Crystallography and Structure – the Story of Carbon

Total Page:16

File Type:pdf, Size:1020Kb

Crystallography and Structure – the Story of Carbon BCU Diamond Simulants: Beyond the obvious © BCU/ASF 2017 BCU Diamonds: The most sought after material on the planet, and the only gemstone to be made of one single element. The strongest of bonds, formed only under intense heat and pressure can turn carbon into diamond…..without these, it’s simply coal. Temperature: > 900oC Pressure: 45Kbar “Perhaps times definition of coal is the diamond” (Khalil Gibran) Source: Junkee.com © BCU/ASF 2017 BCU Synthetic diamond: Various different methods have been employed to create synthetic diamonds, which, in most cases, can’t be identified without advanced lab equipment. HPHT: Belt and BARS, toroid presses, cubic presses CVD APHT LPHT Source: YAESS Source: Apollo Diamonds NPCD Source: GIA Source: GIA © BCU/ASF 2017 BCU Imitations: Just because it looks and shines like a diamond doesn’t necessarily make it one. (Edmond Mbiaka) A simulant/imitation is a natural or synthetic material that is used to imitate the effect, colour, and appearance of another gem material (diamond) without possessing the same chemical and physical properties. As diamond is the most sought after of gems, there have been innumerable attempts to imitate it, with varying degrees of success! © BCU/ASF 2017 BCU Imitations/Simulants Common simulants include; Cubic Zirconia Synthetic Moissanite Less common simulants include; Quartz (natural or synthetic) Pollucite Bismuth germinate Sapphire (natural or synthetic) Synthetic rutile Lithium niobate Topaz Strontium titanate Synthetic forsterite Spinel (natural or synthetic) Yttrium aluminium Garnet-topped doublets Zircon garnet (YAG) Glass/paste Gadolinium gallium garnet (GGG) © BCU/ASF 2017 BCU Topaz….. Source: GCI Source: GCI Top: fashioned topaz crystals Bottom: natural diamond crystals Source: GCI Source: GIA © BCU/ASF 2017 BCU Diamond Easiest way to spot an imitation…… know what a diamond looks like! Only a diamond looks like a diamond – all imitations have Source: Shutterstock features that help differentiate them. © BCU/ASF 2017 BCU Diamond Flat smooth facet Sharp, straight edges Precise junctions Source: GIA © BCU/ASF 2017 BCU The simulants: Two main simulants on the market today: Cubic zirconia Synthetic Moissanite Source: Nathaan gem & Jewellery Source: Starsgems © BCU/ASF 2017 BCU Cubic Zirconia This simulant was introduced in the 1970’s, as an inexpensive diamond imitation. It is a zirconium oxide, stabilised to maintain a cubic form by the addition of various elements such as calcium, yttrium and neodymium, some of which can also add colour to the stone. Source: Syntheticgems.org Source: A.S.Fellows Source: Syntheticgems.org © BCU/ASF 2017 BCU Detection: • Differentiating between CZ and diamond is a task usually accomplished with the 10x loupe. Important factors include; • Poor faceting (rounded edges, misaligned facets) NB Can be cut extremely accurately! • Lack of inclusions • Colourless (D) through to fancy colour • Girdle condition on a CZ is usually ground, which creates identifiable grinding lines. • Lower lustre (bright vitreous as opposed to adamantine) • Higher fire/dispersion – 0.058 to 0.066 • Greater density – 5.6 to 6.0 • Lower thermal conductivity (thermal tester) © BCU/ASF 2017 BCU Features: Rounded facet edges, misaligned junctions, Source: Gem-A Grinding lines on girdle Source: GIA © BCU/ASF 2017 BCU Synthetic Moissanite First seen in gem quality in 1998, synthetic moissanite is the gem quality version of Silicon carbide, more commonly known as the industrial abrasive, carborundum (used since 1893). Source: Mindat Source: JTV Source: Mindat © BCU/ASF 2017 BCU Detection: • Differentiating between synthetic moissanite and diamond is a task again usually accomplished with the 10x loupe. Important factors include; • High degree of double refraction, dependent upon viewing angle. • Thin hair/thread-like inclusions, running perpendicular to the table, • Increased fire (due to double refraction) – 0.104 • Similar SG to diamond - 3.22 • Girdle is usually polished, to reduce the number of facet edges to be optically doubled. • Overlapping thermal conductivity with diamond but synthetic moissanite is an electrical conductor, whilst diamond is an insulator. © BCU/ASF 2017 BCU Detection: Thin parallel growth Diamond – tubes in synthetic Optically moissanite isotropic Source: GIA Synthetic Synthetic moissanite moissanite, showing – Optically greater dispersion anisotropic than diamond. (Double refraction) Source: Callagold © BCU/ASF 2017 BCU Other Simulants: Over the years, many other materials have been use to imitate diamonds, but few have been as popular as CZ or Synthetic moissanite…….these include: Glass/paste: Synthetic Spinel Synthetic Sapphire Dispersion: 0.041. Dispersion: 0.020. Dispersion: 0.018. Reflectivity: 4% Reflectivity: 7.1% Reflectivity: 7.6% Source: JTV Source: GIA Source: GIA © BCU/ASF 2017 BCU Other Simulants: Source: GIA Over the years, many other materials have been use to imitate diamonds, but few have been as popular as CZ ands Synthetic moissanite…….these include: Zircon: Strontium titanate Lithium niobate Dispersion: 0.039. Dispersion: 0.190. Dispersion: 0.130. Reflectivity: 8.3% Reflectivity: 17.1% Reflectivity: 15.5% Source: GIA Source: JTV Source: JSG © BCU/ASF 2017 BCU Other Simulants: Over the years, many other materials have been use to imitate diamonds, but few have been as popular as CZ ands Synthetic moissanite…….these include: Yttrium aluminium Gadolinium gallium Bismuth germinate garnet (YAG) garnet (GGG) Dispersion: 0.029. Dispersion: 0.028. Dispersion: 0.045. Reflectivity: 19.3% Reflectivity: 8.6% Reflectivity: 10.7% Source: JSG Source:Source: JSG JTV Source: JSG © BCU/ASF 2017 BCU Other Simulants: Over the years, many other materials have been use to imitate diamonds, but few have been as popular as CZ ands Synthetic moissanite…….these include: Synthetic rutile: Phenakite: Synthetic forsterite: Dispersion: 0.280. Dispersion: 0.015. Dispersion: 0.020. Reflectivity: 20% Reflectivity: 6% Reflectivity: 6% Source: JTV Source: Gemdat Source: GIA © BCU/ASF 2017 BCU Other Simulants: Over the years, many other materials have been use to imitate diamonds, but few have been as popular as CZ ands Synthetic moissanite…….these include: Danburite: Topaz: Pollucite: Dispersion: 0.017. Dispersion: 0.014. Dispersion: 0.012. Reflectivity: 5.7% Reflectivity: 5.4% Reflectivity: 4.1% Source: GIA Source: JTV Source: GIA © BCU/ASF 2017 BCU Composites: Besides single material imitations, multi-layered materials have been used to create the appearance of singe stones. Diamond - Diamond: Corundum - Strontium Titanate Synthetic Spinel – Strontium Titanate Synthetic Spinel – Lithium Niobate Garnet-topped Doublet © BCU/ASF 2017 BCU Coatings: One of the latest developments onto the market – diamond coatings to the surface of various materials. Diamond - CZ Diamond - Phenakite Diamond – Synthetic moissanite © BCU/ASF 2017 BCU The future……? ? © BCU/ASF 2017.
Recommended publications
  • Finish, Culet Size, and Girdle Thickness: Categories of the GIA Diamond Cut Grading System
    Finish, Culet Size, and Girdle Thickness: Categories of the GIA Diamond Cut Grading System This booklet summarizes the relationship of Finish, Culet Size, and Girdle Thickness to the GIA Cut Grading System for round brilliant diamonds. It is intended to help members of the jewelry trade better understand the attributes of diamond appearance, and how those attributes are evaluated within the GIA Cut Grading System. Finish—Polish and Symmetry In the GIA Cut Grading System for standard round brilliant To determine the relationship between finish and overall diamonds, finish (for Polish and Symmetry features) is cut quality, GIA conducted extensive observation testing factored into the final overall cut grade as follows: of numerous diamonds using standardized lighting and viewing conditions. Observations of diamonds with • To qualify for an Excellent cut grade, polish and comparable proportions, but differing in their polish and symmetry must be Very Good or Excellent. symmetry categories, were analyzed to determine the effects of finish on overall cut appearance. In this way, • To qualify for a Very Good cut grade, both polish GIA found that a one grade difference between the other and symmetry must be at least Good. aspects of a diamond’s cut grade and its polish and • To qualify for a Good cut grade, both polish and symmetry assessments did not significantly lower a symmetry must be at least Fair. trained observer’s assessment of face-up appearance, and could not be discerned reliably with the unaided eye— • To qualify for a Fair cut grade, both polish and e.g., polish and/or symmetry descriptions of Very Good symmetry must be at least Fair.
    [Show full text]
  • Phase Equilibria and Thermodynamic Properties of Minerals in the Beo
    American Mineralogist, Volwne 71, pages 277-300, 1986 Phaseequilibria and thermodynamic properties of mineralsin the BeO-AlrO3-SiO2-H2O(BASH) system,with petrologicapplications Mlnx D. B.qnroN Department of Earth and SpaceSciences, University of California, Los Angeles,Los Angeles,California 90024 Ansrru,cr The phase relations and thermodynamic properties of behoite (Be(OH)r), bertrandite (BeoSirOr(OH)J, beryl (BerAlrSiuO,r),bromellite (BeO), chrysoberyl (BeAl,Oo), euclase (BeAlSiOo(OH)),and phenakite (BerSiOo)have been quantitatively evaluatedfrom a com- bination of new phase-equilibrium, solubility, calorimetric, and volumetric measurements and with data from the literature. The resulting thermodynamic model is consistentwith natural low-variance assemblagesand can be used to interpret many beryllium-mineral occurTences. Reversedhigh-pressure solid-media experimentslocated the positions of four reactions: BerAlrSiuO,,: BeAlrOo * BerSiOo+ 5SiO, (dry) 20BeAlSiOo(OH): 3BerAlrsi6or8+ TBeAlrOo+ 2BerSiOn+ l0HrO 4BeAlSiOo(OH)+ 2SiOr: BerAlrSiuO,,+ BeAlrOo+ 2H2O BerAlrSiuO,,+ 2AlrSiOs : 3BeAlrOa + 8SiO, (water saturated). Aqueous silica concentrationswere determined by reversedexperiments at I kbar for the following sevenreactions: 2BeO + H4SiO4: BerSiOo+ 2H2O 4BeO + 2HoSiOo: BeoSirO'(OH),+ 3HrO BeAlrOo* BerSiOo+ 5H4Sio4: Be3AlrSiuOr8+ loHro 3BeAlrOo+ 8H4SiO4: BerAlrSiuOrs+ 2AlrSiO5+ l6HrO 3BerSiOo+ 2AlrSiO5+ 7H4SiO4: 2BerAlrSiuOr8+ l4H2o aBeAlsioloH) + Bersio4 + 7H4sio4:2BerAlrsiuors + 14Hro 2BeAlrOo+ BerSiOo+ 3H4SiOo: 4BeAlSiOr(OH)+ 4HrO.
    [Show full text]
  • CUBIC ZIRCONIA: an UPDATE by Kurt Nassau
    CUBIC ZIRCONIA: AN UPDATE By Kurt Nassau Soon after it was first marketed in 1976, ubic zirconia was discovered as a natural mineral in colorless cubic zirconia became the C 1937, when two German mineralogists, von Staclz- dominant diamond imitation, with elberg and Chudoba (1937), were examining a highly current production of approximately 60 metamict zircon given to them by B. W. Anderson. The million carats per year. Although cubic zircon contained some tiny crystals which they identified zirconia was discovered as a natural by X-ray diffraction as the cubic form of zirconium oxide mineral in 1937, crystals usable for (or zirconia), a compound lznown as baddeleyite when in faceting were first produced ill 1969 and it was not until a practical sltull-melting the monoclinic form. So little did von Staclzelberg and technique was developed in the USSR in Chudoba think of this discovery that they did not even 1972 that commercial production became assign a name to the new mineral. As a result, it is lznown feasible. This article reviews the sl<ull- to this day by its scientific name, cubic zirconia, and the melting technique used to produce cubic prefix synthetic, although proper, is not usually included. zirconio and examines the current status This same material had already been used for many of this diamond simulant with regard to years as a ceramic composition for high-temperature in- q~~ality,production, ond market. The dustrial and scientific purposes; because of an exception- patent situation is discussed, as well as ally high melting point, "stabilized zirconia" ceramics prospects lor new diamond imitations can be used at temperatures up to 2540°C (4604°F)and are and the recent surge of interest in colored cubic zirconia.
    [Show full text]
  • Taaffeite, a New Beryllium Mineral, Found As a Cut Gem- Stone.I
    765 Taaffeite, a new beryllium mineral, found as a cut gem- stone.I By B. W. ANDERSON,B.Sc., F.C.S., C. J. PAYNE, B.Sc. Laboratory of the Diamond, Pearl, and Precious Stone Trade Section of the London Chamber of Commerce. and G. F. CLARINGBULL,B.Sc., Ph.D., F.G.S. With microchemical analysis by M. H. HEY, M.A., D.Sc. Department of Mineralogy, British Museum. [Read June 7, 1951.] ------ N October 1945 Count Taaffe,2 a brilliant if unorthodox Dublin I gemmologist, in the course of examining a motley collection of gem- stones, came across a small mauve stone which puzzled him greatly. The stone had the appearance, and most of the characters, of spinel, but afforded clear evidence of double refraction. As recounted below, this stone was later found to belong to an entirely new mineral species-the only c~se hitherto known where a mineral has been first encountered as a faceted gem. Since the precise circumstances of such a discovery have both human and technical interest, it seemed best to obtain from Count Taaffe his own account of the event. This is accordingly given below before pro- ceeding to the more formal presentation of the data on the new mineral, which has been named taaffeite in honour of its discoverer. On one of my rounds in search of gems I came to Mr. Robert Dobbie, watchmaker and working jeweller in Fleet Street, Dublin; he allowed me in his genial way to go through all his boxes in which he kept stones, to pick out any that were real-most of them were glass-and to make him an offer for them.
    [Show full text]
  • Heat Capacities and Thermodynamic Functions for Beryl, Beralrsiuotr
    American Mineralogist, Volume 7I, pages 557-568, 1986 Heat capacitiesand thermodynamicfunctions for beryl, BerAlrSiuOtr, phenakite, BerSiOn,euclase, BeAlSiOo(OH)' bertranditeo BeoSirOt(OH)r,and chrysoberyl' BeAl2Oa B. S. HnluNcw.q,Y U.S. GeologicalSurvey, Reston, Y irgrnia22092 M. D. B.nnroN Departmentof Earthand SpaceSciences, University of California,Los Angeles,Los Angeles,California 90024 R. A. Ronrn, H. T. HLsnr.roN, Jn. U.S. GeologicalSurvey, Reston, Y irginia22092 Ansrru,cr The heat capacities of beryl, phenakite, euclase,and bertrandite have been measured betweenabout 5 and 800 K by combined quasi-adiabaticcryogenic calorimetry and dif- ferential scanningcalorimetry. The heat capacitiesof chrysoberylhave beenmeasured from 340 to 800 K. The resulting data have been combined with solution and phase-equilibrium experimentaldata and simultaneouslyfit using the program pHAS2oto provide an internally consistent set of thermodynamic properties for several important beryllium phases.The experimentalheat capacitiesand tablesof derived thermodynamic propertiesare presented in this report. The derived thermodynamic properties at I bar and 298.15 K for the stoichiometric beryllium phasesberyl, phenakite, euclase,and bertrandite are entropies of 346.7 + 4.7, 63.37+0.27,89.09+0.40, andl72.l+0.77 J/(mol'K),respectively,andGibbsfree energiesof formation(elements) of -8500.36 + 6.39, -2028.39 + 3.78, -2370.17 + 3.04, and -4300.62 + 5.45 kJlmol, respectively,and, -2176.16 + 3.18kJ/mol for chrysoberyl. The coefficientscr to c, of the heat-capacityfunctions are as follows: valid phase ct c2 c, x 105 c4 c, x 10-6 range beryl 1625.842 -0.425206 12.0318 -20 180.94 6.82544 200-1800K phenakite 428.492 -0.099 582 1.9886 -5 670.47 2.0826 200-1800K euclase 532.920 -0.150729 4.1223 -6726.30 2.1976 200-1800K bertrandite 825.336 -0.099 651 -10 570.31 3.662r7200-1400 K chrysoberyl 362.701 -0.083 527 2.2482 -4033.69 -6.7976 200-1800K whereC!: cr * ctT + crT2 * coT-os* crT-2and Zisinkelvins.
    [Show full text]
  • Preparation of Barium Strontium Titanate Powder from Citrate
    APPLIED ORGANOMETALLIC CHEMISTRY Appl. Organometal. Chem. 13, 383–397 (1999) Preparation of Barium Strontium Titanate Powder from Citrate Precursor Chen-Feng Kao* and Wein-Duo Yang Department of Chemical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan TiCl4 or titanium isopropoxide reacted with INTRODUCTION citric acid to form a titanyl citrate precipitate. Barium strontium citrate solutions were then BaTiO3 is ferroelectric and piezoelectric and has added to the titanyl citrate reaction to form gels. extensive applications as an electronic material. It These gels were dried and calcined to (Ba,Sr)- can be used as a capacitor, thermistor, transducer, TiO3 powders. The gels and powders were accelerometer or degausser of colour television. characterized by DSC/TGA, IR, SEM and BaTiO3 doped with strontium retains its original XRD analyses. These results showed that, at characteristics but has a lower Curie temperature 500 °C, the gels decomposed to Ba,Sr carbonate for positive temperature coefficient devices under and TiO2, followed by the formation of (Ba,Sr)- various conditions. TiO3. The onset of perovskite formation oc- Besides solid-state reactions, chemical reactions curred at 600 °C, and was nearly complete at have also been used to prepare BaTiO3 powder. 1 1000 °C. Traces of SrCO3 were still present. Among them the hydrolysis of metal alkoxide , The cation ratios of the titanate powder oxalate precipitation in ethanol2, and alcoholic prepared in the pH range 5–6 were closest to dehydration of citrate solution3 are among the more the original stoichiometry. Only 0.1 mol% of the attractive methods. In 1956 Clabaugh et al.4 free cations remained in solution.
    [Show full text]
  • Geochemical Journal, Vol. 55 (No. 4), Pp. 209-222, 2021
    Geochemical Journal, Vol. 55, pp. 209 to 222, 2021 doi:10.2343/geochemj.2.0630 10Be/9Be ratios of phenakite and beryl measured via direct Cs sputtering: Implications for selecting suitable Be carrier minerals for the measurement of low-level 10Be ATSUNORI NAKAMURA,1* ATSUYUKI OHTA,1 HIROYUKI MATSUZAKI2 and TAKASHI OKAI1 1Geological Survey of Japan, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba Central 7, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8567, Japan 2Micro Analysis Laboratory, Tandem Accelerator (MALT), The University Museum, The University of Tokyo, 2-11-16, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan (Received December 23, 2020; Accepted April 29, 2021) Preparing Be carrier solutions with low 10Be/9Be ratios is essential for the applications of in-situ-produced cosmogenic 10Be in geochronology. This is because commercially available Be carriers are non-negligibly contaminated by 10Be. Recently, in-house Be carriers have been successfully applied to samples that contain small amounts of in-situ-produced 10Be. The first step in preparing in-house Be carriers is selecting suitable Be-bearing minerals that contain less 10Be. Here, we present a simple method for selecting appropriate raw minerals for in-house Be carriers. That is, measuring the 10Be/ 9 10 9 Be ratios of Be-bearing minerals by direct Cs sputtering. Analyses of the Be/ Be ratios of phenakite (Be2SiO4) and beryl (Be3Al2Si6O18) obtained from a mineral collection at the Geological Survey of Japan indicate that phenakite gener- ally contains more 10B, interfering isobar of 10Be, than beryl. In addition to the necessity of finding raw materials that contain low 10Be, our results indicate that it is preferable to select a starting material with a low B concentration.
    [Show full text]
  • Sensitization of Titanium Dioxide and Strontium Titanate Electrodes By
    Subscriber access provided by University of Texas Libraries Sensitization of titanium dioxide and strontium titanate electrodes by ruthenium(II) tris(2,2'-bipyridine-4,4'-dicarboxylic acid) and zinc tetrakis(4-carboxyphenyl)porphyrin: an evaluation of sensitization efficiency for component photoelectrodes in a multipanel device Reza Dabestani, Allen J. Bard, Alan Campion, Marye Anne Fox, Thomas E. Mallouk, Stephen E. Webber, and J. M. White J. Phys. Chem., 1988, 92 (7), 1872-1878 • DOI: 10.1021/j100318a035 Downloaded from http://pubs.acs.org on February 2, 2009 More About This Article The permalink http://dx.doi.org/10.1021/j100318a035 provides access to: • Links to articles and content related to this article • Copyright permission to reproduce figures and/or text from this article The Journal of Physical Chemistry is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 1872 J. Phys Chem. 1988, 92, 1872-1878 Sensitization of Titanium Dioxide and Strontium Titanate Electrodes by Ruthenium( I I) Trls (2,2’- bipyridine-4,4’-dicar box y lic acid) and Zinc Tetrakis (4-carboxy phen yl) porphyrin: An Evaluation of Sensitization Efficiency for Component Photoelectrodes in a Muitipanei Device Reza Dabestani, Allen J. Bard, Alan Campion, Marye Anne Fox,* Thomas E. Mallouk, Stephen E. Webber, and J. M. White Department of Chemistry, University of Texas, Austin, Texas 78712 (Received: December 1. 1986; In Final Form: October 6, 1987) The utility of polycrystalline anatase Ti02 and SrTi03 semiconductor electrodes sensitized by ruthenium(I1) tris(2,2’-bi- pyridine-4,4’-dicarboxylicacid) (1) and by zinc tetrakis(4-carboxypheny1)porphyrin (2) as component photoelectrodes in a multipanel array has been evaluated.
    [Show full text]
  • Download PRIM II Refractive Index Chart
    What is Refractive Index (R.I.)? What do the numbers Light travels at different speeds through in the brackets on this chart mean? different types of gemstones due to The numbers in the brackets indicate the Important Note structure of the stone. This affects the tolerance level for readings derived from All testers have been calibrated during the manufacturing process and requires no amount of light refraction and causes the the product. These slight fluctuations further adjustment or user intervention. Self-calibration should not be attempted and is bending of light. The slower the light's indicating a tolerance level are necessary not advised. speed in the material; the greater the due to the optical sensor and electronic REFRACTIVE INDEX CHART FOR bending effect. The refractive index of the components in the product. To minimize any risks associated, users should contact Presidium at gemstone can be defined as the ratio [email protected] or its service center for assistance. PRESIDIUM REFRACTIVE INDEX METER II between the speed of light in vacuum versus the speed of light in gemstone. In the event that users require the manufacturer to re-calibrate the unit, users will have to bear the associated to and fro freight cost for shipping of the unit to the Presidium service center. Presidium Instruments Please note that the gemstone tested on this product must have a flat surface and should Unit 7, 207 Henderson Road Singapore 159550 not be an opaque gemstone. www.presidium.com.sg Family Name of Stones Refractive Index Reading Family
    [Show full text]
  • Colourless Gemstones
    GEMS THE gem DeteCTIVE: COLOURLess gemstONes superseded in the 1970s by a man-made gemstone called cubic zirconia that is still the most popular and common diamond imitation in modern jewellery due to its low cost, high dispersion and good hardness (8.5 on Mohs scale). Another man-made gemstone called synthetic Moissanite was introduced as a diamond simulant in the late 1990s. Although TED A synthetic Moissanite tests positive on a FFILI A diamond tester, it is easily distinguished from diamond by a property called double refraction, detected using a 10x loupe. This property is also displayed by zircon, a natural CCREESH, O’NEILS O’NEILS CCREESH, gemstone with a sub-adamantine lustre. M N N A Complicating the process of identification are treatments that may affect the value of gemstones. For example, a laser may be used to drill down to a dark diamond inclusion and remove it using acid in a process called GE COURTESY OF BREND OF COURTESY GE laser drilling. Also common is fracture filling, ma I where a high refractive-index lead glass is used to fill surface-reaching fractures to make Sparkling, colourless gemstones may People love to assume that their great ALTHOUGH them less visible. Fortunately, both of these appear similar to the naked eye but they grandma’s solitaire engagement ring SYNTHETIC treatments are easily identified using a loupe can vary significantly in identity, rarity contained a natural diamond by virtue MOISSANITE or microscope. TESTS POSITIVE and value. Making such distinctions of its age but they should think again. Some off-coloured diamonds may be ON A DIamOND requires the detective skills of a qualified Synthetically-produced sapphire, spinel and TESTER, IT CAN BE whitened using High Pressure High gemmologist.
    [Show full text]
  • Magnetic Properties and Defects in Iron Implanted Strontium Titanate Single Crystals and Thin Films
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-4-2012 12:00 AM Magnetic Properties and Defects in Iron Implanted Strontium Titanate Single Crystals and Thin films Misha Chavarha The University of Western Ontario Supervisor Lyudmila Goncharova The University of Western Ontario Graduate Program in Physics A thesis submitted in partial fulfillment of the equirr ements for the degree in Master of Science © Misha Chavarha 2012 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Condensed Matter Physics Commons Recommended Citation Chavarha, Misha, "Magnetic Properties and Defects in Iron Implanted Strontium Titanate Single Crystals and Thin films" (2012). Electronic Thesis and Dissertation Repository. 435. https://ir.lib.uwo.ca/etd/435 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. DEFECTS AND MAGNETIC PROPERTIES OF IRON-IMPLANTED STRONTIUM TITANATE AND THIN FIMS (Spine title: Defects and magnetic properties of iron-implanted strontium titanate and thin films) (Thesis format: Monograph) by Misha Chavarha Graduate Program in Physics A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science The School of Graduate and Postdoctoral Studies The University of Western Ontario London, Ontario, Canada © Misha Chavarha 2012 THE UNIVERSITY OF WESTERN ONTARIO SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES CERTIFICATE OF EXAMINATION Supervisor Examiners ______________________________ ______________________________ Dr. Lyudmila Goncharova Dr. Giovanni Fanchini ______________________________ Supervisory Committee Dr. Jeffrey Hutter ______________________________ ______________________________ Dr.
    [Show full text]
  • Overseas Cutting Gem Mountain Sapphires
    HEAT TREATING 202021 GEMSTONE MONTANA FACETING & OVERSEAS FACETING HEAT TREATING AND Recommended for Large High Value Stones and Custom Cutting for Jewelry Finished Gemstones Ready for Jewelry FACETING PRICE LIST Heat Treating and Montana Faceting Number of Price Cost per Stones Stone Pay for Heat Treating based upon 1 $54 $54.00 rough weight of the stone. 2 $82 $41.00 We recommend sending the heat treat- ed stone to one of our highly skilled 3 $109 $36.33 cutters for evaluation and a sugges- 4 $137 $34.25 Gem Mountain Montana, USA tion of the best cut to maximize the 5 $162 $32.40 size and value. 6 $186 $31.00 P.O. Box 148 We will contact you with cutting sug- 7 $208 $29.71 21 Sapphire Gulch Lane gestions and the estimated cost. 8 $230 $28.75 Philipsburg, MT 59858 Montana Faceting charges are based 9 $252 $28.00 Toll Free: (866) 459-GEMS (4367) upon the finished weight of the cut 10 $274 $27.40 Local: (406) 859-GEMS (4367) gemstone. Fax: (406) 859-5055 A standard 57 facet round brilliant costs $99 per carat ($99 minimum). Each Additional Stone Only $22 each www.GemMountainMT.com 11 $296 $26.90 [email protected] Fancy cuts cost $129 per carat ($129 12 $318 $26.50 minimum), plus $1 per facet. Faceting Billed when Done (BWD) 13 $340 $26.15 INFO FOR ALL ORDERS 14 $362 $25.85 based upon finished weight 15 $384 $25.60 Shipping and Handling: Priority Mail $11 16 $406 $25.38 Insured Mail $30 17 $428 $25.17 HEAT TREATING Foreign Address $ TBD 18 $450 $25.00 Improves Color and Clarity The Small Print: 19 $472 $24.84 # Stones or $ per stone or $ per carat Price is per parcel (one bag) Ct Weight whichever is GREATER 20 $494 $24.70 Add $30 per parcel (bag) per Split Order.
    [Show full text]