High-Pressure Crystal Chemistry of Beryl (Beralrsi.Otr) and Euclase

Total Page:16

File Type:pdf, Size:1020Kb

High-Pressure Crystal Chemistry of Beryl (Beralrsi.Otr) and Euclase American Mineralogist, Volume 71, pages 977-984, 1986 High-pressurecrystal chemistry of beryl (BerAlrSi.Otr) and euclase(BeAlSiO4OH) Rosnnr M. HaznN, ANonpw Y. Au, Llnnv W. FrNcnn GeophysicalLaboratory, CarnegieInstitution of Washington, 2801 Upton Street,N.W., Washington, D.C. 20008 Ansrnlcr Compressibilities and high-pressurecrystal structures of beryl and euclasehave beon determined by X-ray methods at severalpressures. Beryl (hexagonal,space group P6/mcc) has nearly isotropic compressibility; linear compressibilitiesperpendicular and parallel to the c axis ateB':1.72 + 0.04 x l0-a kbar-'and B,:2.10 + 0.09 x 10-akbar-'. The correspondingbulk modulus is 1.70 + 0.05 Mbar if the pressurederivative of the bulk modulus K'is assumedto be 4. Euclase(monoclinic, spacegroup P2r/a)has anisotropic compression,with maximum compressibrlity of 2.44 + 0.05 x l0-a kbar-l parallel to the unique monoclinic b axis, and minimum compressibility of 1.50 + 0.03 x 10-a kbar-' approximately parallel to [01]. The intermediate axis of compressionhas a magnitude of 1.96 + 0.05 x lO-akbar-'in the a-c plane.The bulk modulus of euclaseis 1.59 t 0.03 Mbar if K' is assumedto be 4. The bulk moduli ofBe, Al, and Si cation coordination polyhedrain beryl are all consistent with 1.7 Mbar, which is the crystal bulk modulus. Beryl compressionoccurs primarily by shorteningof cation-anion bond distances.In euclase,the 2.3-Mbar polyhedralbulk moduli are significantly greater than the observed 1.6-Mbar crystal modulus. Compression in euclase,particularly along the b crystallographicaxis, results from a combination of poly- hedral compressionand changesin interpolyhedral angles. INrnooucrroN calculations for the oxides of Be, Al, and Si by modified Among the more fundamental goals of mineralogy and electron-gasmethods. petrologyisthepredictionofphysicalpropertiesandphase The crystal structure of beryl [BerAlrSiuO,r:hexagonal equilibria from a knowledgeof structureand bonding. The P6/ mcc, Z : 2l has been reported by Gibbs et al. ( I 968) study of minerals must proceed on a broad front of ex- and Morosin (1972). It is characterizedby six-member periment and theory if microscopic structural character- rings of Si tetrahedra, crossJinked by Be tetrahedra and istics are to be related to macroscopicmineral behavior. Al octahedra (Fig. la). The tetrahedral rings lie in the One promising approach is the characteization and ra- (0001)planeandaresuperimposedtoformchannelsalong tionalization of properties-structural, thermochemical, the c axis. Though often classifiedas a ring-silicate, beryl elastic,and vibrational-for a group of closely related canalsobedescribed(Zoltai,1960)asathree-dimensional minerals. The system BeO-AlrOr-SiOr-HrO provides an framework of Be and Si tetrahedra (Fig. lb). ideal suite of large, well-formed, stoichiometric, and or- The structure of euclase [BeAlSiO.(OH): monoclinic dered crystalline phasesin a variety of structuretypes. All P2r/a, Z: 4l was described by Mrose and Appleman atoms are of low atomic number and are thus amenable (1962). Euclasehas a-axis chains of three-member rings to the proceduresof computational quantum chemistry. formed by interconnectedBe and Si tetrahedra (Fig. 2a), Only three types of cation coordination polyhedra-Be crossJinked by Al octahedra (Fig. 2b). Although techni- and Si tetrahedra and Al octahedra-provide the struc- cally an orthosilicate with isolated Si tetrahedra, euclase tural building blocks for most of the phases,thus facili- can be interpreted equally well in terms of chains of Be tating tests of the "polyhedral approach" for modeling and Si tetrahedra. mineral properties (Hazen, 1985). Recent studies, com- The principal objectives of this high-pressureresearch pleted as part of this integratedeffort, include vibrational on beryl and euclaseare (l) to determine pressure-volume spectroscopy (Hoering and Hofmeister, 1985), elastic equation-of-stateparameters and compression anisotro- moduli (Au and Hazen, 1985; Yeganeh-Haeriand Weid- pies by measuringthe pressurevariation of unit-cell di- ner, 1986), thermochemistry (Barton, 1986), and com- mensions, (2) to calculate polyhedral bulk moduli from parative crystal chemistry (Hazen and Au, 1986).Also in high-pressurestructure data in order to test the effectsof progress are modeling of Be polyhedral clusters by ab structure on these moduli, (3) to identifu geometrical initio molecular orbital proceduresand lattice dynamic changesin the beryl and euclasestructures that result in 0003-004x/86/0708-o977$02.00 977 978 HAZEN ET AL.: BERYL-EUCLASE HIGH-PRESSURE CRYSTAL CHEMISTRY Table l. Unit-cell parametersof beryl and euclaseat several Table 2. Beryl refinement conditions and refined atomrc pressures parameters BERYL 1 bar 19 kbar 36 kbar 57 kbar N@ber of obs (I>2o) 299 100 701 94 P(kbar) range c/a a(A) c( A) v(E3) R(z)t 3.1 3,5 3.8 4.r weishred R(Z)+ 2.6 2-8 3.0 Extinicion, .* (*ro5) e.;(z)* r.4(7) 5(1) 1.4(8) 0,001 45-55 9.214(1)* 9.194(1) 676.0(1) 0.99?8 1.001 6 0.001 25 9.208(3) (3) 9.188(3) 674 .7 0.9978 1 .0000 ParaDeter 15 25 9.183(3) 9.159(3) 669.1(3) a,99',t4 0.9918 1B 25 9.179(2) 9.157(3) 668.2(3) 0.99?6 0.9904 0.5 0.5 0.5 0.5 (5) 30 25 9.153(10) 9.13r 663.5(11)0.9965 0.9835 0 0 0 0 33 25 v 9.155(3) 9.118(2) 661.6(3) 0.9960 0.9806 z 0.25 025 0.25 o.25 36 25 9.153(3) 9.119(1) 661.6(3) 0.9960 0.9806 B 0.s1 (7) 0.3(2) 0.4(3) 0.8(4) 40 25 9.r38(ro) r.rr3fi ) 659.2(5) 0.9973 o.9771 43 25 9.135(6) 9.103(2) 657,9(7) 0.9964 o.9752 7/3 7/3 7/3 713 \7 9.r34(4) 657.0(3) 9.096(2) 0.9958 0.9238 2/3 2/3 2/3 2/3 57 14 9.127(3) 652.4(15)0.9931 v 9.064(r5) 0.9670 o.25 o.25 o.25 0.25 B o.sr(3) 0.9(1) 1.1(1) 1.0(1) EUCLASE 0.3876(1) 0-3882(3) 0,3883(3) 0.3893(4) v 0.1159(1) 0.1ls5(3) 0.1161(3) 0.1166(4) P(kbar) a(A) b(a) c( A) v(E3) 0000 B 0.44(3) 0.68(8) 0.87(8) 0.95(10) 0.3103(3) 0.3122(6) 0.3111(6) 0.3107(8) 0.001 4.7800(3) 14.322(1) 4,6335(2) 1oo.31o(5) 312.30(3) 1.0000 0.2369(3) O.2376(7) 0 .2377(6) 0. 2366(8) 21 \.759(1) t\.255(6) 4.612(r) 1o0.24(1t J07.89(10) 0.9859 v 0000 22 4.761(1) 14.254(4) 4.610(1) r00./7(1) J07.85(15) 0.9859 0.82(5) 0.58(13) 1.06(14) 0.30(17) 42 4.746(1) 14.189(|) 4.599(1) roo.r8(2) 304.82(26) 0.9760 B rl9 4.739(1 ) 14.1 58 (3 ) 4.589(1) r00.15(1) 303.11(1r)0.97a7 0.4985(2) 0.4987(4) 0.4984(5) O.4992(6) 62 4.730(1) r4.136(9) 4.580(1) 100.16(2) 3A1.\A(22) 0.9651 v o.74s6(2) 0.1459(4) 0.1450(4) 0.7452(s) z 0.14s3(1) 0.1449(5) 0.L447(5\ 0.1470(6) * Parenthesized figures represenl esd's. B 0.68(3) 0.78(10) 0.98(10) 0.72(72) + Measured unit-cel1 parafreLers nay depend systemabically on the range of 2e used in lheir determinalion (Swansonet a1., 1985). * Parenthesized figures represent esd's Only 25. data were used in equation-of-state deierminations, + ! = rtlrol-lFcll/:Fo weishted R = [tw(lI L-lF.l)2/:"F^zl!/2 compression, and (4) to relate structural changes in beryl pressure at high to the elastic moduli determined by Yoon Lehmann and I-arsen (1974) with an option for manual inter- and Newnham (1973). vention. Refinementconditions and refinedstructural parameters for beryl and euclaseappear in Tables 2 and 3, respectively. ExpnnrvrnxrAr METHoDS Refined anisotropic temperatureparameters and the magnitudes Specimendescription and orientation of thermal vibration ellipsoids for both minerals room appear in Tables 4 and 5.1 Crystals of synthetic beryl (variety emerald) were provided by at conditions Richard (Vacuum Ventures, M. Mandle Inc.). This material con- Data collection at high pressure forms to the ideal beryl composition, with the exception of 0.37 platelike were mount- wt9oCr, correspondingto 1.3olooccupancy ofCr at the AI octa- Flat, crystals approximately 40 ;rm thick pressure for X-ray with hedral site. The synthetic material was dehydrated at 800'C for ed in a diamond-anvil cell ditrraction, 4 h, yielding a sample with less than 0.3 moleculesof HrO per an alcohol mixture of 4:1 methanol: ethanol as the hydrostatic formula unit. pressuremedium and 5-10-pm chips of ruby as the internal pressure Crystalsofnatural euclasefrom Minas Gerais,Brazil (National calibrant. Pressure-celldesign, loading, operation, and (1 Museum of Natural History, Smithsonian Institution, specimen calibration wereas described by Hazen and Finger 982). Special gasket parts no. #121350),were provided by John White. Chemical analysis care was taken to avoid X-ray shielding by the of gasket pm of this colorless,gem-quality material by Barton (1986) showed the diamond cell. Large holes of400 were used, and pm no impurities. Crystal fragments of dimensions approximately the 100 crystals were well centered in the diamond cell 100 x 100 x 40 pm were used for X-ray diffraction studies at throughout the experiments.
Recommended publications
  • Phase Equilibria and Thermodynamic Properties of Minerals in the Beo
    American Mineralogist, Volwne 71, pages 277-300, 1986 Phaseequilibria and thermodynamic properties of mineralsin the BeO-AlrO3-SiO2-H2O(BASH) system,with petrologicapplications Mlnx D. B.qnroN Department of Earth and SpaceSciences, University of California, Los Angeles,Los Angeles,California 90024 Ansrru,cr The phase relations and thermodynamic properties of behoite (Be(OH)r), bertrandite (BeoSirOr(OH)J, beryl (BerAlrSiuO,r),bromellite (BeO), chrysoberyl (BeAl,Oo), euclase (BeAlSiOo(OH)),and phenakite (BerSiOo)have been quantitatively evaluatedfrom a com- bination of new phase-equilibrium, solubility, calorimetric, and volumetric measurements and with data from the literature. The resulting thermodynamic model is consistentwith natural low-variance assemblagesand can be used to interpret many beryllium-mineral occurTences. Reversedhigh-pressure solid-media experimentslocated the positions of four reactions: BerAlrSiuO,,: BeAlrOo * BerSiOo+ 5SiO, (dry) 20BeAlSiOo(OH): 3BerAlrsi6or8+ TBeAlrOo+ 2BerSiOn+ l0HrO 4BeAlSiOo(OH)+ 2SiOr: BerAlrSiuO,,+ BeAlrOo+ 2H2O BerAlrSiuO,,+ 2AlrSiOs : 3BeAlrOa + 8SiO, (water saturated). Aqueous silica concentrationswere determined by reversedexperiments at I kbar for the following sevenreactions: 2BeO + H4SiO4: BerSiOo+ 2H2O 4BeO + 2HoSiOo: BeoSirO'(OH),+ 3HrO BeAlrOo* BerSiOo+ 5H4Sio4: Be3AlrSiuOr8+ loHro 3BeAlrOo+ 8H4SiO4: BerAlrSiuOrs+ 2AlrSiO5+ l6HrO 3BerSiOo+ 2AlrSiO5+ 7H4SiO4: 2BerAlrSiuOr8+ l4H2o aBeAlsioloH) + Bersio4 + 7H4sio4:2BerAlrsiuors + 14Hro 2BeAlrOo+ BerSiOo+ 3H4SiOo: 4BeAlSiOr(OH)+ 4HrO.
    [Show full text]
  • Optical Properties of Common Rock-Forming Minerals
    AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref.
    [Show full text]
  • The Sheeprock Granite of West-Central Utah
    CRYSTALLIZATION CONDITIONS FOR. A BE- AND Y-RICH GRANITE--THE SHEEPROCK GRANITE OF WEST-CENTRAL UTAH by Eric H. Christiansen Jack R. Rogers Li Ming Wu CONTRACT REPORT 91-6 APRIL 1991 UTAH GEOLOGICAL AND MI~T£RAL SURVEY 8 division of UTAH DEPARTME~TT OF NATURAL RESOURCES o THE PUBLICATION OF THIS PAPER IS MADE POSSmLE WITH MINERAL LEASE FUNDS A primary mission of the UGMS is to provide geologic information of Utah through publications. This Contract Report represents material that has not undergone policy, technical, or editorial review required for other UGMS publications. It provides Information that may be Interpretive or Incomplete and readers are to exercise some degree of caution in the use of the data. EHC-l INTRODUCTION The Sheeprock granite of west-central Utah is enriched and locally mineralized with beryllium and yttrium (Cohenour, 1959; Williams, 1954). Previous investigations of the whole­ rock geochemistry of the pluton suggested that it crystallized in situ, from its walls inward, concentrating incompatible elements like Be and Y in the core of the pluton (Christiansen et al., 1988). Magmatic concentrations of Y show a five-fold increase from rim to core of the pluton (13 to 63 ppm). Funkhouser-Marolf (1985) identified monazite (REE phosphate), xenotime (Y phosphate), and Nb-Fe-W-Y-Ta oxides as important hosts for Y. A pegmatitic occurrence of samarskite (an Y-Nb-Ta-Ti oxide) has also been reported (Cohenour, 1959). High Be concentrations are found in the pluton as well; concentrations range from 2 to 50 ppm in apparently un mineralized samples (Christiansen et al., 1988).
    [Show full text]
  • Download the Scanned
    American Mineralogist, Volume 63, pages 664_676, l97g Multisyste_msanalysis of beryiliumminerar stabilities: the systemBeO-A[rOa_SiO2_H2O DoNer.n M. Bunr Department of Geology, Arizona State (Jniuersitv Tempe,Arizona8528I Abstract seven commonly associatedminerals in the systemBeo-Alror-Sior-Hro includechry- soberyl,phenakite, euclase,bertrandite, beryl, kaolinite,and qiuit . The phaserule implies that not more than six of theseminerals can coexistat an invariantpoint, and, with the addition of an aqueousphase, the associationconstitutes an (n * 4; ptrase(negative two d-egreesof freedom)multisystem. The apparentincompatibility of taotinite with phenakite allowsthe splitting of this unwieldymultisystem into two smaller(n + 3) phasemultisystems, which may belabeled (Kao) and (phe).Moiar volumedata, compuier program RrlcrroN, and naturalassemblages can then be usedto derivethe presumablystabie cJnfiguration of these multisystemson p"-minus an isothermal pHro diagram. n, p-r diagramprojected through theaqueous phase shouldhave the sametopology, and cansimilarlf be drawn. on the resultingdiagrams, three . invariant-butpoinis rabeled tchrl, tBr;;, and [etz] arestable in the.multisystem (Kao), and threedistinct identically-fuU"i.Opoint, u.. stablein rhe multisystem(Phe). An implicationof this topologyvia ihe "r.tu.tubl"-rtable correspon- dence,"is that the assemblagephenakite + euclase* beryl(* aqueousphase) has a finite i'I;ix, ii,l'J.?lT"t' ::ff,,,j :r;: :":.T' ? ts why" euclase is muchrarer than bertrandite. and its stabilityfield, especially
    [Show full text]
  • REVISION 1 Mn3+ and the PINK COLOR of GEM-QUALITY
    This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America. The published version is subject to change. Cite as Authors (Year) Title. American Mineralogist, in press. DOI: https://doi.org/10.2138/am-2021-7838. http://www.minsocam.org/ 1 REVISION 1 2 Mn3+ AND THE PINK COLOR OF GEM-QUALITY EUCLASE FROM 3 NORTHEAST BRAZIL 4 Lætitia Gilles-Guéry1, Laurence Galoisy1, *, Jurgen Schnellrath2, Benoit Baptiste1, Georges 5 Calas1 6 7 1 Sorbonne Université, Muséum National d'Histoire Naturelle, CNRS, IRD, Institut de 8 Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), 4 Place Jussieu 75252 9 Paris Cedex 05 Paris, France 10 2 Centro de Tecnologia Mineral (CETEM), Ilha da Cidade Universitária, 21.941-908 Rio de 11 Janeiro, RJ, Brazil 12 13 * Corresponding author : Laurence Galoisy , Sorbonne Université, IMPMC, BC 115, 4 place 14 Jussieu 75005 Paris, France. [email protected] 15 16 ABSTRACT 17 Pink euclase of gem-quality and centimeter size, presenting an unusual pink-orange coloration 18 and a pink to orange pleochroism, has been discovered near Livramento de Nossa Senhora, in 19 Bahia State, Brazil. The origin of the pink coloration has been investigated using different 20 spectroscopic techniques: UV-Vis-NIR spectroscopy, Electron Paramagnetic Resonance (EPR), 21 luminescence and X-ray Absorption Near Edge Structure (XANES). The coloration is mainly due 1 Always consult and cite the final, published document. See http:/www.minsocam.org or GeoscienceWorld This is the peer-reviewed, final accepted version for American Mineralogist, published by the Mineralogical Society of America.
    [Show full text]
  • Volume 25 / No. 3 / 1996
    he Journa TGemmolog Volume 25 No. 3 July 1996 f~J J The Gemmological Association and Gem Testing Laboratory of Great Britain President E.M. Bruton Vice-Presidents AE. Farn, D.G. Kent, RK. Mitchell Honorary Fellows R.T. Liddicoat [nr., E. Miles, K. Nassau Honorary Life Members D.}. Callaghan, E.A Iobbins, H. Tillander Council of Management CR Cavey, T.}. Davidson, N.W. Deeks, RR Harding, 1.Thomson, v.P. Watson Members' Council AJ. Allnutt, P. Dwyer-Hickey, R. Fuller, B. Jackson, J. Kessler, G. Monnickendam, L. Music, J.B. Nelson, K. Penton, P.G. Read, 1. Roberts, R Shepherd, CH. Winter Branch Chairmen Midlands: J.W. Porter North West: 1. Knight Scottish: J. Thomson Examiners AJ. Allnutt, M.Sc., Ph.D., FGS S.M. Anderson, B.SdHonst FGA L. Bartlett, B.Sc., M.Phil., FGA, DGA E.M. Bruton, FGA, DGA CR. Cavey, FGA S. Coelho, B.Sc., FGA, DGA AT. Collins, B.Sc., Ph.D. AG. Good, FGA, DGA CJ.E. Hall, B.Sc.(Hons), FGA G.M. Howe, FGA, DGA G.H. Jones, B.5c., Ph.D., FGA H.L. Plumb, B.Sc., FGA, DGA RD. Ross, B.Sc., FGA DGA P.A. Sadler, B.Sc., FGA, DGA E. Stem, FGA, DGA Prof. 1. Sunagawa, D.Sc. M. Tilley, GG, FGA CM. Woodward, B.5c., FGA DGA The Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8SU Telephone: 0171-404 3334 Fax: 0171-404 8843 j*3fr \ St TGemmologhe Journal of y QAQTT. VOLUME 25 NUMBER 3 JULY 1996 Editor Dr R.R.
    [Show full text]
  • Beryl the Varieties of Beryl the Physical Properties of Beryl
    Beryl Beryl Aqua marine Heliodor Morganite Emerald Goshenite The varieties of beryl Beryl: golden or red variety Emerald: green variety Aquamarine: blue variety Morganite: pink variety Heliodor: greenish-yellow variety Goshenite: colourless variety Interesting history: - Emeralds were mined in ancient Egypt 4000 years ago - In the 1600’s, high quality emerald reached Europe. - The Spaniards seized the emeralds from the Pre-Colombian people. - Mining in Colombia is still going on today, and often associated with criminal activities. The physical properties of beryl Group: beryl is a cyclosilicate Luster: vitreous, transparent to translucent Cleavage: imperfect in one direction, conchoidal fracture Hardness: 7.5 - 8 Specific gravity: 2.6 – 2.9 on average Crystal habit: hexagonal prism with pincoid termination 1 The chemical properties of beryl Beryl is a beryllium aluminum silicate Be3Al2(Si 6O18) Composition: BeO: 14.0% Al2O3: 19.0% SiO2: 67.0% The vertical hexagonal channels, which are normally vacant, can be occupied by alkali elements such as Li, Na, and Rb or neutral molecules such as H 2O or CO2. This image shows the hexagonal structure along the c-axis of beryl Silica tetrahedra (upper layer) Silica tetrahedra (lower layer) Beryllium tetrahedra Aluminum polyhedron Similar but rare species include Euclase [BeAl(SiO4)(OH)] and 2+ gadolinite [YFe Be2(SiO4) 2O 2] The crystallographic properties of beryl Crystal system: hexagonal Point Group: 6/m 2/m 2/m Unit cell parameters: a = 9.23 Å c = 9.19Å Z = 2 Space group: P6/mcc c a b Beryl
    [Show full text]
  • Diamond Dan's Mineral Names Dictionary
    A Dictionary of Mineral Names By Darryl Powell Mineral Names What do they mean? Who created them? What can I learn from them? This mineral diction‐ ary is unique because it is illustrated, both with mineral drawings as well as pictures of people and places after which some minerals are named. The people pictured on this page have all made a con‐ tribution to what is formally called “mineral nomenclature.” Keep reading and you will discover who they are and what they did. In 1995, Diamond Dan Publications pub‐ lished its first full book, “A Mineral Collector’s Guide to Common Mineral Names: Their Ori‐ gins & Meanings.” Now it is twenty years later. What you will discover in this issue and in the March issue is a re‐ vised and improved version of this book. This Mineral Names Dictionary contains mineral names that the average mineral collector will encounter while collecting minerals, attending shows and visiting museum displays. In addition to the most common min‐ eral names, there are some unofficial names which you will still find on labels. Each mineral name has a story to tell or a lesson to teach. If you wanted to take the time, each name could become a topic to study. Armalcolite, for example, could quickly be‐ come a study of a mineral, first discovered on the moon, and brought back to earth by the astronauts Armstrong, Aldrin and Collins (do you see parts of their names in this mineral name?) This could lead you to a study of American astronauts landing on the moon, what it took to get there and what we discovered by landing on the moon.
    [Show full text]
  • P,T,X Conditions of Crystallization of Imperial Topaz from Ouro Preto (Minas Gerais, Brazil) : Fluid Inclusions, Oxygen Isotope Thermometry, and Phase Relations
    P,T,X conditions of crystallization of Imperial Topaz from Ouro Preto (Minas Gerais, Brazil) : fluid inclusions, oxygen isotope thermometry, and phase relations Autor(en): Morteani, G. / Bello, R.M.S. / Gandini, A.L. Objekttyp: Article Zeitschrift: Schweizerische mineralogische und petrographische Mitteilungen = Bulletin suisse de minéralogie et pétrographie Band (Jahr): 82 (2002) Heft 3 PDF erstellt am: 05.10.2021 Persistenter Link: http://doi.org/10.5169/seals-62375 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch SCHWEIZ. MINERAL. PETROGR. MITT. 82. 455-466. 2002 P, T, X conditions of crystallization of Imperial Topaz from Ouro Preto (Minas Gérais, Brazil): Fluid inclusions, oxygen isotope thermometry, and phase relations by G.
    [Show full text]
  • Euclase Bealsio4(OH) C 2001 Mineral Data Publishing, Version 1.2 ° Crystal Data: Monoclinic
    Euclase BeAlSiO4(OH) c 2001 Mineral Data Publishing, version 1.2 ° Crystal Data: Monoclinic. Point Group: 2=m: As prismatic crystals, °attened on 100 , commonly morphologically complex, to 12 cm. f g Physical Properties: Cleavage: Perfect on 010 , imperfect on 110 and 001 . Fracture: Conchoidal. Tenacity: Brittle. Hardfnessg= 7.5 VHN =f1310g D(mfeas.g) = 2.99{3.10 D(calc.) = 3.115 Optical Properties: Transparent to translucent. Color: Colorless, white, pale green to deep yellowish green, greenish blue, pale blue to deep blue, rarely mottled; colorless to pale blue or pale green in thin section. Streak: White. Luster: Vitreous, somewhat pearly on cleavages. Optical Class: Biaxial (+). Pleochroism: May be marked in shades of deep blue. Orientation: Z c = 41±. Dispersion: r > v; distinct. ® = 1.651{1.653 ¯ = 1.655{1.657 ° = 1.669{1.675 ^ 2V(meas.) = 50± 2V(calc.) = 46± » Cell Data: Space Group: P 21=a: a = 4.763(5) b = 14.29(2) c = 4.618(5) ¯ = 100±15(5)0 Z = 4 X-ray Powder Pattern: Villa Rica, Brazil. 7.146 (100), 3.219 (50), 3.836 (35), 2.773 (35), 2.444 (35), 2.543 (25), 1.991 (18) Chemistry: (1) (2) SiO2 42.05 41.60 Al2O3 33.97 34.76 Fe2O3 0.12 FeO 0.28 BeO 17.51 16.95 Na2O 0.13 K2O 0.04 H2O 6.35 5.95 Total [100.00] 99.71 (1) Ottr¶e, Belgium; recalculated to 100.00% after deduction of 3.5% quartz; corresponds to Be1:00Al0:95Si1:00O4(OH)1:01: (2) Santo do Encoberto, Brazil; by electron microprobe; corresponds to (Be0:99Fe0:01Na0:01)§=1:01Al1:00Si1:01O4(OH)0:96: Occurrence: The product of decomposition of beryl in pegmatites, and in low-temperature alpine veins.
    [Show full text]
  • Sediment-Derived Euclase Mineral Characterization and Its
    EUCLASE IN THE COLOMBIAN EMERALD DEPOSITS 1 SEDIMENT-DERIVED EUCLASE MINERAL CHARACTERIZATION AND ITS IMPLICATIONS FOR THE EVOLUTION OF THE COLOMBIAN EMERALD DEPOSITS Author: Julián Mauricio Reyes Álvarez Director: Idael Francisco Blanco Quintero Co-Director: Edwin Yovanny Alba Vasquez Universidad de Los Andes EUCLASE IN THE COLOMBIAN EMERALD DEPOSITS 2 EUCLASE IN THE COLOMBIAN EMERALD DEPOSITS 3 SEDIMENT-DERIVED EUCLASE MINERAL CHARACTERIZATION AND ITS IMPLICATIONS FOR THE EVOLUTION OF THE COLOMBIAN EMERALD DEPOSITS _____________________________ Julián Mauricio Reyes Álvarez Estudiante _____________________________ _____________________________ Idael Francisco Blanco Quintero Edwin Yovanny Alba Vasquez Director Co-Director Universidad de Los Andes Facultad de Ciencias Departamento de Geociencias Septiembre 2016 EUCLASE IN THE COLOMBIAN EMERALD DEPOSITS 4 Author Note Julián M. Reyes and Idael Blanco, Department of Geosciences, School of Sciences, Universidad de Los Andes. This research was presented as an undergraduated thesis project for Julián M. Reyes at Universidad de Los Andes, Bogotá, Colombia. This research was supported by the Fondo Educativo Howard T. Corrigan grant from the Asociación Colombiana de Geólogos y Geofísicos del Petróleo (ACGGP) and Corporación Geológica Ares. Questions concerning this article should be written to Julián M. Reyes. E-mail: [email protected] EUCLASE IN THE COLOMBIAN EMERALD DEPOSITS 5 Contents Abstract ..............................................................................................................................
    [Show full text]
  • Bulletin 30, Gem Stone Resources of South Carolina
    GEM STONE RESOURCES OF SOUTH CAROLINA By CAMILLA K. McCAULEY BULLETIN NO. 30 DIVISION OF GEOLOGY STATE DEVELOPMENT BOARD COLUMBIA, SOUTH CAROLINA 1964 STATE DEVELOPMENT BOARD Columbia, South Carolina MEMBERS OF BOARD W. W. Harper Director J. Bratton Davis, Chairman Columbia Hampton G. Anderson Anderson Russell E. Bennett Cheraw „.,., „ Sumter Clifton Brown Elting L. Chapman, Jr. Florence John F. Clarkson Newberry W. K. Gunter, Jr. Gaffney A. Foster McKissick Easley Connie R. Morton Rock Hill R. RoyPearce Columbia Walter P. Rawl Gilbert Joseph P. Riley Charleston Thomas S. Taylor Orangeburg Stathy J. Verenes Aiken E. Craig Wall Conway Bernard Warshaw Walterboro R. M. Cooper (honorary) Wisacky mm mm* STATE DEVELOPMENT BOARD Columbia, South Carolina To The Honorable Donald S. Russell Governor of South Carolina Sir: Submitted herewith is State Development Board Bulletin 30, Gem Stone Resources of South Carolina. This report by Camilla K. McCauley was prepared as part of the Division of Geology's continuing program of investigation of the geo logy and mineral resources of the State. mi Sincerely, Walter W. Harper, Director Henry S. Johnson, Jr. , State Geologist 3H CONTENTS Page Abstract 1 Introduction 1 History and production 2 Occurrence 11 Igneous rocks 11 Metamorphic rocks 12 Aqueous solutions and organic accumulations 13 Placer deposits 13 South Carolina gem stone deposits 13 Beryl (emerald) 16 Beryl (other varieties) 16 Corundum (ruby and sapphire) 16 Diamond 17 Garnet 18 Quartz 18 S illimanit e 19 Topaz 19 Tourmaline 20 Zircon 20 Uses 26 Properties of gem stones 26 Mining and beneficiation methods 27 Prices 27 Reserves 28 29 Synthetics 29 Outlook 30 References 31 Index ILLUSTRATIONS Page Figure 1- Generalized geologic map of South Carolina 14 2.
    [Show full text]