Geochemical Journal, Vol. 55 (No. 4), Pp. 209-222, 2021

Total Page:16

File Type:pdf, Size:1020Kb

Geochemical Journal, Vol. 55 (No. 4), Pp. 209-222, 2021 Geochemical Journal, Vol. 55, pp. 209 to 222, 2021 doi:10.2343/geochemj.2.0630 10Be/9Be ratios of phenakite and beryl measured via direct Cs sputtering: Implications for selecting suitable Be carrier minerals for the measurement of low-level 10Be ATSUNORI NAKAMURA,1* ATSUYUKI OHTA,1 HIROYUKI MATSUZAKI2 and TAKASHI OKAI1 1Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan 2Micro Analysis Laboratory, Tandem Accelerator (MALT), The University Museum, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan (Received December 23, 2020; Accepted April 29, 2021) Preparing Be carrier solutions with low 10Be/9Be ratios is essential for the applications of in-situ-produced cosmogenic 10Be in geochronology. This is because commercially available Be carriers are non-negligibly contaminated by 10Be. Recently, in-house Be carriers have been successfully applied to samples that contain small amounts of in-situ-produced 10Be. The first step in preparing in-house Be carriers is selecting suitable Be-bearing minerals that contain less 10Be. Here, we present a simple method for selecting appropriate raw minerals for in-house Be carriers. That is, measuring the 10Be/ 9 10 9 Be ratios of Be-bearing minerals by direct Cs sputtering. Analyses of the Be/ Be ratios of phenakite (Be2SiO4) and beryl (Be3Al2Si6O18) obtained from a mineral collection at the Geological Survey of Japan indicate that phenakite gener- ally contains more 10B, interfering isobar of 10Be, than beryl. In addition to the necessity of finding raw materials that contain low 10Be, our results indicate that it is preferable to select a starting material with a low B concentration. Frag- ments of Be-bearing minerals from target samples were directly packed, and showed effective beam currents. Therefore, we anticipate that the direct packing method can also potentially be used to measure 10Be in Be-bearing minerals for geological applications. The measurement background of accelerator mass spectrometry was evaluated using a B-re- moved Be carrier solution. While B is partly adhered to hydroxide gel, we demonstrate that the hydroxide gel wash reduces B in a Be carrier solution. To highlight the 10Be/9Be ratios of Be-bearing minerals against commercially available Be solutions, we also investigated the 10Be/9Be ratios of commercially available Be solutions. Keywords: 10Be, cosmogenic nuclide, phenakite, beryl, beryllium carrier solution measurement of 10Be/9Be ratios using accelerator mass INTRODUCTION spectrometry (AMS). The 10Be concentrations are calcu- Lowering the measurement background of 10Be allows lated from the measured 10Be/9Be ratios and the amount us to broaden its applications in geochronology, and is of added 9Be. If a large amount of 10Be exists in the car- crucial for measuring in-situ-produced 10Be at geologi- rier, this overwrites the 10Be concentrations of the sam- cal settings with small amounts of nuclide accumulation. ples. This phenomenon cannot be corrected accurately by Although several challenges are associated with lower blank subtractions. The propagated uncertainties for 10Be background measures, preparation of in-house Be carrier concentrations in the samples are much smaller when the solutions from Be-bearing minerals has significantly im- 10Be/9Be ratios of the blanks are well below those of the proved the detection limit of measurements (Balco, 2011). samples. Therefore, Be carriers with low 10Be/9Be ratios Commercially available Be (9Be) carriers typically con- are required to measure low-level 10Be concentrations. tain a non-negligible amount of 10Be contamination, and Fortunately, the 10Be component of Be carriers was are, thus, less ideal for analysis (Middleton et al., 1984; recognized early in the development of 10Be analysis us- Bierman et al., 2002; Merchel et al., 2008; Balco, 2011; ing AMS (Middleton et al., 1984). However, in the 1980s Corbett et al., 2016). In laboratory procedures, a known and 1990s, a commercially variable Be carrier was the amount of Be carrier is added to samples to facilitate the only available solution for Be analysis (Balco, 2011). Subsequently, scientists developed a fusion method to prepare an in-house Be carrier from deep-mined beryl *Corresponding author (e-mail: [email protected]) (Stone, 1998) and an HF dissolving method for an in- Copyright © 2021 by The Geochemical Society of Japan. house Be carrier from phenakite (Merchel et al., 2008, 209 2013). For slightly more than a decade, in-house Be car- STUDY DESIGN riers have been successfully applied to samples that con- tain small amounts of in-situ-produced 10Be. These carri- Before presenting the 10Be/9Be ratios of the minerals, ers are used to date rocks with exposure ages of only a we first evaluated the background of AMS at the Micro few hundred years (e.g., Schaefer et al., 2009), to obtain Analysis Laboratory, Tandem accelerator (MALT), the remarkably fast denudation rates on steep landscapes (e.g., University of Tokyo, using an in-house Be carrier pre- Derrieux et al., 2014), to measure muon-produced 10Be pared at Purdue Rare Isotope Measurement (PRIME) labo- at deep depths (e.g., Braucher et al., 2011, 2013), and to ratory, Purdue University. Since preliminary measure- determine burial ages (e.g., Granger et al., 2015). Fur- ments indicated that the carrier contained a considerable thermore, in-house Be carriers have been successfully amount of 10B for measurements at MALT, we repeated used to measure in-situ-produced 10Be at unique settings the hydroxide wash to remove B from the carrier solu- such as the Greenland Ice Sheet Project Two (GISP2) tion. A hydroxide gel wash is a commonly used method bedrock core (Schaefer et al., 2016) and marine sediment to reduce B and other soluble elements from solution (von cores proximal to ice sheets (Bierman et al., 2016; Shakun Blanckenburg et al., 1996; Ochs and Ivy-Ochs, 1997; et al., 2018). Gosse and Phillips, 2001; Simon et al., 2013). However, Before conducting chemical procedures to prepare an to the best of our knowledge, the B reduction rate has not in-house Be carrier, suitable Be-bearing minerals that been reported with actual experimental data. This study contain only trace amounts of 10Be are required as the documents the sequential removal of B and reports the raw material. However, whether the occurrence of such efficiency of the hydroxide gel wash method. We then minerals is rare or common among available Be-bearing analyze the 10Be/9Be ratios of the Be-bearing minerals, minerals remains uncertain. Once the appropriate Be-bear- demonstrating the implications of selecting the appropri- ing minerals are located, Be is extracted from the min- ate minerals for an in-house Be carrier. Finally, we show eral following one of the well-documented procedures the 10Be/9Be ratios of commercial Be carrier solutions and (Stone, 1998; Merchel et al., 2008, 2013). Preliminary discuss possible origins of 10Be in the solutions. measurements of 10Be/9Be from the selected Be-bearing minerals prevents processing whole minerals that yield MATERIALS AND METHODS high 10Be/9Be ratios. In addition to the expense and time- consumption of processing a Be-bearing mineral with high Preparation of in-house Be carrier 10Be/9Be ratios, researchers are spared the difficulty of The ‘low-level Be carrier’ (2017.11.17-Be, bottle extracting from minerals that do not dissolve easily such number 20) was provided by PRIME lab, Purdue Univer- as beryl and phenakite (Langmyhr and Sveen, 1965). Here, sity, and is referred to hereafter as the original carrier. we present the details of 10Be/9Be measurements from Be- The carrier solution was made from phenakite. The con- bearing minerals without chemical treatment as a simple centration of Be was 1074 ± 8 µg/g (e.g., Lesnek et al., pioneer method for selecting appropriate Be-bearing min- 2020) and the recommended value of 10Be/9Be was 5 ± 1 erals. This study is motivated by the research of Merchel × 10–16. We prepared four targets with minimal treatments et al. (2013), who briefly reported a test measurement of to avoid possible contamination. In small quartz vials, untreated phenakite fragments before preparing an in- 300 µg of Be aliquots were evaporated, converted to BeO, house Be carrier solution. Our research revisits the method mixed with Nb at an approximately 1:1 molar ratio, and and provides details of pressing mineral fragments into pressed into Cu cathodes. cathodes and analyzing the resultant beam currents over sputtering time. We selected samples of phenakite and Boron removal from the in-house Be carrier beryl stored in the mineral collection at the Geological The direct evaporation procedure revealed high 10Be/ Museum, Geological Survey of Japan (GSJ), National 9Be ratios of 6–10 × 10–15 due to 7Be tails from the reac- Institute of Advanced Industrial Science and Technology tion of 10B(p,α)7Be (see results sections below). There- (AIST), to demonstrate an appropriate and cautious man- fore, we conducted hydroxide washes to remove B from ner for selecting minerals for in-house Be carrier prepa- the carrier solution. Thirty grams of the original carrier ration. Phenakite (Be2SiO4) is a rare mineral compared (2017.11.17-Be, bottle number 20) was transferred to a to beryl (Be3Al2Si6O18) and is difficult to obtain. How- 50 mL polypropylene tube. The hydroxide precipitate ever, phenakite has the advantage of not containing Al. washing procedure consisted of two stages (Fig. 1). The 26 2+ Given that in-situ-produced Al is often measured along- first wash precipitated Be(OH)2 from the Be solution at 10 side in-situ-produced Be, Al needs to be removed when a pH of 8 after adding 30% NH4OH. This was followed preparing an in-house Be carrier from beryl (Stone, 1998).
Recommended publications
  • Phase Equilibria and Thermodynamic Properties of Minerals in the Beo
    American Mineralogist, Volwne 71, pages 277-300, 1986 Phaseequilibria and thermodynamic properties of mineralsin the BeO-AlrO3-SiO2-H2O(BASH) system,with petrologicapplications Mlnx D. B.qnroN Department of Earth and SpaceSciences, University of California, Los Angeles,Los Angeles,California 90024 Ansrru,cr The phase relations and thermodynamic properties of behoite (Be(OH)r), bertrandite (BeoSirOr(OH)J, beryl (BerAlrSiuO,r),bromellite (BeO), chrysoberyl (BeAl,Oo), euclase (BeAlSiOo(OH)),and phenakite (BerSiOo)have been quantitatively evaluatedfrom a com- bination of new phase-equilibrium, solubility, calorimetric, and volumetric measurements and with data from the literature. The resulting thermodynamic model is consistentwith natural low-variance assemblagesand can be used to interpret many beryllium-mineral occurTences. Reversedhigh-pressure solid-media experimentslocated the positions of four reactions: BerAlrSiuO,,: BeAlrOo * BerSiOo+ 5SiO, (dry) 20BeAlSiOo(OH): 3BerAlrsi6or8+ TBeAlrOo+ 2BerSiOn+ l0HrO 4BeAlSiOo(OH)+ 2SiOr: BerAlrSiuO,,+ BeAlrOo+ 2H2O BerAlrSiuO,,+ 2AlrSiOs : 3BeAlrOa + 8SiO, (water saturated). Aqueous silica concentrationswere determined by reversedexperiments at I kbar for the following sevenreactions: 2BeO + H4SiO4: BerSiOo+ 2H2O 4BeO + 2HoSiOo: BeoSirO'(OH),+ 3HrO BeAlrOo* BerSiOo+ 5H4Sio4: Be3AlrSiuOr8+ loHro 3BeAlrOo+ 8H4SiO4: BerAlrSiuOrs+ 2AlrSiO5+ l6HrO 3BerSiOo+ 2AlrSiO5+ 7H4SiO4: 2BerAlrSiuOr8+ l4H2o aBeAlsioloH) + Bersio4 + 7H4sio4:2BerAlrsiuors + 14Hro 2BeAlrOo+ BerSiOo+ 3H4SiOo: 4BeAlSiOr(OH)+ 4HrO.
    [Show full text]
  • Heat Capacities and Thermodynamic Functions for Beryl, Beralrsiuotr
    American Mineralogist, Volume 7I, pages 557-568, 1986 Heat capacitiesand thermodynamicfunctions for beryl, BerAlrSiuOtr, phenakite, BerSiOn,euclase, BeAlSiOo(OH)' bertranditeo BeoSirOt(OH)r,and chrysoberyl' BeAl2Oa B. S. HnluNcw.q,Y U.S. GeologicalSurvey, Reston, Y irgrnia22092 M. D. B.nnroN Departmentof Earthand SpaceSciences, University of California,Los Angeles,Los Angeles,California 90024 R. A. Ronrn, H. T. HLsnr.roN, Jn. U.S. GeologicalSurvey, Reston, Y irginia22092 Ansrru,cr The heat capacities of beryl, phenakite, euclase,and bertrandite have been measured betweenabout 5 and 800 K by combined quasi-adiabaticcryogenic calorimetry and dif- ferential scanningcalorimetry. The heat capacitiesof chrysoberylhave beenmeasured from 340 to 800 K. The resulting data have been combined with solution and phase-equilibrium experimentaldata and simultaneouslyfit using the program pHAS2oto provide an internally consistent set of thermodynamic properties for several important beryllium phases.The experimentalheat capacitiesand tablesof derived thermodynamic propertiesare presented in this report. The derived thermodynamic properties at I bar and 298.15 K for the stoichiometric beryllium phasesberyl, phenakite, euclase,and bertrandite are entropies of 346.7 + 4.7, 63.37+0.27,89.09+0.40, andl72.l+0.77 J/(mol'K),respectively,andGibbsfree energiesof formation(elements) of -8500.36 + 6.39, -2028.39 + 3.78, -2370.17 + 3.04, and -4300.62 + 5.45 kJlmol, respectively,and, -2176.16 + 3.18kJ/mol for chrysoberyl. The coefficientscr to c, of the heat-capacityfunctions are as follows: valid phase ct c2 c, x 105 c4 c, x 10-6 range beryl 1625.842 -0.425206 12.0318 -20 180.94 6.82544 200-1800K phenakite 428.492 -0.099 582 1.9886 -5 670.47 2.0826 200-1800K euclase 532.920 -0.150729 4.1223 -6726.30 2.1976 200-1800K bertrandite 825.336 -0.099 651 -10 570.31 3.662r7200-1400 K chrysoberyl 362.701 -0.083 527 2.2482 -4033.69 -6.7976 200-1800K whereC!: cr * ctT + crT2 * coT-os* crT-2and Zisinkelvins.
    [Show full text]
  • The Seven Crystal Systems
    Learning Series: Basic Rockhound Knowledge The Seven Crystal Systems The seven crystal systems are a method of classifying crystals according to their atomic lattice or structure. The atomic lattice is a three dimensional network of atoms that are arranged in a symmetrical pattern. The shape of the lattice determines not only which crystal system the stone belongs to, but all of its physical properties and appearance. In some crystal healing practices the axial symmetry of a crystal is believed to directly influence its metaphysical properties. For example crystals in the Cubic System are believed to be grounding, because the cube is a symbol of the element Earth. There are seven crystal systems or groups, each of which has a distinct atomic lattice. Here we have outlined the basic atomic structure of the seven systems, along with some common examples of each system. Cubic System Also known as the isometric system. All three axes are of equal length and intersect at right angles. Based on a square inner structure. Crystal shapes include: Cube (diamond, fluorite, pyrite) Octahedron (diamond, fluorite, magnetite) Rhombic dodecahedron (garnet, lapis lazuli rarely crystallises) Icosi-tetrahedron (pyrite, sphalerite) Hexacisochedron (pyrite) Common Cubic Crystals: Diamond Fluorite Garnet Spinel Gold Pyrite Silver Tetragonal System Two axes are of equal length and are in the same plane, the main axis is either longer or shorter, and all three intersect at right angles. Based on a rectangular inner structure. Crystal shapes include: Four-sided prisms and pyramids Trapezohedrons Eight-sided and double pyramids Icosi-tetrahedron (pyrite, sphalerite) Hexacisochedron (pyrite) Common Tetragonal Crystals: Anatase Apophyllite Chalcopyrite Rutile Scapolite Scheelite Wulfenite Zircon Hexagonal System Three out of the four axes are in one plane, of the same length, and intersect each other at angles of 60 degrees.
    [Show full text]
  • THE BIRON HYDROTHERMAL SYNTHETIC EMERALD by Robert E
    THE BIRON HYDROTHERMAL SYNTHETIC EMERALD By Robert E. Kane and Richard T. Liddicoat, ]r. A new synthetic emerald grown in Western merald was first synthesized by Ebelman in 1848 by Australia is now commercially available E adding natural emerald powder to a molten boric acid as faceted stones. Infrared spectra revealed flux, which produced very small prismatic emerald crys- the presence of water, thereby confirming tals as the mixture cooled. In the ensuing years, the flux that these synthetic emeralds are synthe- growth of synthetic emerald was achieved by many re- sized by a hydrothermal process. Chemical searchers (Nassau, 1980; Sinkankas, 198 1). In 1957, the analysis showed that they contain vana- dium as well as lesser amounts of chro- growth of minute beryl crystals by a hydrothermal process mium. This new synthetic exhibits some was first reported [Wyart and ¤6avnic~r1957). Although characteristics that are distinctly different many processes for growing synthetic emerald hydro- from other synthetic emeralds and there- thermally have been described since then (summarized in fore must now be considered when identi- Sinkankas, 1981),until recently only three major produc- fying emeralds. In addition to distinctive tions of hydrothermal synthetic emerald have been com- inclusions such as gold, the Biron synthetic mercially available to the jewelry trade: Linde (patented is inert to ultraviolet radiation, has a spe- process now owned by Regency), Lechleitner (full syn- cific gravity of 2.68 -2.71, and refractive thetic in addition to overgrowth), and, most recently, those indices of = 1,569 and (D = 1.573. This ar- grown in the Soviet Union (see Talzubo, 1979).
    [Show full text]
  • Download the Scanned
    American Mineralogist, Volume 63, pages 664_676, l97g Multisyste_msanalysis of beryiliumminerar stabilities: the systemBeO-A[rOa_SiO2_H2O DoNer.n M. Bunr Department of Geology, Arizona State (Jniuersitv Tempe,Arizona8528I Abstract seven commonly associatedminerals in the systemBeo-Alror-Sior-Hro includechry- soberyl,phenakite, euclase,bertrandite, beryl, kaolinite,and qiuit . The phaserule implies that not more than six of theseminerals can coexistat an invariantpoint, and, with the addition of an aqueousphase, the associationconstitutes an (n * 4; ptrase(negative two d-egreesof freedom)multisystem. The apparentincompatibility of taotinite with phenakite allowsthe splitting of this unwieldymultisystem into two smaller(n + 3) phasemultisystems, which may belabeled (Kao) and (phe).Moiar volumedata, compuier program RrlcrroN, and naturalassemblages can then be usedto derivethe presumablystabie cJnfiguration of these multisystemson p"-minus an isothermal pHro diagram. n, p-r diagramprojected through theaqueous phase shouldhave the sametopology, and cansimilarlf be drawn. on the resultingdiagrams, three . invariant-butpoinis rabeled tchrl, tBr;;, and [etz] arestable in the.multisystem (Kao), and threedistinct identically-fuU"i.Opoint, u.. stablein rhe multisystem(Phe). An implicationof this topologyvia ihe "r.tu.tubl"-rtable correspon- dence,"is that the assemblagephenakite + euclase* beryl(* aqueousphase) has a finite i'I;ix, ii,l'J.?lT"t' ::ff,,,j :r;: :":.T' ? ts why" euclase is muchrarer than bertrandite. and its stabilityfield, especially
    [Show full text]
  • Geochemistry and Genesis of Beryl Crystals in the LCT Pegmatite Type, Ebrahim-Attar Mountain, Western Iran
    minerals Article Geochemistry and Genesis of Beryl Crystals in the LCT Pegmatite Type, Ebrahim-Attar Mountain, Western Iran Narges Daneshvar 1 , Hossein Azizi 1,* , Yoshihiro Asahara 2 , Motohiro Tsuboi 3 , Masayo Minami 4 and Yousif O. Mohammad 5 1 Department of Mining Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj 66177-15175, Iran; [email protected] 2 Department of Earth and Environmental Sciences, Graduate School of Environmental Studies, Nagoya University, Nagoya 464-8601, Japan; [email protected] 3 Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda 669-1337, Japan; [email protected] 4 Division for Chronological Research, Institute for Space-Earth Environmental Research, Nagoya University, Nagoya 464-8601, Japan; [email protected] 5 Department of Geology, College of Science, Sulaimani University, Sulaimani 46001, Iraq; [email protected] * Correspondence: [email protected]; Tel.: +98-918-872-3794 Abstract: Ebrahim-Attar granitic pegmatite, which is distributed in southwest Ghorveh, western Iran, is strongly peraluminous and contains minor beryl crystals. Pale-green to white beryl grains are crystallized in the rim and central parts of the granite body. The beryl grains are characterized by low contents of alkali oxides (Na2O = 0.24–0.41 wt.%, K2O = 0.05–0.17 wt.%, Li2O = 0.03–0.04 wt.%, Citation: Daneshvar, N.; Azizi, H.; and Cs2O = 0.01–0.03 wt.%) and high contents of Be2O oxide (10.0 to 11.9 wt.%). The low contents Asahara, Y.; Tsuboi, M.; Minami, M.; of alkali elements (oxides), low Na/Li (apfu) ratios (2.94 to 5.75), and variations in iron oxide Mohammad, Y.O.
    [Show full text]
  • Gemmological Association and Gem Testing Laboratory of Great Britain
    Gemmology Volume 26 No. 7 The Gemmological Association and Gem Testing Laboratory of GreatvBritain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8TN Tel: 020 7404 3334 Fax: 020 7404 8843 e-mail: [email protected] Website: www.gagtl.ac.uk/gagtl President: Professor R.A. Howie Vice-Presidents: E.M. Bruton, A.E. Farn, D.G. Kent, R.K. Mitchell Honorary Fellows: Chen Zhonghui, R.A. Howie, R.T. Liddicoat Jnr, K. Nassau Honorary Life Members: H. Bank, DJ. Callaghan, E.A. Jobbins, H. Tillander Council of Management: T.J. Davidson, N.W. Deeks, R.R. Harding, I. Mercer, J. Monnickendam, MJ. O'Donoghue, E. Stern, I. Thomson, V.P. Watson Members' Council: A.J. Allnutt, P. Dwyer-Hickey, S.A. Everitt, A.G. Good, J. Greatwood, B. Jackson, L. Music, J.B. Nelson, P.G. Read, R. Shepherd, PJ. Wates, C.H. Winter Branch Chairmen: Midlands - G.M. Green, North West -1. Knight, Scottish - B. Jackson Examiners: A.J. Allnutt, M.Sc, Ph.D., FGA, L. Bartlett, B.Sc., M.Phil., FGA, DGA, E.M. Bruton, FGA, DGA, S. Coelho, B.Sc, FGA, DGA, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, DGA, J. Greatwood, FGA, G.M. Howe, FGA, DGA, B. Jackson, FGA, DGA, G.H. Jones, B.Sc, Ph.D., FGA, M. Newton, B.Sc, D.Philv CJ.E. Oldershaw, B.Sc. (Hons), FGA, H.L. Plumb, B.Sc, FGA, DGA, R.D. Ross, B.Sc, FGA, DGA, PA. Sadler, B,Sc, FGA, DGA, E. Stern, FGA, DGA, S.M.
    [Show full text]
  • Mineralogy and Petrology of the Amazonite Pegmatite at Bakstevalåsen, Øvre Eiker
    Master Thesis, Department of Geosciences Mineralogy and petrology of the amazonite pegmatite at Bakstevalåsen, øvre Eiker Øyvind Sunde Mineralogy and petrology of the amazonite pegmatite at Bakstevalåsen, øvre Eiker Øyvind Sunde Master Thesis in Geosciences Discipline: Geology Department of Geosciences Faculty of Mathematics and Natural Sciences University of Oslo July 2013 © Øyvind Sunde, 2013 Supervised by associate prof. Rune S. Selbekk and prof. Tom Andersen Cover picture: Hand specimen of the amazonite pegmatite at Bakstevalåsen measuring a 15 cm cross-section with amazonite matrix and abundant danalite. This work is published digitally through DUO – Digitale Utgivelser ved UiO http://www.duo.uio.no It is also catalogued in BIBSYS (http://www.bibsys.no/english) All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Acknowledgements This thesis marks the end of a 5 –year period of time with relentless studies at the Department of Geosciences, University of Oslo. There are many people I have met during this 5-year ride who in various ways have contributed in shaping my interest for geology. I have never, ever, regretted my decision on setting sail onto this journey. You all know who you are and a huge thank you! My thesis would not have been possible without the help of several clever individuals, and I would like to aim a special appreciation to the following personnel: Rune Selbekk: first of all, thank you for letting me volunteer at the natural History Museum during my infant years of studying. It brought more geology into a curriculum diluted with meteorology and philosophy.
    [Show full text]
  • Bulletin 30, Gem Stone Resources of South Carolina
    GEM STONE RESOURCES OF SOUTH CAROLINA By CAMILLA K. McCAULEY BULLETIN NO. 30 DIVISION OF GEOLOGY STATE DEVELOPMENT BOARD COLUMBIA, SOUTH CAROLINA 1964 STATE DEVELOPMENT BOARD Columbia, South Carolina MEMBERS OF BOARD W. W. Harper Director J. Bratton Davis, Chairman Columbia Hampton G. Anderson Anderson Russell E. Bennett Cheraw „.,., „ Sumter Clifton Brown Elting L. Chapman, Jr. Florence John F. Clarkson Newberry W. K. Gunter, Jr. Gaffney A. Foster McKissick Easley Connie R. Morton Rock Hill R. RoyPearce Columbia Walter P. Rawl Gilbert Joseph P. Riley Charleston Thomas S. Taylor Orangeburg Stathy J. Verenes Aiken E. Craig Wall Conway Bernard Warshaw Walterboro R. M. Cooper (honorary) Wisacky mm mm* STATE DEVELOPMENT BOARD Columbia, South Carolina To The Honorable Donald S. Russell Governor of South Carolina Sir: Submitted herewith is State Development Board Bulletin 30, Gem Stone Resources of South Carolina. This report by Camilla K. McCauley was prepared as part of the Division of Geology's continuing program of investigation of the geo logy and mineral resources of the State. mi Sincerely, Walter W. Harper, Director Henry S. Johnson, Jr. , State Geologist 3H CONTENTS Page Abstract 1 Introduction 1 History and production 2 Occurrence 11 Igneous rocks 11 Metamorphic rocks 12 Aqueous solutions and organic accumulations 13 Placer deposits 13 South Carolina gem stone deposits 13 Beryl (emerald) 16 Beryl (other varieties) 16 Corundum (ruby and sapphire) 16 Diamond 17 Garnet 18 Quartz 18 S illimanit e 19 Topaz 19 Tourmaline 20 Zircon 20 Uses 26 Properties of gem stones 26 Mining and beneficiation methods 27 Prices 27 Reserves 28 29 Synthetics 29 Outlook 30 References 31 Index ILLUSTRATIONS Page Figure 1- Generalized geologic map of South Carolina 14 2.
    [Show full text]
  • Rockhounds Herald
    The official bulletin of the Dothan Gem & Mineral Club, Inc. Rockhounds Herald 920 Yorktown Road, Dothan, AL 36301-4372 www.wiregrassrockhounds.com July 2013 Words from… The President We had a great turnout for the June Social—about 30 folks—and enough food to feed twice that number! Lots of nice prizes went home with new owners, too, following the m-a-n-y variations of Bingo we played. At this month’s social, we’ll be offering a different form of post-eating entertainment: a Buy, Sell & Trade Event. If you have rocks and specimens you’d like to clear out, bring them with you to the fellowship hall on Saturday, July 27th. Also, in case we have as many leftovers as we did last time, you may want to bring a few storage containers to take some food home. No point in such good eats going to waste. You’ll notice in the Announcements section that JoAn’s beading class has been cancelled for the moment, but check out Page 2 of the newsletter for a simple beading project you can do on your own. And, Elliott is still in need of a few specimens for the Alabama geology collection he is building. Hope to see everyone at the July Social on the 27th. Jeff Announcements July Social – Join us for food, fellowship and a “Buy, Sell & Trade Event” on Saturday, July 27th at the Tabernacle Fellowship Hall. Bring your favorite dish to eat and if you have stashes of gems, minerals, or other rock-related stuff, bring your extras and those of us who still have room in our collections will gladly help you downsize.
    [Show full text]
  • Physics and Chemistry of Beryllium A
    Physics and chemistry of beryllium A. James Stonehouse Materion Beryllium & Composites, Elmore, Ohio 43416 (Received 19 August 1985; accepted 8 October 1985) The combination of properties of beryllium which results in this very low Z element being a candidate for use in fusion reactors is reviewed. The occurrence, availability, and processing of beryllium from both bertrandite (domestic) and beryl (imported) ores are described. The available beryllium grades are characterized. The purity level of these grades, which are all unalloyed in the usual sense, is presented in detail. The crystallographic factors which establish the physical and me- chanical characteristics are reviewed. Powder metallurgy techniques are used almost exclusively to provide beryllium with modest ductility at room temperature (e.g., 3% tensile elongation) and excellent strain capacity at elevated temperature ( > 40% tensile elongation at 400°C). The metallurgical behavior of the powder metallurgy product is summarized. The physical properties of this low density metal (1.85 g/cm3) are reviewed with emphasis on the favorable thermal properties. Mechani- cal properties at room and elevated temperature are presented. The solubility and reactivity of hydrogen with beryllium are both nil while it is an extremely good “getter” for small amounts of oxygen. The combination of beryllium characteristics which has led to the proposed use of beryllium in tokamak reactors as limiter surfaces and in fusion breeders as a neutron multiplying shield are reviewed. l. INTRODUCTION Beryllium, atomic number 4, is a silver gray metal of low density (1.85 g/cm3), moderately high melting point (1287°C ), and quite good stability in the atmosphere.
    [Show full text]
  • THE JOURNAL of GEMMOLOGY and PROCEEDINGS of the GEMMOLOGICAL ASSOCIATION of GREAT BRITJ\IN
    Vol. IX No. 12 October. 1965 THE JOURNAL OF GEMMOLOGY and PROCEEDINGS OF THE GEMMOLOGICAL ASSOCIATION OF GREAT BRITJ\IN GEM MOL 0 G I CAL ASS 0 C I A TI 0 N OF GREAT BRITAIN SAINT DUNSTAN'S HOUSE. CAREY LANE LONDON, E.C.2 GEMMOLOGICAL ASSOCIATION OF GREAT BRITAIN (Originally founded in 1908 as the Education Committee tif the National Association tif Goldsmiths, reconstituted in 1931 as the Gemmological Association) Past Presidents: Sir Henry Miers, D.Sc., M.A., F.R.S. Sir Willimn Bragg, O.M., K.B.E., F.R.S. Dr. G. F. Herbert Snrltb. C.B.E., M.A., D.Se. OFFICERS AND COUNCIL President: Sir Lawrence Bragg, F.R.S. Vice-Presidents: Edward H. Kraus, Ph.D., Sc.D. F. H. Knowles-Brown, F.S.M.C., F.G.A. Chairman: Nor:m.an Harper, F.G.A. Vice-Chairman: P. W. T. Riley, F.G.A. Treasurer: F. E. Lawson Clarke, F.G.A. Elected Fellows: T. Bevis-S:m.ith Miss I. Hopkins D. J. Ewing W. C. Buckingha:m. R. Webster W. Stern E. H. Rutland, Ph.D. C. T. Mason, O.B.E., F.R.I.C., M.A. E. R. Levett J. M. McWillia:m. (co-opted) M. Asprey (co-opted) Examiners: G. F. Claringbull, B.Sc., Ph.D. B. W. Anderson, B.Sc., F.G.A. J. R. H. Chishol:m., M.A., F.G.A. A.J. Allnutt, M.Sc., F.G.A. S. Tolansky, D.Sc., F.R.S. Instructors: R. K. Mitchell, F.G.A., Mrs.
    [Show full text]