Volume 34 / No. 4 / 2014

Total Page:16

File Type:pdf, Size:1020Kb

Volume 34 / No. 4 / 2014 GemmologyThe Journal of 2014 / Volume 34 / No. 4 The Gemmological Association of Great Britain Polish your knowledge A good understanding of diamond grading is essential for the buying, selling and trading of diamond. Our Diamond Diploma is recognized as one of the most comprehensive and valuable diamond qualifications worldwide — the ultimate education in diamonds. Graduates of our Diamond Diploma can apply for Diamond Membership, allowing you to use the letters ‘DGA’ after your name — a mark of excellence in the trade. Sign up now and receive our NEW fully illustrated Diamond Diploma course notes — updated to include the most current information and research on diamonds, as well as everything you need to get you started. For more information or to book contact [email protected]. Join us. The Gemmological Association of Great Britain, 21 Ely Place, London, EC1N 6TD, UK. T: +44 (0) 20 7404 3334 F: +44 (0) 20 7404 8843. Registered charity no. 1109555. A company limited by guarantee and registered in England No. 1945780. Registered Office: 3rd Floor, 1-4 Argyll Street, London W1F 7LD. GemmologyThe Journal of 2014 / Volume 34 / No. 4 COLUMNS p. 354 279 What’s New GemmoFtir|GSJ abstracts| Historical facet designs|ICGL p. 295 and Margaritologia news- letters|Pearl presentations| Santa Fe Symposium pro- ceedings|Silver jewellery buying trends|Pueblo Gem & Mineral Show lectures 281 Practical Gemmology Visual Optics and the birefringence/dispersion ratio of gemstones 286 Gem Notes Almandine from Erving, ARTICLES Massachusetts|Amethyst from São Paulo State, Brazil|Apatite Feature Articles from Kenya|Colourless to 306 The Rhodesian Star: An Exceptional Asteriated near-colourless diopside from Diamond Canada and Kenya|Hessonite By Thomas Hainschwang, Franck Notari and Erik Vadaszi from Somalia|Polycrystalline kyanite from Tanzania|Green 316 Objective Diamond Clarity Grading daylight-fluorescent opal By Michael D. Cowing from Mexico|‘Trapiche’ quartz with radiating 334 A Comparison of R-line Photoluminescence of fibres|Yellow scheelite from Emeralds from Different Origins Pakistan|Spessartine from By D. Brian Thompson, Joshua D. Kidd, Mikko Åström, the DRC|CVD synthetic Alberto Scarani and Christopher P. Smith diamond in a parcel of yellow melee|Glass imitation of malachite|Dyed quartzite and Gemmological Brief chalcedony beads imitating 344 Green and Pink Tourmaline from Rwanda amazonite|News from By Ulrich Henn and Fabian Schmitz Myanmar 350 Conferences Gem-A Conference|GSSA Kimberley Diamond Symposium| Cover Photo: An 11.38 ct diamond NAJA Mid-year Conference|World of Gems Conference with an asteriated hydro- gen cloud is photo- 356 Gem-A Notices graphed under 250–350 nm broadband UV excit- ation. See article by 369 Learning Opportunities Thomas Hainschwang, Franck Notari and Erik Vadaszi on pages 372 New Media 306–315. Photo by T. Hainschwang. 378 Literature of Interest The Journal is published by Gem-A in collaboration with SSEF and with the support of AGL and GIT. ISSN: 1355-4565, http://dx.doi.org/10.15506/JoG.2014.34.4 i The Journal of emmology G THE GEMMOLOGICAL ASSOCIATION OF GREAT BRITAIN Editor-in-Chief Production Editor Marketing Consultant Brendan M. Laurs Mary A. Burland Ya’akov Almor [email protected] [email protected] [email protected] 21 Ely Place London EC1N 6TD Executive Editor Editor Emeritus Assistant Editor UK James H. Riley Roger R. Harding Michael J. O’Donoghue t: +44 (0)20 7404 3334 Associate Editors f: +44 (0)20 7404 8843 Edward Boehm, RareSource, Chattanooga, Tennessee, USA; Alan T. Collins, King’s College e: [email protected] London; John L. Emmett, Crystal Chemistry, Brush Prairie, Washington, USA; Emmanuel w: www.gem-a.com Fritsch, University of Nantes, France; Rui Galopim de Carvalho, Portugal Gemas, Lisbon, Registered Charity No. 1109555 Portugal; Lee A. Groat, University of British Columbia, Vancouver, Canada; Thomas Registered office: Palladium House, Hainschwang, GGTL Gemlab–Gemtechlab Laboratory, Balzers, Liechtenstein; Henry A. 1–4 Argyll Street, London W1F 7LD Hänni, GemExpert, Basel, Switzerland; Jeff W. Harris, University of Glasgow; Alan D. Hart, The Natural History Museum, London; Ulrich Henn, German Gemmological Association, Idar-Oberstein; Jaroslav Hyršl, Prague, Czech Republic; Brian Jackson, National Museums Scotland, Edinburgh; Stefanos Karampelas, Gübelin Gem Lab Ltd., Lucerne, Switzerland; Lore Kiefert, Gübelin Gem Lab Ltd., Lucerne, Switzerland; Hiroshi Kitawaki, Central Gem Laboratory, Tokyo, Japan; Michael S. Krzemnicki, Swiss Gemmological Institute SSEF, President Basel; Shane F. McClure, Gemological Institute of America, Carlsbad, California; Jack Harry Levy M. Ogden, Striptwist Ltd., London; Federico Pezzotta, Natural History Museum of Milan, Vice Presidents Italy; Jeffrey E. Post, Smithsonian Institution, Washington DC, USA; Andrew H. Rankin, David J. Callaghan, Alan T. Collins, Kingston University, Surrey; George R. Rossman, California Institute of Technology, Noel W. Deeks, E. Alan Jobbins, Pasadena, USA; Karl Schmetzer, Petershausen, Germany; Dietmar Schwarz, AIGS Lab Co. Michael J. O’Donoghue, Ltd., Bangkok, Thailand; Menahem Sevdermish, GemeWizard Ltd., Ramat Gan, Israel; Andrew H. Rankin Guanghai Shi, China University of Geosciences, Beijing; James E. Shigley, Gemological Institute of America, Carlsbad, California; Christopher P. Smith, American Gemological Honorary Fellows Laboratories Inc., New York; Evelyne Stern, London; Elisabeth Strack, Gemmologisches Gaetano Cavalieri, Terrence S. Institut, Hamburg, Germany; Tay Thye Sun, Far East Gemological Laboratory, Singapore; Coldham, Emmanuel Fritsch Pornsawat Wathanakul, Gem and Jewelry Institute of Thailand, Bangkok; Chris M. Welbourn, Reading, Berkshire; Joanna Whalley, Victoria and Albert Museum, London; Honorary Diamond Member Bert Willems, Gilching, Germany; Bear Williams, Stone Group Laboratories LLC, Jefferson Martin Rapaport City, Missouri, USA; J.C. (Hanco) Zwaan, National Museum of Natural History ‘Naturalis’, Leiden, The Netherlands. Honorary Life Members Anthony J. Allnutt, Hermann Bank, Content Submission Mary A. Burland, Terence M.J. The Editor-in-Chief is glad to consider original articles, news items, conference/excursion Davidson, Peter R. Dwyer-Hickey, reports, announcements and calendar entries on subjects of gemmological interest for Gwyn M. Green, Roger R. Harding, publication in The Journal of Gemmology. A guide to the preparation of manuscripts John S. Harris, J. Alan W. Hodgkinson, is given at www.gem-a.com/publications/journal-of-gemmology.aspx, or contact the John I. Koivula, Jack M. Ogden, Production Editor. C.M. (Mimi) Ou Yang, Evelyne Stern, Ian Thomson, Vivian P. Watson, Colin Subscriptions H. Winter Gem-A members receive The Journal as part of their membership package, full details of which are given at www.gem-a.com/membership.aspx. Laboratories, libraries, museums Chief Executive Officer and similar institutions may become Direct Subscribers to The Journal (see www.gem-a. James H. Riley com/publications/subscribe.aspx). Council Advertising Jason F. Williams – Chairman Enquiries about advertising in The Journal should be directed to the Marketing Consultant. Mary A. Burland, Jessica M. Cadzow, Steven J.C. Collins, Paul F. Greer, For more information, see www.gem-a.com/publications/journal-of-gemmology/ Nigel B. Israel, Jonathan Lambert, advertising-in-the-journal.aspx. Richard M. Slater, Miranda E.J. Wells, Copyright and Reprint Permission Stephen Whittaker Abstracting with credit to the source, photocopying isolated articles for noncommercial classroom use, and photocopying by libraries for private use of patrons, are permitted. Branch Chairmen Midlands – Georgina E. Kettle Requests to use images published in The Journal should be directed to the Editor-in- North East – Mark W. Houghton Chief. Give the complete reference citation and the page number for the image(s) in South East – Veronica Wetten question, and please state how and where the image would be used. South West – Richard M. Slater The Journal of Gemmology is published quarterly by Gem-A, The Gemmological Association of Great Britain. Any opinions expressed in The Journal are understood to be the views of the contributors and not necessarily of the publisher. Printed by DG3 (Europe) Ltd. ™ © 2014 The Gemmological Association of Great Britain Understanding Gems Cert no. TT-COC-002454 ISSN: 1355-4565 ii The Journal of Gemmology, 34(4), 2014 What’s New What’s New INSTRUMENTS AND TECHNIQUES GemmoFtir The GemmoFtir, a new Fourier-transform infrared spectrometer developed specifically for gemmological analysis, was unveiled on 1 November 2014 at the Gem-A Conference in London. The instrument uses a gold-coated DRIFT sampling module and employs user- friendly software that follows the manufacturer’s philosophy of providing a consistent platform for manufactured together with Interspectrum, an all of its spectrometer products. The user interface Estonian company that has supplied spectrometers contains easy-to-follow acquisition wizards and for space stations. For more information, visit www. includes searchable spectral libraries for important gemmoraman.com/GemmoFtir.aspx. gem species and their color variations. The Alberto Scarani and Mikko Åström software also enables interactive peak labelling [email protected] and features applications for facilitating spectral M&A Gemological Instruments interpretation. The GemmoFtir was designed and Rome, Italy and Järvenpää, Finland NEWS AND PUBLICATIONS GSJ Abstracts gem cutter.
Recommended publications
  • Download PDF About Minerals Sorted by Mineral Name
    MINERALS SORTED BY NAME Here is an alphabetical list of minerals discussed on this site. More information on and photographs of these minerals in Kentucky is available in the book “Rocks and Minerals of Kentucky” (Anderson, 1994). APATITE Crystal system: hexagonal. Fracture: conchoidal. Color: red, brown, white. Hardness: 5.0. Luster: opaque or semitransparent. Specific gravity: 3.1. Apatite, also called cellophane, occurs in peridotites in eastern and western Kentucky. A microcrystalline variety of collophane found in northern Woodford County is dark reddish brown, porous, and occurs in phosphatic beds, lenses, and nodules in the Tanglewood Member of the Lexington Limestone. Some fossils in the Tanglewood Member are coated with phosphate. Beds are generally very thin, but occasionally several feet thick. The Woodford County phosphate beds were mined during the early 1900s near Wallace, Ky. BARITE Crystal system: orthorhombic. Cleavage: often in groups of platy or tabular crystals. Color: usually white, but may be light shades of blue, brown, yellow, or red. Hardness: 3.0 to 3.5. Streak: white. Luster: vitreous to pearly. Specific gravity: 4.5. Tenacity: brittle. Uses: in heavy muds in oil-well drilling, to increase brilliance in the glass-making industry, as filler for paper, cosmetics, textiles, linoleum, rubber goods, paints. Barite generally occurs in a white massive variety (often appearing earthy when weathered), although some clear to bluish, bladed barite crystals have been observed in several vein deposits in central Kentucky, and commonly occurs as a solid solution series with celestite where barium and strontium can substitute for each other. Various nodular zones have been observed in Silurian–Devonian rocks in east-central Kentucky.
    [Show full text]
  • Phase Equilibria and Thermodynamic Properties of Minerals in the Beo
    American Mineralogist, Volwne 71, pages 277-300, 1986 Phaseequilibria and thermodynamic properties of mineralsin the BeO-AlrO3-SiO2-H2O(BASH) system,with petrologicapplications Mlnx D. B.qnroN Department of Earth and SpaceSciences, University of California, Los Angeles,Los Angeles,California 90024 Ansrru,cr The phase relations and thermodynamic properties of behoite (Be(OH)r), bertrandite (BeoSirOr(OH)J, beryl (BerAlrSiuO,r),bromellite (BeO), chrysoberyl (BeAl,Oo), euclase (BeAlSiOo(OH)),and phenakite (BerSiOo)have been quantitatively evaluatedfrom a com- bination of new phase-equilibrium, solubility, calorimetric, and volumetric measurements and with data from the literature. The resulting thermodynamic model is consistentwith natural low-variance assemblagesand can be used to interpret many beryllium-mineral occurTences. Reversedhigh-pressure solid-media experimentslocated the positions of four reactions: BerAlrSiuO,,: BeAlrOo * BerSiOo+ 5SiO, (dry) 20BeAlSiOo(OH): 3BerAlrsi6or8+ TBeAlrOo+ 2BerSiOn+ l0HrO 4BeAlSiOo(OH)+ 2SiOr: BerAlrSiuO,,+ BeAlrOo+ 2H2O BerAlrSiuO,,+ 2AlrSiOs : 3BeAlrOa + 8SiO, (water saturated). Aqueous silica concentrationswere determined by reversedexperiments at I kbar for the following sevenreactions: 2BeO + H4SiO4: BerSiOo+ 2H2O 4BeO + 2HoSiOo: BeoSirO'(OH),+ 3HrO BeAlrOo* BerSiOo+ 5H4Sio4: Be3AlrSiuOr8+ loHro 3BeAlrOo+ 8H4SiO4: BerAlrSiuOrs+ 2AlrSiO5+ l6HrO 3BerSiOo+ 2AlrSiO5+ 7H4SiO4: 2BerAlrSiuOr8+ l4H2o aBeAlsioloH) + Bersio4 + 7H4sio4:2BerAlrsiuors + 14Hro 2BeAlrOo+ BerSiOo+ 3H4SiOo: 4BeAlSiOr(OH)+ 4HrO.
    [Show full text]
  • Rhodochrosite Gems Unstable Colouration of Padparadscha-Like
    Volume 36 / No. 4 / 2018 Effect of Blue Fluorescence on the Colour Appearance of Diamonds Rhodochrosite Gems The Hope Diamond Unstable Colouration of in London Padparadscha-like Sapphires Volume 36 / No. 4 / 2018 Cover photo: Rhodochrosite is prized as both mineral specimens and faceted stones, which are represented here by ‘The Snail’ (5.5 × 8.6 cm, COLUMNS from N’Chwaning, South Africa) and a 40.14 ct square-cut gemstone from the Sweet Home mine, Colorado, USA. For more on rhodochrosite, see What’s New 275 the article on pp. 332–345 of this issue. Specimens courtesy of Bill Larson J-Smart | SciAps Handheld (Pala International/The Collector, Fallbrook, California, USA); photo by LIBS Unit | SYNTHdetect XL | Ben DeCamp. Bursztynisko, The Amber Magazine | CIBJO 2018 Special Reports | De Beers Diamond ARTICLES Insight Report 2018 | Diamonds — Source to Use 2018 The Effect of Blue Fluorescence on the Colour 298 Proceedings | Gem Testing Appearance of Round-Brilliant-Cut Diamonds Laboratory (Jaipur, India) By Marleen Bouman, Ans Anthonis, John Chapman, Newsletter | IMA List of Gem Stefan Smans and Katrien De Corte Materials Updated | Journal of Jewellery Research | ‘The Curse Out of the Blue: The Hope Diamond in London 316 of the Hope Diamond’ Podcast | By Jack M. Ogden New Diamond Museum in Antwerp Rhodochrosite Gems: Properties and Provenance 332 278 By J. C. (Hanco) Zwaan, Regina Mertz-Kraus, Nathan D. Renfro, Shane F. McClure and Brendan M. Laurs Unstable Colouration of Padparadscha-like Sapphires 346 By Michael S. Krzemnicki, Alexander Klumb and Judith Braun 323 333 © DIVA, Antwerp Home of Diamonds Gem Notes 280 W.
    [Show full text]
  • Elimination of Ferric Ion Effect on Separation Between Kyanite and Quartz Using Citric Acid As Regulator
    minerals Article Elimination of Ferric Ion Effect on Separation between Kyanite and Quartz Using Citric Acid as Regulator Yanping Niu 1, Ya Li 1, Haoran Sun 2,*, Chuanyao Sun 3, Wanzhong Yin 2 and Hongfeng Xu 4 1 Heilongjiang Province Geology Ore Test and Application Institute, Harbin 150000, China; [email protected] (Y.N.); [email protected] (Y.L.) 2 College of Resources and Civil Engineering, Northeastern University, Shenyang 110816, China; [email protected] 3 State Key Laboratory of Mineral Processing, BGRIMM Technology Group, Beijing 100160, China; [email protected] 4 Heilongjiang Mining Group Co., Ltd., Harbin 150000, China; [email protected] * Correspondence: [email protected]; Tel.: +86-188-4250-4743 Abstract: Ferric ions produced during grinding influence the flotation separation between kyanite and quartz adversely. In this study, citric acid was used as a regulator to eliminate the effect of ferric ions on the separation of kyanite from quartz with sodium oleate (NaOL) as a collector. The microflotation test results indicated that the quartz was selectively activated by FeCl3 and maintained significant quartz recovery. However, the citric acid could selectively eliminate the effect of ferric ions on the quartz and minimally influenced the kyanite. Contact angle tests demonstrated that FeCl significantly increased the interaction between NaOL and quartz, resulting in the high 3 hydrophobicity of quartz, and the addition of citric acid made the quartz surface hydrophilic again but slightly influenced the kyanite. Fourier-transform infrared spectroscopy showed that FeCl Citation: Niu, Y.; Li, Y.; Sun, H.; Sun, 3 C.; Yin, W.; Xu, H. Elimination of facilitated NaOL adsorption onto the quartz surface, and the addition of citric acid eliminated the Ferric Ion Effect on Separation activation of FeCl3 on the quartz, resulting in the nonadsorption of NaOL onto the quartz surface.
    [Show full text]
  • The Anjahamiary Pegmatite, Fort Dauphin Area, Madagascar
    The Anjahamiary pegmatite, Fort Dauphin area, Madagascar Federico Pezzotta* & Marc Jobin** * Museo Civico di Storia Naturale, Corso Venezia 55, I-20121 Milano, Italy. ** SOMEMA, BP 6018, Antananarivo 101, Madagascar. E-mail:<[email protected]> 21 February, 2003 INTRODUCTION Madagascar is among the most important areas in the world for the production, mainly in the past, of tourmaline (elbaite and liddicoatite) gemstones and mineral specimens. A large literature database documents the presence of a number of pegmatites rich in elbaite and liddicoatite. The pegmatites are mainly concentrated in central Madagascar, in a region including, from north to south, the areas of Tsiroanomandidy, Itasy, Antsirabe-Betafo, Ambositra, Ambatofinandrahana, Mandosonoro, Ikalamavony, Fenoarivo and Fianarantsoa (e.g. Pezzotta, 2001). In general, outside this large area, elbaite-liddicoatite-bearing pegmatites are rare and only minor discoveries have been made in the past. Nevertheless, some recent work made by the Malagasy company SOMEMEA, discovered a great potential for elbaite-liddicoatite gemstones and mineral specimens in a large, unusual pegmatite (the Anjahamiary pegmatite), hosted in high- metamorphic terrains. The Anjahamiary pegmatite lies in the Fort Dauphin (Tôlanaro) area, close to the southern coast of Madagascar. This paper reports a general description of this locality, and some preliminary results of the analytical studies of the accessory minerals collected at the mine. Among the most important analytical results is the presence of gemmy blue liddicoatite crystals with a very high Ca content, indicating the presence in this tourmaline crystal of composition near the liddicoatite end-member. LOCATION AND ACCESS The Anjahamiary pegmatite is located about 70 km NW of the town of Fort Dauphin (Tôlanaro) (Fig.
    [Show full text]
  • Heat Capacities and Thermodynamic Functions for Beryl, Beralrsiuotr
    American Mineralogist, Volume 7I, pages 557-568, 1986 Heat capacitiesand thermodynamicfunctions for beryl, BerAlrSiuOtr, phenakite, BerSiOn,euclase, BeAlSiOo(OH)' bertranditeo BeoSirOt(OH)r,and chrysoberyl' BeAl2Oa B. S. HnluNcw.q,Y U.S. GeologicalSurvey, Reston, Y irgrnia22092 M. D. B.nnroN Departmentof Earthand SpaceSciences, University of California,Los Angeles,Los Angeles,California 90024 R. A. Ronrn, H. T. HLsnr.roN, Jn. U.S. GeologicalSurvey, Reston, Y irginia22092 Ansrru,cr The heat capacities of beryl, phenakite, euclase,and bertrandite have been measured betweenabout 5 and 800 K by combined quasi-adiabaticcryogenic calorimetry and dif- ferential scanningcalorimetry. The heat capacitiesof chrysoberylhave beenmeasured from 340 to 800 K. The resulting data have been combined with solution and phase-equilibrium experimentaldata and simultaneouslyfit using the program pHAS2oto provide an internally consistent set of thermodynamic properties for several important beryllium phases.The experimentalheat capacitiesand tablesof derived thermodynamic propertiesare presented in this report. The derived thermodynamic properties at I bar and 298.15 K for the stoichiometric beryllium phasesberyl, phenakite, euclase,and bertrandite are entropies of 346.7 + 4.7, 63.37+0.27,89.09+0.40, andl72.l+0.77 J/(mol'K),respectively,andGibbsfree energiesof formation(elements) of -8500.36 + 6.39, -2028.39 + 3.78, -2370.17 + 3.04, and -4300.62 + 5.45 kJlmol, respectively,and, -2176.16 + 3.18kJ/mol for chrysoberyl. The coefficientscr to c, of the heat-capacityfunctions are as follows: valid phase ct c2 c, x 105 c4 c, x 10-6 range beryl 1625.842 -0.425206 12.0318 -20 180.94 6.82544 200-1800K phenakite 428.492 -0.099 582 1.9886 -5 670.47 2.0826 200-1800K euclase 532.920 -0.150729 4.1223 -6726.30 2.1976 200-1800K bertrandite 825.336 -0.099 651 -10 570.31 3.662r7200-1400 K chrysoberyl 362.701 -0.083 527 2.2482 -4033.69 -6.7976 200-1800K whereC!: cr * ctT + crT2 * coT-os* crT-2and Zisinkelvins.
    [Show full text]
  • Some Uncommon Sapphire “Imitations”: Blue Co-Zirconia, Kyanite & Blue Dumortierite Dr Michael S
    Some Uncommon Sapphire “Imitations”: Blue Co-zirconia, Kyanite & Blue Dumortierite Dr Michael S. Krzemnicki Swiss Gemmological Institute SSEF [email protected] 筆者滙報數個瑞士珠寶研究院(SSEF)近期收到 in the ring showed a negative RI reading 要求鑑證的藍色寶石,經檢測後確定其中包括 (above 1.79), an isotropic optical character 一些非常罕見的藍寶石模擬石:含錮氧化鋯、 (polariscope) and thus no pleochroism at all. 藍晶石及藍線石等。 Under the microscope, we saw no inclusions, however a slightly greenish reaction under Sapphires are among the most abundant gems the LWSW and there was a weaker similar we receive at the Swiss Gemmological Institute reaction under SWUV lamps. Based on these (SSEF) for testing. From time to time, however, properties and a chemical analysis by X-ray we are quite surprised by the imitations which fluorescence (EDXRF), the blue stone was we find among the goods sent in and this can readily identified as cubic zirconia (ZrO2). then be disappointing news for the clients. In Having seen this artificial product in a wide the following short note, the author presents a range of colours, the author had not previously few uncommon imitations identified recently at seen one of such a saturated and attractive the SSEF. Identification of these imitations is blue. Based on literature (Nassau 1981) the straightforward and should be no problem for analysed traces of cobalt in that stone have any experienced gemmologist. been identified as the colouring element in this specimen. The absorption spectrum of the stone The first case is that of an attractive blue (Fig. 2) – although superposed by several rare faceted stone of approximately 1.4 ct, set in a ring with diamonds (Fig.
    [Show full text]
  • Compilation of Reported Sapphire Occurrences in Montana
    Report of Investigation 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg 2015 Cover photo by Richard Berg. Sapphires (very pale green and colorless) concentrated by panning. The small red grains are garnets, commonly found with sapphires in western Montana, and the black sand is mainly magnetite. Compilation of Reported Sapphire Occurrences, RI 23 Compilation of Reported Sapphire Occurrences in Montana Richard B. Berg Montana Bureau of Mines and Geology MBMG Report of Investigation 23 2015 i Compilation of Reported Sapphire Occurrences, RI 23 TABLE OF CONTENTS Introduction ............................................................................................................................1 Descriptions of Occurrences ..................................................................................................7 Selected Bibliography of Articles on Montana Sapphires ................................................... 75 General Montana ............................................................................................................75 Yogo ................................................................................................................................ 75 Southwestern Montana Alluvial Deposits........................................................................ 76 Specifi cally Rock Creek sapphire district ........................................................................ 76 Specifi cally Dry Cottonwood Creek deposit and the Butte area ....................................
    [Show full text]
  • Imprints FINAL 15Dec2016.Indd
    ls ia er at M ed ht ig yr op C : ss re P ity rs ve ni U se Newest Sources of Western Zhou History: ne hi Inscribed Bronze Vessels, 2000–2010 C he T Edward L. SHAUGHNESSY The University of Chicago In 2002, I published a survey of inscribed bronze vessels of the Western Zhou period that had appeared in the course of the preceding decade. timing was appropriate for at least a couple of reasons. First, the 1990s marked the first flowering of the new Chinese economic expansion; with the dramatic increase in construction activity and with newfound wealth in China came a concomitant rise in the number of ancient bronze vessels taken out of China’s earth. Although much of this excavation was unfor- tunately undertaken by tomb robbers, and the individual bronzes thus lost their archaeological context, nevertheless many of them appeared on the antiques markets and eventually made their way into museums and/or the scholarly press. Second, the decade also witnessed the five-year long Xia- Shang-Zhou Chronology Project (1995–2000). This multidisciplinary inquiry into ancient China’s political chronology was funded by the Chinese government at levels hitherto unimagined for humanistic and social science research, and it resulted in numerous discoveries and publi- cations. The chronology of the Western Zhou period, based to a very large extent on the inscriptions in bronze vessels of the period, was perhaps the most important topic explored by this project. The decade witnessed extensive archaeological excavations at several major Zhou states, as well as the discovery of several fully-dated bronze inscriptions that were the subject of much discussion in the context of the “Xia-Shang-Zhou Chro- nology Project.” 1 The sive archaeologicalThe ten years campaigns, that have severaljust passed of them have unearthing brought several sites and more ceme- exten- teries of heretofore unknown states within the Zhou realm, as well as many, many more bronze vessels from throughout the Western Zhou period, some of them with truly 2startling inscriptions.
    [Show full text]
  • Inscriptional Records of the Western Zhou
    INSCRIPTIONAL RECORDS OF THE WESTERN ZHOU Robert Eno Fall 2012 Note to Readers The translations in these pages cannot be considered scholarly. They were originally prepared in early 1988, under stringent time pressures, specifically for teaching use that term. Although I modified them sporadically between that time and 2012, my final year of teaching, their purpose as course materials, used in a week-long classroom exercise for undergraduate students in an early China history survey, did not warrant the type of robust academic apparatus that a scholarly edition would have required. Since no broad anthology of translations of bronze inscriptions was generally available, I have, since the late 1990s, made updated versions of this resource available online for use by teachers and students generally. As freely available materials, they may still be of use. However, as specialists have been aware all along, there are many imperfections in these translations, and I want to make sure that readers are aware that there is now a scholarly alternative, published last month: A Source Book of Ancient Chinese Bronze Inscriptions, edited by Constance Cook and Paul Goldin (Berkeley: Society for the Study of Early China, 2016). The “Source Book” includes translations of over one hundred inscriptions, prepared by ten contributors. I have chosen not to revise the materials here in light of this new resource, even in the case of a few items in the “Source Book” that were contributed by me, because a piecemeal revision seemed unhelpful, and I am now too distant from research on Western Zhou bronzes to undertake a more extensive one.
    [Show full text]
  • Double-Edged Sword’
    2 | Wednesday, August 25, 2021 HONG KONG EDITION | CHINA DAILY PAGE TWO Music: Internet a ‘double-edged sword’ Supporters attend a pop concert in Jianghan Road in downtown Wuhan, Hubei province, on Oct 31. Online reality shows play a key role in advancing a singer’s career. ZHAO JUN / FOR CHINA DAILY From page 1 theme song for the popular drama A Beijing Native in New York, in 1993, and Heroes’ Although the internet helps showcase Song for the 1997 TV series Shui Hu Zhuan new talent, which connects with fans (The Water Margin). through social media platforms, such plat- He also wrote and performed Asian forms can be a double-edged sword. Mighty Winds, the official theme song for Liu said figures suggest the music scene in the 1990 Asian Games in Beijing, and You China is booming. The 2021 International and Me, the theme song for the 2008 Bei- Federation of the Phonographic Industry jing Olympics, which he performed with annual Global Music Report ranked the British singer Sarah Brightman. nation as the seventh-largest music market It is not the first time that Liu has voiced last year. his concerns about the music scene. In 2019, According to the year-end report on Chi- when he appeared on Hunan Satellite TV’s na’s music market released by domestic reality show Singer, he said the pop music online music entertainment platform Ten- industry in China was in crisis and he called cent Music Entertainment Group, or TME, for domestic singer-songwriters to produce more than 748,000 new songs were written “good original music”.
    [Show full text]
  • Contributions to the Mineralogy of Norway
    NORSK GEOLOGISK TIDSSKRIFT CONTRIBUTIONS TO THE MINERALOGY OF NORWAY No. 5. Trace element variations in three generations of felds­ pars from the Landsverk I pegmatite, Evje, southern Norway. BY S. R. TAYLOR l, K. S. HEIER 2 and T. L. SvERDRUP3 A bstract: Li, Na, K, Rb, Cs, Pb, Tl, Ca, Sr and Ba have been determined in potassium feldspars and coexisting albites of three different generations from one large pegmatite (Landsverk I, Evje, southern Norway). In additio n Fe, Cr, Mn, Cu, Co, Ni, V, Sn and F were determined in a pink microcline and a green amazonite which were seen to grade into each other. Same element concentrations and ratios reflect the different conditions of formation of the feldspars fro m the three generations. The data indicate that the amazonite formed through metasomatic action of a "pegmatitic rest liquid" (fro m which cleavelandite crystallised) on the pink microcline of the first gene­ ration. The trace element data also indicate that the youngest K- feldspar is no t a late fractio nation product of the pegmatite, but rather a late seco ndary mineralisati on. The cause of the colouring of the amazonite is discussed and it is concluded that it is not to be found in a signi fi cant difference in compositio n fro m the pink mi crocline for any of the elements determined. lntroduction. Two of the authors (K. S. H. and S. R. T.) have made previously an extensive study of the distribution of trace elements in K-feld­ spars from a variety of pre-Cambrian basement rocks from southern Norway (TAYLOR and HEIER; 1958 a, b, 1960; HEIER and TAYLOR, l Dept.
    [Show full text]