Occurrence of Nonpegmatite Beryllium in the United States

Total Page:16

File Type:pdf, Size:1020Kb

Occurrence of Nonpegmatite Beryllium in the United States Occurrence of Nonpegmatite Beryllium in the United States GEOLOGICAL SURVEY PROFESSIONAL PAPER 318 This report concerns work done on behalf of the U.S. Atomic Energy Commission and is published with the permission of the Commission Occurrence of Nonpegmatite Beryllium in the United States By LAWRENCE A. WARNER, WILLIAM T. HOLSER, VERL R. WILMARTH and EUGENE N. CAMERON GEOLOGICAL SURVEY PROFESSIONAL PAPER 318 This report concerns work done on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1959 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director The TJ. S. Geological Survey has cataloged this publication as follows: Warner, Lawrence Alien, 1914- Occurrence of nonpegmatite beryllium in the United States, by Lawrence A. Warner [and others] Washington, U. S. Govt. Print. Off. 1959. viii, 198 p. illus., maps, tables. 30 cm. (U. S. Geological Survey. Professional paper 318) Part of illustrative matter in pocket. "This report concerns work done on behalf of the U. S. Atomic Energy Commission and Is published with the permission of the Com­ mission." Bibliography: p. 186-195. 1. Beryllium. i. Title. (Series) [QE75.P9 no. 318] ' GS 59-196 For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $2.25 (paper cover) CONTENTS Page Pag« Abstract...-----_--_--___-__-_-_-____----_--_- __ 1 Commercial possibilities and suggestions for prospecting.. 59 Introduction. ____..__________________________ 1 Description of localities ____________ 61 Nature and purpose of report___________ _ 1 Nevada and California, by E. N. Cameron and L. A. Recovery, properties, and uses of beryllium. _______ 2 Warner __ _________________ ___. 61 Production of beryllium ore__________________ 2 Nevada ___________ 63 Acknowledgments_______________ __ _ 4 Elko County. - ______ ... _ 63 Field investigations.________________________________ 4 Star mine, Harrison Pass _____ ____ 63 Previous work______________________________ 4 Good Hope barite mine, Tuscarora Present work..______ ________________________ 4 Range _____ _ ._. ________ 63 Scope of investigations_________________ 4 Humboldt County 64 Field methods_________________________ 5 Golconda manganese-tungsten deposit- 64 Determination of beryllium__________________________ 5 North workings __ _____________ 64 Spectrographic analysis_____________ __ 5 South workings.. ______ _________ 64 Gravimetric and volumetric analysis_____________ 6 Occurrence and distribution of Colorimetric and fluorimetric analysis.________ 6 beryllium.. _______ _ ________ 65 Mineralogic methods.__________________________ 7 Lander County__-__--__----__-.___-_-__ 65 Beryl_______________________________ 7 Barite deposits, Battle Mountain area.. 65 Helvite group._________________________ 7 California-Nevada Barite Co. Other minerals-._________________-___-______ 7 65 Radiometric methods_____ _______________________ 8 Barium Products Corp., Ltd., Mineralogy of beryllium____________________________ 8 mine...... --_--______.______ 66 Crystal chemistry of beryllium minerals_________ 8 Lincoln County__-__-----_-----_-----___ 66 Beryllium as an essential constituent in minerals..__ 10 Tern Piute district....... __ ___ ... 66 Beryllium as an accessory constituent in minerals. __ 12 Mineral County____-__- _____________ 66 Sulfides.._____-_-___.____________ 16 Rawhide district ____ .________..__ 66 Oxides_____________________________ ___ 16 Nevada Scheelite mine.. _ ______ 67 Halides_________._______________ 16 Hooper No. 2 mine __ _____ _ _ 68 Carbonates_____________________________ 16 Yankee Girl mine_______________ Phosphates_______________________________ 16 Desert Scheelite and Gunmetal mines, Neosilicates- _______________________________ 16 Pilot Mountains_____________.____ 68 Ring and chain silicates__________________ 18 Desert Scheelite mine..... _______ 68 Sheet silicates.____________________________ 18 Gunmetal mine _ ___________ _ 69 Framework silicates.________________________ 19 Manganese-tungsten deposit at Soda- Beryllium in igneous rocks.,_______________________ 20 ville... __ . _ _. ___ ________ 69 United States localities..______________________ 20 Andalusite deposits near Thorne. _____ 70 Foreign localities____________________________ 20 Green Talc naine________________ 70 Distribution of beryllium in igneous rocks..________ 22 Mine near Green Talc mine. _____ 70 Mode of occurrence_______________________-_-___ 24 Nye County ____ _._-___-________-___ 70 Beryllium in sedimentary rocks.._____________________ 25 Gabbs area __ _____________________ 70 Clastic deposits...______________________________ 25 Victory tungsten deposits _ _____ 71 Chemical and residual deposits.__________________ 26 Brucite and magnesite deposits. __ 71 Coal deposits...________________________________ 28 Pershing County __ 71 Beryllium in metamorphic rocks......________________ 29 Rocks in the West Humboldt Range ..~ 71 Beryllium in pyrometasomatic and related deposits____ 29 Limerick Canyon area... ________ 71 Previous and present investigations _______________ 29 Panther Canyon area __ __ ___ 72 Characteristics of beryllium-bearing deposits.______ 33 Rocky Canyon-Wrights Canyon Related occurrences........___________________ 34 area. _ _____________________ 74 Beryllium in vein deposits________________________ 35 Results of sampling____ _________ 76 Quartz-tungsten veins......._____________________ 35 Tungsten area, Mill City district ___ 76 Quartz-gold veins.._____________________________ 35 Sutton beds of local usage _______ 76 Manganese-lead-zinc veins___________________ 38 George beds of local usage _______ 77 Other veins.___________________________________ 39 Other rocks sampled _______ __ 77 Beryllium in hot-spring deposits._____________ 39 Rose Creek mine.__-_______________ 79 Association of beryllium with other elements.__________ 40 Ragged Top area. ___________ _ __ _ 81 Genesis of beryllium deposits........^...___________ 58 Champion dumortierite mine__ _______ 82 m IV CONTENTS Page Page Description of localities Continued Description of localities Continued Nevada and California Continued New Mexico Continued Nevada Continued Dona Ana County. ________________ 113 White Pine County.._________________ 83 Organ district-_____________________ 113 Cherry Creek district______________ 83 Grant County _________________ 114 Happy claims__________________ 83 Burro Mountains district-_______________ 114 Cherry Creek mine___________ 83 Carpenter district__________________ 114 Snake Range_____________________ 84 Grandview mine___________.__..___-_ 116 Sacramento Pass mine_________ 84 Other mines________________ 116 Dirty Shirt mine_____________ 84 Central district (including Fierro, Hanover, San Pedro mine._______________ 85 and Santa Rita districts)______________ 116 Minerva district___________________. 85 Pinos Altos district-__________--_-____ 118 California_______________________________ 85 Hidalgo County.-__________________ 118 Inyo County_________________________ 85 Apache No. 2 district_-_--__-_----_--__- 118 Tungsten Hills district______________ 85 Hachita district (including Eurekr and Deep Canyon area______________ 86 Sylvanite districts)_________ _____ 119 Little Sister mine___________ 86 Lordsburg district._____________________ 120 Aeroplane (Moonlight) mine. 87 San Simon district______---____---_--__- 120 Round Valley area___________ 87 Lincoln County___________. _________ 121 Results of sampling.__________ 91 Capitan district_____-__-_______-__-_-__ 121 Pine Creek district____________ 91 Gallinas district._______________________ 121 Pine Creek tungsten mine______ 91 Luna County_____________________________ 121 Tailings from mill of Tungstar Tres Hermanas district._________________ 121 mine__________________ 92 Victorio district____--___--__-_---___--- 122 Yaney tungsten prospect, Bishop dis­ Geology. ________.____-.-______-. 122 trict_________________ 92 Tungsten and beryllium deposits_ _ 122 San Bernardino and Kern Counties.______ 92 Quartz veins__________--------_ 123 Atolia district______________________ 92 Pyrometasomatic deposits _______ 123 Union mine..._____________ 93 Otero County-_____-______--____-__-__-_- 125 Flatiron-Spanish vein system___ 93 San Miguel County ______________________ 125 Arizona, by W. T. Holser______________________ 93 Rociada district______-_---_------___-_- 125 Cochise County____-______-________________ 93 Willow Creek district__-_.__--________ 125 Dragoon Mountains___________________ 93 Sandoval County_________-_-_---_______---_ 125 Courtland-Gleeson district___________ 96 Cochiti district.________-___-__-__-__-__ 125 Gordon mine__________________ 96 Santa Fe County.._______________________ 125 Abril mine_________________________ 97 New Placers district__________________ 125 Little Dragoon Mountains_______________ 97 Old Placers district.____________________ 127 Tungsten King mine._______________ 98 Sierra County-_____________________________ 128 Bluebird mine______________________ 98 Apache No. 1 district.____--___-_____._- 128 Johnson Camp area_________________ 101 Cuchillo Negro district._________________ 128 Tombstone district____________________ 101 Iron Mountain district._________________ 129 Socorro County____________--____--____--_ 129 Mohave County _________________________ 101 Jones Camp district_____-___-__-___-_-_- 129 Boriana district______________________ 101 Taos County..___________---_.__-_-__--_-
Recommended publications
  • Geology and Mineral Deposits of the James River-Roanoke River Manganese District Virginia
    Geology and Mineral Deposits of the James River-Roanoke River Manganese District Virginia GEOLOGICAL SURVEY BULLETIN 1008 Geology and Mineral ·Deposits oftheJatnes River-Roanoke River Manganese District Virginia By GILBERT H. ESPENSHADE GEOLOGICAL SURVEY BULLETIN 1008 A description of the geology anq mineral deposits, particularly manganese, of the James River-Roanoke River district UNITED STAT.ES GOVERNMENT, PRINTING. OFFICE• WASHINGTON : 1954 UNITED STATES DEPARTMENT OF THE INTERIOR Douglas McKay, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. CONTENTS· Page Abstract---------------------------------------------------------- 1 Introduction______________________________________________________ 4 Location, accessibility, and culture_______________________________ 4 Topography, climate, and vegetation _______________ .,.. _______ ---___ 6 Field work and acknowledgments________________________________ 6 Previouswork_________________________________________________ 8 GeneralgeologY--------------------------------------------------- 9 Principal features ____________________________ -- __________ ---___ 9 Metamorphic rocks____________________________________________ 11 Generalstatement_________________________________________ 11 Lynchburg gneiss and associated igneous rocks________________ 12 Evington groUP------------------------------------------- 14 Candler formation_____________________________________ 14 Archer Creek formation________________________________
    [Show full text]
  • Phase Equilibria and Thermodynamic Properties of Minerals in the Beo
    American Mineralogist, Volwne 71, pages 277-300, 1986 Phaseequilibria and thermodynamic properties of mineralsin the BeO-AlrO3-SiO2-H2O(BASH) system,with petrologicapplications Mlnx D. B.qnroN Department of Earth and SpaceSciences, University of California, Los Angeles,Los Angeles,California 90024 Ansrru,cr The phase relations and thermodynamic properties of behoite (Be(OH)r), bertrandite (BeoSirOr(OH)J, beryl (BerAlrSiuO,r),bromellite (BeO), chrysoberyl (BeAl,Oo), euclase (BeAlSiOo(OH)),and phenakite (BerSiOo)have been quantitatively evaluatedfrom a com- bination of new phase-equilibrium, solubility, calorimetric, and volumetric measurements and with data from the literature. The resulting thermodynamic model is consistentwith natural low-variance assemblagesand can be used to interpret many beryllium-mineral occurTences. Reversedhigh-pressure solid-media experimentslocated the positions of four reactions: BerAlrSiuO,,: BeAlrOo * BerSiOo+ 5SiO, (dry) 20BeAlSiOo(OH): 3BerAlrsi6or8+ TBeAlrOo+ 2BerSiOn+ l0HrO 4BeAlSiOo(OH)+ 2SiOr: BerAlrSiuO,,+ BeAlrOo+ 2H2O BerAlrSiuO,,+ 2AlrSiOs : 3BeAlrOa + 8SiO, (water saturated). Aqueous silica concentrationswere determined by reversedexperiments at I kbar for the following sevenreactions: 2BeO + H4SiO4: BerSiOo+ 2H2O 4BeO + 2HoSiOo: BeoSirO'(OH),+ 3HrO BeAlrOo* BerSiOo+ 5H4Sio4: Be3AlrSiuOr8+ loHro 3BeAlrOo+ 8H4SiO4: BerAlrSiuOrs+ 2AlrSiO5+ l6HrO 3BerSiOo+ 2AlrSiO5+ 7H4SiO4: 2BerAlrSiuOr8+ l4H2o aBeAlsioloH) + Bersio4 + 7H4sio4:2BerAlrsiuors + 14Hro 2BeAlrOo+ BerSiOo+ 3H4SiOo: 4BeAlSiOr(OH)+ 4HrO.
    [Show full text]
  • The Nature of Waste Associated with Closed Mines in England and Wales
    The nature of waste associated with closed mines in England and Wales Minerals & Waste Programme Open Report OR/10/14 BRITISH GEOLOGICAL SURVEY MINERALS & WASTE PROGRAMME OPEN REPORT OR/10/14 The National Grid and other Ordnance Survey data are used with the permission of the The nature of waste associated Controller of Her Majesty’s Stationery Office. OS Topography © Crown with closed mines in England and Copyright. All rights reserved. BGS 100017897/2010 Wales Keywords Abandoned mine waste facilities; Palumbo-Roe, B and Colman, T England and Wales; mineral deposits; environmental impact; Contributor/editor European Mine Waste Directive. Cameron, D G, Linley, K and Gunn, A G Front cover Graiggoch Mine (SN 7040 7410), Ceredigion, Wales. Bibliographical reference Palumbo-Roe, B and Colman, T with contributions from Cameron, D G, Linley, K and Gunn, A G. 2010. The nature of waste associated with closed mines in England and Wales. British Geological Survey Open Report, OR/10/14. 98pp. Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and the Environment Agency that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. The views and statements expressed in this report are those of the authors alone and do not necessarily represent the views of the Environment Agency.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • High-Pressure Crystal Chemistry of Beryl (Beralrsi.Otr) and Euclase
    American Mineralogist, Volume 71, pages 977-984, 1986 High-pressurecrystal chemistry of beryl (BerAlrSi.Otr) and euclase(BeAlSiO4OH) Rosnnr M. HaznN, ANonpw Y. Au, Llnnv W. FrNcnn GeophysicalLaboratory, CarnegieInstitution of Washington, 2801 Upton Street,N.W., Washington, D.C. 20008 Ansrnlcr Compressibilities and high-pressurecrystal structures of beryl and euclasehave beon determined by X-ray methods at severalpressures. Beryl (hexagonal,space group P6/mcc) has nearly isotropic compressibility; linear compressibilitiesperpendicular and parallel to the c axis ateB':1.72 + 0.04 x l0-a kbar-'and B,:2.10 + 0.09 x 10-akbar-'. The correspondingbulk modulus is 1.70 + 0.05 Mbar if the pressurederivative of the bulk modulus K'is assumedto be 4. Euclase(monoclinic, spacegroup P2r/a)has anisotropic compression,with maximum compressibrlity of 2.44 + 0.05 x l0-a kbar-l parallel to the unique monoclinic b axis, and minimum compressibility of 1.50 + 0.03 x 10-a kbar-' approximately parallel to [01]. The intermediate axis of compressionhas a magnitude of 1.96 + 0.05 x lO-akbar-'in the a-c plane.The bulk modulus of euclaseis 1.59 t 0.03 Mbar if K' is assumedto be 4. The bulk moduli ofBe, Al, and Si cation coordination polyhedrain beryl are all consistent with 1.7 Mbar, which is the crystal bulk modulus. Beryl compressionoccurs primarily by shorteningof cation-anion bond distances.In euclase,the 2.3-Mbar polyhedralbulk moduli are significantly greater than the observed 1.6-Mbar crystal modulus. Compression in euclase,particularly along the b crystallographicaxis, results from a combination of poly- hedral compressionand changesin interpolyhedral angles.
    [Show full text]
  • Alphab Etical Index
    ALPHAB ETICAL INDEX Names of authors are printed in SMALLCAPITALS, subjects in lower-case roman, and localities in italics; book reviews are placed at the end. ABDUL-SAMAD, F. A., THOMAS, J. H., WILLIAMS, P. A., BLASI, A., tetrahedral A1 in alkali feldspar, 465 and SYMES, R. F., lanarkite, 499 BORTNIKOV, N. S., see BRESKOVSKA, V. V., 357 AEGEAN SEA, Santorini I., iron oxide mineralogy, 89 Boulangerite, 360 Aegirine, Scotland, in trachyte, 399 BRAITHWAITE, R. S. W., and COOPER, B. V., childrenite, /~kKERBLOM, G. V., see WILSON, M. R., 233 119 ALDERTON, D. H. M., see RANKIN, A. H., 179 Braunite, mineralogy and genesis, 506 Allanite, Scotland, 445 BRESKOVSKA, V. V., MOZGOVA, N. N., BORTNIKOV, N. S., Aluminosilicate-sodalites, X-ray study, 459 GORSHKOV, A. I., and TSEPIN, A. I., ardaite, 357 Amphibole, microstructures and phase transformations, BROOKS, R. R., see WATTERS, W. A., 510 395; Greenland, 283 BULGARIA, Madjarovo deposit, ardaite, 357 Andradite, in banded iron-formation assemblage, 127 ANGUS, N. S., AND KANARIS-SOTIRIOU, R., autometa- Calcite, atomic arrangement on twin boundaries, 265 somatic gneisses, 411 CANADA, SASKATCHEWAN, uranium occurrences in Cree Anthophyllite, asbestiform, morphology and alteration, Lake Zone, 163 77 CANTERFORD, J. H., see HILL, R. J., 453 Aragonite, atomic arrangements on twin boundaries, Carbonatite, evolution and nomenclature, 13 265 CARPENTER, M. A., amphibole microstructures, 395 Ardaite, Bulgaria, new mineral, 357 Cassiterite, SW England, U content, 211 Arfvedsonite, Scotland, in trachyte, 399 Cebollite, in kimberlite, correction, 274 ARVlN, M., pumpellyite in basic igneous rocks, 427 CHANNEL ISLANDS, Guernsey, meladiorite layers, 301; ASCENSION ISLAND, RE-rich eudialyte, 421 Jersey, wollastonite and epistilbite, 504; mineralization A TKINS, F.
    [Show full text]
  • Petrology of Nepheline Syenite Pegmatites in the Oslo Rift, Norway: Zr and Ti Mineral Assemblages in Miaskitic and Agpaitic Pegmatites in the Larvik Plutonic Complex
    MINERALOGIA, 44, No 3-4: 61-98, (2013) DOI: 10.2478/mipo-2013-0007 www.Mineralogia.pl MINERALOGICAL SOCIETY OF POLAND POLSKIE TOWARZYSTWO MINERALOGICZNE __________________________________________________________________________________________________________________________ Original paper Petrology of nepheline syenite pegmatites in the Oslo Rift, Norway: Zr and Ti mineral assemblages in miaskitic and agpaitic pegmatites in the Larvik Plutonic Complex Tom ANDERSEN1*, Muriel ERAMBERT1, Alf Olav LARSEN2, Rune S. SELBEKK3 1 Department of Geosciences, University of Oslo, PO Box 1047 Blindern, N-0316 Oslo Norway; e-mail: [email protected] 2 Statoil ASA, Hydroveien 67, N-3908 Porsgrunn, Norway 3 Natural History Museum, University of Oslo, Sars gate 1, N-0562 Oslo, Norway * Corresponding author Received: December, 2010 Received in revised form: May 15, 2012 Accepted: June 1, 2012 Available online: November 5, 2012 Abstract. Agpaitic nepheline syenites have complex, Na-Ca-Zr-Ti minerals as the main hosts for zirconium and titanium, rather than zircon and titanite, which are characteristic for miaskitic rocks. The transition from a miaskitic to an agpaitic crystallization regime in silica-undersaturated magma has traditionally been related to increasing peralkalinity of the magma, but halogen and water contents are also important parameters. The Larvik Plutonic Complex (LPC) in the Permian Oslo Rift, Norway consists of intrusions of hypersolvus monzonite (larvikite), nepheline monzonite (lardalite) and nepheline syenite. Pegmatites ranging in composition from miaskitic syenite with or without nepheline to mildly agpaitic nepheline syenite are the latest products of magmatic differentiation in the complex. The pegmatites can be grouped in (at least) four distinct suites from their magmatic Ti and Zr silicate mineral assemblages.
    [Show full text]
  • Manganese Deposits of Western Utah
    Manganese Deposits of Western Utah GEOLOGICAL SURVEY BULLETIN 979-A Manganese Deposits of Western Utah By MAX D. CRITTENDEN, JR. , MANGANESE DEPOSITS OF UTAH, PART 1 GEOLOGICAL SURVEY BULLETIN 979-A A report on known deposits west of the lllth meridian * UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 19S1 UNITED STATES DEPARTMENT OF THE INTERIOR Oscar L. Chapman, Secretary GEOLOGICAL SURVEY W. E. Wrather, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price 50 cents (paper cover) CONTENTS Fag* Abstract.__________________________________________________________ 1 Introduction._._____.__________----_______-______-_--_------.__-__ 1 History of mining and production__.._______.______.___.__-___-_____ 2 Occurrence and age of the deposits_________-_____-_.-__-__-_-__--_- 6 Mineralogy _--____._____---_--_---_------------------------------- 7 Descriptions of the manganese minerals....____.__--_____-__-..__ 8 Oxides...___-__.--_--------___-_-_.-- . _ 8 Carbonates.___-____.__-____________-_-___-----_--------__ 9 Silicate.,_ _____-----_____--__-_______-_---___-__--___._--. 9 Relative stability and manganese content______--_----------_----_ 10 Oxidation and enrichment._____________________________________ 10 Classification and origin of the deposits....______.__._____---.___.-_-_ 11 General discussion_____________________________________________ 11 Syngenetic deposits_-_--____-----_--------------_-------__-_-.- 13 Bedded depositS-__________-_____._____..__________________ 13 Spring
    [Show full text]
  • Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia
    minerals Article Chemical Composition and Petrogenetic Implications of Eudialyte-Group Mineral in the Peralkaline Lovozero Complex, Kola Peninsula, Russia Lia Kogarko 1,* and Troels F. D. Nielsen 2 1 Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia 2 Geological Survey of Denmark and Greenland, 1350 Copenhagen, Denmark; [email protected] * Correspondence: [email protected] Received: 23 September 2020; Accepted: 16 November 2020; Published: 20 November 2020 Abstract: Lovozero complex, the world’s largest layered peralkaline intrusive complex hosts gigantic deposits of Zr-, Hf-, Nb-, LREE-, and HREE-rich Eudialyte Group of Mineral (EGM). The petrographic relations of EGM change with time and advancing crystallization up from Phase II (differentiated complex) to Phase III (eudialyte complex). EGM is anhedral interstitial in all of Phase II which indicates that EGM nucleated late relative to the main rock-forming and liquidus minerals of Phase II. Saturation in remaining bulk melt with components needed for nucleation of EGM was reached after the crystallization about 85 vol. % of the intrusion. Early euhedral and idiomorphic EGM of Phase III crystalized in a large convective volume of melt together with other liquidus minerals and was affected by layering processes and formation of EGM ore. Consequently, a prerequisite for the formation of the ore deposit is saturation of the alkaline bulk magma with EGM. It follows that the potential for EGM ores in Lovozero is restricted to the parts of the complex that hosts cumulus EGM. Phase II with only anhedral and interstitial EGM is not promising for this type of ore.
    [Show full text]
  • Optical Properties of Common Rock-Forming Minerals
    AppendixA __________ Optical Properties of Common Rock-Forming Minerals 325 Optical Properties of Common Rock-Forming Minerals J. B. Lyons, S. A. Morse, and R. E. Stoiber Distinguishing Characteristics Chemical XI. System and Indices Birefringence "Characteristically parallel, but Mineral Composition Best Cleavage Sign,2V and Relief and Color see Fig. 13-3. A. High Positive Relief Zircon ZrSiO. Tet. (+) 111=1.940 High biref. Small euhedral grains show (.055) parallel" extinction; may cause pleochroic haloes if enclosed in other minerals Sphene CaTiSiOs Mon. (110) (+) 30-50 13=1.895 High biref. Wedge-shaped grains; may (Titanite) to 1.935 (0.108-.135) show (110) cleavage or (100) Often or (221) parting; ZI\c=51 0; brownish in very high relief; r>v extreme. color CtJI\) 0) Gamet AsB2(SiO.la where Iso. High Grandite often Very pale pink commonest A = R2+ and B = RS + 1.7-1.9 weakly color; inclusions common. birefracting. Indices vary widely with composition. Crystals often euhedraL Uvarovite green, very rare. Staurolite H2FeAI.Si2O'2 Orth. (010) (+) 2V = 87 13=1.750 Low biref. Pleochroic colorless to golden (approximately) (.012) yellow; one good cleavage; twins cruciform or oblique; metamorphic. Olivine Series Mg2SiO. Orth. (+) 2V=85 13=1.651 High biref. Colorless (Fo) to yellow or pale to to (.035) brown (Fa); high relief. Fe2SiO. Orth. (-) 2V=47 13=1.865 High biref. Shagreen (mottled) surface; (.051) often cracked and altered to %II - serpentine. Poor (010) and (100) cleavages. Extinction par- ~ ~ alleL" l~4~ Tourmaline Na(Mg,Fe,Mn,Li,Alk Hex. (-) 111=1.636 Mod. biref.
    [Show full text]
  • A Deposit of Manganese Ore in Wyoming
    A DEPOSIT OF MANGANESE ORE IN WYOMING. By EDWARD L. JONES, Jr. INTRODUCTION. Few manganese deposits are known in Wyoming, but one deposit in the Laramie Mountains that was reported to the United States Geological Survey was visited by the writer on October 5, 1917. At that time the deposit was being exploited by the Poverty Mining Co., of Laramie, and 200 tons of ore containing about 40 per cent of manganese was on the dumps, although no ore had been shipped. The deposit is opened by a tunnel and a drift 190 feet in total length, which connect with a shaft 25 feet deep. Six claims constitute the group, which was located April 11,1916. GEOGRAPHY. The deposit of the Poverty Mining Co. lies on a gently sloping mesa on the western flank of the Laramie Mountains, near the head of Sheep Creek, at an altitude of approximately 8,000 feet above sea level. It is accessible from Medicine Bow, on the Union Pacific Railroad, by a fair wagon road 38 miles long. Near the deposit Sheep Creek has eroded in the mesa a channel 250 feet deep, which 'affords a measure of the relief. The rainfall is moderate, and the vegetation consists principally of grasses and small shrubs. Water level has not been reached in the workings. GEOLOGY. The core of the Laramie Mountains is a coarse-grained red granite of pre-Cambrian age, but flanking it on the west side is a series of limestones and sandstones which range in age from Carboniferous to Cretaceous. These rocks underlie the mesa toward Medicine Bow.
    [Show full text]
  • ^ ^ the Journal Of
    ^^ The Journal of - Volume 29 No. 5/6 Gemmology January/April 2005 The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8TN Tel: +44 (0)20 7404 3334 • Fax: +44 (0)20 7404 8843 e-mail: [email protected] • Website: www.gem-a.info President: E A jobbins Vice-Presidents: N W Deeks, R A Howie, D G Kent, R K Mitchell Honorary Fellows: Chen Zhonghui, R A Howie, K Nassau Honorary Life Members: H Bank, D J Callaghan, E A Jobbins, J I Koivula, I Thomson, H Tillander Council: A T Collins - Chairman, S Burgoyne, T M J Davidson, S A Everitt, L Hudson, E A Jobbins, J Monnickendam, M J O'Donoghue, E Stern, P J Wates, V P Watson Members' Audit Committee: A J Allnutt, P Dwyer-Hickey, J Greatwood, B Jackson, L Music, J B Nelson, C H Winter Branch Chairmen: Midlands - G M Green, North East - N R Rose, North West -DM Brady, Scottish - B Jackson, South East - C H Winter, South West - R M Slater Examiners: A J Allnutt MSc PhD FGA, L Bartlett BSc MPhil FGA DCA, Chen Meihua BSc PhD FCA DGA, S Coelho BSc FCA DCA, Prof A T Collins BSc PhD, A G Good FCA DCA, D Gravier FGA, J Greatwood FGA, S Greatwood FGA DCA, G M Green FGA DGA, He Ok Chang FGA DGA, G M Howe FGA DGA, B Jackson FGA DGA, B Jensen BSc (Geol), T A Johne FGA, L Joyner PhD FGA, H Kitawaki FGA CGJ, Li Li Ping FGA DGA, M A Medniuk FGA DGA, T Miyata MSc PhD FGA, M Newton BSc DPhil, C J E Oldershaw BSc (Hons) FGA DGA, H L Plumb BSc FGA DCA, N R Rose FGA DGA, R D Ross BSc FGA DGA, J-C
    [Show full text]