr, phenakite, BerSiOn,euclase, BeAlSiOo(OH)' bertranditeo BeoSirOt(OH)r,and chrysoberyl' BeAl2Oa B. S. HnluNcw.q,Y U.S. GeologicalSurvey, Reston, Y irgrnia22092 M. D. B.nnroN Departmentof Earthand SpaceSciences, University of California,Los Angeles,Los Angeles,California 90024 R. A. Ronrn, H. T. HLsnr.roN, Jn. U.S. GeologicalSurvey, Reston, Y irginia22092 Ansrru,cr The heat capacities of beryl, phenakite, euclase,and bertrandite have been measured betweenabout 5 and 800 K by combined quasi-adiabaticcryogenic calorimetry and dif- ferential scanningcalorimetry. The heat capacitiesof chrysoberylhave beenmeasured from 340 to 800 K. The resulting data have been combined with solution and phase-equilibrium experimentaldata and simultaneouslyfit using the program pHAS2oto provide an internally consistent set of thermodynamic properties for several important beryllium phases.The experimentalheat capacitiesand tablesof derived thermodynamic propertiesare presented in this report. The derived thermodynamic properties at I bar and 298.15 K for the stoichiometric beryllium phasesberyl, phenakite, euclase,and bertrandite are entropies of 346.7 + 4.7, 63.37+0.27,89.09+0.40, andl72.l+0.77 J/(mol'K),respectively,andGibbsfree energiesof formation(elements) of -8500.36 + 6.39, -2028.39 + 3.78, -2370.17 + 3.04, and -4300.62 + 5.45 kJlmol, respectively,and, -2176.16 + 3.18kJ/mol for chrysoberyl. The coefficientscr to c, of the heat-capacityfunctions are as follows: valid phase ct c2 c, x 105 c4 c, x 10-6 range beryl 1625.842 -0.425206 12.0318 -20 180.94 6.82544 200-1800K phenakite 428.492 -0.099 582 1.9886 -5 670.47 2.0826 200-1800K euclase 532.920 -0.150729 4.1223 -6726.30 2.1976 200-1800K bertrandite 825.336 -0.099 651 -10 570.31 3.662r7200-1400 K chrysoberyl 362.701 -0.083 527 2.2482 -4033.69 -6.7976 200-1800K whereC!: cr * ctT + crT2 * coT-os* crT-2and Zisinkelvins.
    [Show full text]
  • Geochemical Journal, Vol. 55 (No. 4), Pp. 209-222, 2021
    Geochemical Journal, Vol. 55, pp. 209 to 222, 2021 doi:10.2343/geochemj.2.0630 10Be/9Be ratios of phenakite and beryl measured via direct Cs sputtering: Implications for selecting suitable Be carrier minerals for the measurement of low-level 10Be ATSUNORI NAKAMURA,1* ATSUYUKI OHTA,1 HIROYUKI MATSUZAKI2 and TAKASHI OKAI1 1Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan 2Micro Analysis Laboratory, Tandem Accelerator (MALT), The University Museum, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan (Received December 23, 2020; Accepted April 29, 2021) Preparing Be carrier solutions with low 10Be/9Be ratios is essential for the applications of in-situ-produced cosmogenic 10Be in geochronology. This is because commercially available Be carriers are non-negligibly contaminated by 10Be. Recently, in-house Be carriers have been successfully applied to samples that contain small amounts of in-situ-produced 10Be. The first step in preparing in-house Be carriers is selecting suitable Be-bearing minerals that contain less 10Be. Here, we present a simple method for selecting appropriate raw minerals for in-house Be carriers. That is, measuring the 10Be/ 9 10 9 Be ratios of Be-bearing minerals by direct Cs sputtering. Analyses of the Be/ Be ratios of phenakite (Be2SiO4) and beryl (Be3Al2Si6O18) obtained from a mineral collection at the Geological Survey of Japan indicate that phenakite gener- ally contains more 10B, interfering isobar of 10Be, than beryl. In addition to the necessity of finding raw materials that contain low 10Be, our results indicate that it is preferable to select a starting material with a low B concentration.
    [Show full text]
  • Gemstones in Metal Clay
    Gemstones in Metal Clay Many natural gemstones can be set into metal clay and fired in place. Other gemstones will not survive the heat of a kiln and should be set after firing. These charts show the results of kiln and torch tests that have been performed on both natural and synthetic gemstones, adapted with permission from the original testing by Kevin Whitmore of Rio Grande. This information is for reference and should be used as a guide. There is always some risk of losing a natural gemstone even if others of it’s kind have survived in the past. Gemstones may have internal flaws that can be liquid or gaseous filled, or contain crystals of other materials that can cause the gemstone to fail where it usually does not. This guide aims to help metal clay artists sort out gemstones that are known to survive under fire from those that are not. Gemstones are minerals that are classified into groups based upon the constancy of their major properties. Each mineral family has one or more varieties contained within the group. When we sort the tested gemstones according to their mineral group, it becomes clear that an easy way to gauge the survivability of a gemstone is to look at the results of other varieties within that same group. Aquamarine and emerald, for example, are both varieties of the beryl group of minerals. The result of tests done on aquamarine and emerald indicate that minerals in the beryl group will not survive kiln heating. There are exceptions, as there always are in the natural world, but in general this method can be reliable for many varieties.
    [Show full text]
  • Optical Properties of Common Rock-Forming Minerals
    AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref.
    [Show full text]
  • Reflective Index Reference Chart
    REFLECTIVE INDEX REFERENCE CHART FOR PRESIDIUM DUO TESTER (PDT) Reflective Index Refractive Reflective Index Refractive Reflective Index Refractive Gemstone on PDT/PRM Index Gemstone on PDT/PRM Index Gemstone on PDT/PRM Index Fluorite 16 - 18 1.434 - 1.434 Emerald 26 - 29 1.580 - 1.580 Corundum 34 - 43 1.762 - 1.770 Opal 17 - 19 1.450 - 1.450 Verdite 26 - 29 1.580 - 1.580 Idocrase 35 - 39 1.713 - 1.718 ? Glass 17 - 54 1.440 - 1.900 Brazilianite 27 - 32 1.602 - 1.621 Spinel 36 - 39 1.718 - 1.718 How does your Presidium tester Plastic 18 - 38 1.460 - 1.700 Rhodochrosite 27 - 48 1.597 - 1.817 TL Grossularite Garnet 36 - 40 1.720 - 1.720 Sodalite 19 - 21 1.483 - 1.483 Actinolite 28 - 33 1.614 - 1.642 Kyanite 36 - 41 1.716 - 1.731 work to get R.I. values? Lapis-lazuli 20 - 23 1.500 - 1.500 Nephrite 28 - 33 1.606 - 1.632 Rhodonite 37 - 41 1.730 - 1.740 Reflective indices developed by Presidium can Moldavite 20 - 23 1.500 - 1.500 Turquoise 28 - 34 1.610 - 1.650 TP Grossularite Garnet (Hessonite) 37 - 41 1.740 - 1.740 be matched in this table to the corresponding Obsidian 20 - 23 1.500 - 1.500 Topaz (Blue, White) 29 - 32 1.619 - 1.627 Chrysoberyl (Alexandrite) 38 - 42 1.746 - 1.755 common Refractive Index values to get the Calcite 20 - 35 1.486 - 1.658 Danburite 29 - 33 1.630 - 1.636 Pyrope Garnet 38 - 42 1.746 - 1.746 R.I value of the gemstone.
    [Show full text]
  • Contributions to the Mineralogy of Norway
    NORSK GEOLOGISK TIDSSKRIFT 45 CONTRIBUTIONS TO THE MINERALOGY OF NORWAY No. 30. Minerals from Nordmarkite Druses BY IVAR OFTEDAL and P. CHR. SÆBO (Institutt for geologi, Blindern, Oslo 3) Abstract. Crystals of phenacite, milarite, bertrandite, ancylite, wulfenite, pyrosmalite, and harmotome occur in nordmarkite druses in the Grorud district. The Grorud milarite contains substantial amounts of yttrium and yttrium earths. Milarite and pyrosmalite are new species for Norway. It is well known that the boundary zone of the nordmarkite in the Grorud district, near Oslo, is rich in druses and that several rarer min­ erals have been found in them, e.g. sphene, zircon, allanite, helvine. Recently, additional species have been found in a quarry at Flaen in eastern Grorud. The nordmarkite here is dissected by aplitic veins and unusually rich in druses and o pen fissures containing a fair amount of rare minerals, some of them previously mentioned (OFTEDAL and SÆBO 1963). We intend to examine more closely some of the minerals mentioned below. The principal purpose of the present note is to announce new finds. Phenacite is a new species in the Permian rocks of the Oslo Region. It occurs sparsely as transparent and colourless crystals, mostly smal­ ler than l mm. By careful inspection of a number of druses we now have 12 crystals altogether, all but one grown on faces of orthoclase, the one sits on a quartz rhombohedron face. The phenacite crystals are partly enclosed by orthoclase. We did not try to loosen them and thus actual measurements of face angles were not carried out. However, it can be seen that they are bounded by a vertically striated prism zone, which is usually very short, and a predominant rather flat rhombo­ hedron, probably {1011}, which is strongly etched (Fig.
    [Show full text]
  • Spring 1995 Gems & Gemology
    TABLE CONTENTS FEATURE ARTICLES 2 Rubies from Mong Hsu Adolf Pelsetti, I(ar7 Schmetzer, Heinz-Jiirgen Bernhardt, and Fred Mouawad " 28 The Yogo Sapphire Deposit Keith A. ~~chaluk NOTES AND NEW TECHNIQUES 42 Meerschaum from Eskisehir Province, Turkey I<adir Sariiz and Islcender Isilc REGULAR FEATURES 52 Gem Trade Lab Notes Gem News Most Valuable Article Award Gems ed Gemology Challenge Book Reviews Gemological Abstracts Guidelines for Authors ABOUT THE COVER: One of the most important ruby localities of the 1990s cov- ers a broad orea near the town of Mong Hsu, in northeastern Myann~ar(B~lrrna). The distinctive gemological features of these rubies are detailed in this issue's lead article. The suite of fine jewelry illustraled here contains 36 Mong Hsu rubies with a total weigh1 of 65.90 ct; the two rubies in the ring total 5.23 ct. jewelry courtesy of Mouawad jewellers. Photo by Opass Sultsumboon-Opass Suksuniboon Studio, Bangltolz, Thailand. Typesetting for Gerrls eS Gemology is by Graphix Express, Santa Monica, CA. Color separations are by Effective Graphics, Compton, CA. Printing is by Cadmus lournal Services, Easton, MD. 0 1995 Gemological Institute of America All rights reserved ISSN 0016-626X - Editor-in-Chief Editor Editors, Gem Trade Lab Notes Richard T. Lidtlicoat Alicc S. I<cller Robcrt C. I<ammerling 1660 Stewart St. C. W. Fryer Associate Editors Smta Mon~ca,CA 90404 William E. Boyajian Editors, Gem News (800)421-7250 ~251 Robcrt C. Kamn~erling Rohcrt C. I<ammerling e-mail: altellcrBclass.org D. Vincent Manson John I. Koivula John Sinltanltas Sr~bscriptions Enirnanuel Fritsch Jln Ll~n Editors, Book llevielvs Technical Editor (800) 421-7250 x201 Susan B.
    [Show full text]
  • The Seven Crystal Systems
    Learning Series: Basic Rockhound Knowledge The Seven Crystal Systems The seven crystal systems are a method of classifying crystals according to their atomic lattice or structure. The atomic lattice is a three dimensional network of atoms that are arranged in a symmetrical pattern. The shape of the lattice determines not only which crystal system the stone belongs to, but all of its physical properties and appearance. In some crystal healing practices the axial symmetry of a crystal is believed to directly influence its metaphysical properties. For example crystals in the Cubic System are believed to be grounding, because the cube is a symbol of the element Earth. There are seven crystal systems or groups, each of which has a distinct atomic lattice. Here we have outlined the basic atomic structure of the seven systems, along with some common examples of each system. Cubic System Also known as the isometric system. All three axes are of equal length and intersect at right angles. Based on a square inner structure. Crystal shapes include: Cube (diamond, fluorite, pyrite) Octahedron (diamond, fluorite, magnetite) Rhombic dodecahedron (garnet, lapis lazuli rarely crystallises) Icosi-tetrahedron (pyrite, sphalerite) Hexacisochedron (pyrite) Common Cubic Crystals: Diamond Fluorite Garnet Spinel Gold Pyrite Silver Tetragonal System Two axes are of equal length and are in the same plane, the main axis is either longer or shorter, and all three intersect at right angles. Based on a rectangular inner structure. Crystal shapes include: Four-sided prisms and pyramids Trapezohedrons Eight-sided and double pyramids Icosi-tetrahedron (pyrite, sphalerite) Hexacisochedron (pyrite) Common Tetragonal Crystals: Anatase Apophyllite Chalcopyrite Rutile Scapolite Scheelite Wulfenite Zircon Hexagonal System Three out of the four axes are in one plane, of the same length, and intersect each other at angles of 60 degrees.
    [Show full text]
  • THE BIRON HYDROTHERMAL SYNTHETIC EMERALD by Robert E
    THE BIRON HYDROTHERMAL SYNTHETIC EMERALD By Robert E. Kane and Richard T. Liddicoat, ]r. A new synthetic emerald grown in Western merald was first synthesized by Ebelman in 1848 by Australia is now commercially available E adding natural emerald powder to a molten boric acid as faceted stones. Infrared spectra revealed flux, which produced very small prismatic emerald crys- the presence of water, thereby confirming tals as the mixture cooled. In the ensuing years, the flux that these synthetic emeralds are synthe- growth of synthetic emerald was achieved by many re- sized by a hydrothermal process. Chemical searchers (Nassau, 1980; Sinkankas, 198 1). In 1957, the analysis showed that they contain vana- dium as well as lesser amounts of chro- growth of minute beryl crystals by a hydrothermal process mium. This new synthetic exhibits some was first reported [Wyart and ¤6avnic~r1957). Although characteristics that are distinctly different many processes for growing synthetic emerald hydro- from other synthetic emeralds and there- thermally have been described since then (summarized in fore must now be considered when identi- Sinkankas, 1981),until recently only three major produc- fying emeralds. In addition to distinctive tions of hydrothermal synthetic emerald have been com- inclusions such as gold, the Biron synthetic mercially available to the jewelry trade: Linde (patented is inert to ultraviolet radiation, has a spe- process now owned by Regency), Lechleitner (full syn- cific gravity of 2.68 -2.71, and refractive thetic in addition to overgrowth), and, most recently, those indices of = 1,569 and (D = 1.573. This ar- grown in the Soviet Union (see Talzubo, 1979).
    [Show full text]
  • The Sheeprock Granite of West-Central Utah
    CRYSTALLIZATION CONDITIONS FOR. A BE- AND Y-RICH GRANITE--THE SHEEPROCK GRANITE OF WEST-CENTRAL UTAH by Eric H. Christiansen Jack R. Rogers Li Ming Wu CONTRACT REPORT 91-6 APRIL 1991 UTAH GEOLOGICAL AND MI~T£RAL SURVEY 8 division of UTAH DEPARTME~TT OF NATURAL RESOURCES o THE PUBLICATION OF THIS PAPER IS MADE POSSmLE WITH MINERAL LEASE FUNDS A primary mission of the UGMS is to provide geologic information of Utah through publications. This Contract Report represents material that has not undergone policy, technical, or editorial review required for other UGMS publications. It provides Information that may be Interpretive or Incomplete and readers are to exercise some degree of caution in the use of the data. EHC-l INTRODUCTION The Sheeprock granite of west-central Utah is enriched and locally mineralized with beryllium and yttrium (Cohenour, 1959; Williams, 1954). Previous investigations of the whole­ rock geochemistry of the pluton suggested that it crystallized in situ, from its walls inward, concentrating incompatible elements like Be and Y in the core of the pluton (Christiansen et al., 1988). Magmatic concentrations of Y show a five-fold increase from rim to core of the pluton (13 to 63 ppm). Funkhouser-Marolf (1985) identified monazite (REE phosphate), xenotime (Y phosphate), and Nb-Fe-W-Y-Ta oxides as important hosts for Y. A pegmatitic occurrence of samarskite (an Y-Nb-Ta-Ti oxide) has also been reported (Cohenour, 1959). High Be concentrations are found in the pluton as well; concentrations range from 2 to 50 ppm in apparently un mineralized samples (Christiansen et al., 1988).
    [Show full text]