Σ3O12, Henritermierite, Ca3mn2[(Sio4)2(O4H4)1]Σ3, (OH,F)-Spessartine, Mn2+3Al2[(Sio4)2(O4H4,F4)1]Σ3, and Hausmannite, Mn3o4

Total Page:16

File Type:pdf, Size:1020Kb

Σ3O12, Henritermierite, Ca3mn2[(Sio4)2(O4H4)1]Σ3, (OH,F)-Spessartine, Mn2+3Al2[(Sio4)2(O4H4,F4)1]Σ3, and Hausmannite, Mn3o4 University of Calgary PRISM: University of Calgary's Digital Repository Graduate Studies The Vault: Electronic Theses and Dissertations 2018-08-21 Crystal Chemistry and Structure of kimzeyite, Ca3Zr2[Al2Si]Σ3O12, henritermierite, Ca3Mn2[(SiO4)2(O4H4)1]Σ3, (OH,F)-spessartine, Mn2+3Al2[(SiO4)2(O4H4,F4)1]Σ3, and hausmannite, Mn3O4 Cruickshank, Laura Ann Cruickshank, L. A. (2018). Crystal Chemistry and Structure of kimzeyite, Ca3Zr2[Al2Si]Σ3O12, henritermierite, Ca3Mn2[(SiO4)2(O4H4)1]Σ3, (OH,F)-spessartine, Mn2+ 3Al2[(SiO4)2(O4H4,F4)1]Σ3, and hausmannite, Mn3O4 (Unpublished master's thesis).. University of Calgary, Calgary, AB. doi:10.11575/PRISM/32836 http://hdl.handle.net/1880/107656 master thesis University of Calgary graduate students retain copyright ownership and moral rights for their thesis. You may use this material in any way that is permitted by the Copyright Act or through licensing that has been assigned to the document. For uses that are not allowable under copyright legislation or licensing, you are required to seek permission. Downloaded from PRISM: https://prism.ucalgary.ca UNIVERSITY OF CALGARY Crystal Chemistry and Structure of kimzeyite, Ca3Zr2[Al2Si]Σ3O12, henritermierite, 2+ Ca3Mn2[(SiO4)2(O4H4)1]Σ3, (OH,F)-spessartine, Mn 3Al2[(SiO4)2(O4H4,F4)1]Σ3, and hausmannite, Mn3O4 by Laura Ann Cruickshank A THESIS SUBMITTED TO THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE GRADUATE PROGRAM IN GEOLOGY AND GEOPHYSICS CALGARY, ALBERTA AUGUST, 2018 © Laura Ann Cruickshank 2018 ii ABSTRACT This study considers the crystal chemistry of some rare garnet-group minerals of the general [8] [6] [4] formula X3 Y2 Z3O12 including kimzeyite, Ca3Zr2[Al2Si]Σ3O12, henritermierite, 2+ Ca3Mn2[(SiO4)2(O4H4)1]Σ3, and (OH,F)-spessartine, Mn 3Al2[(SiO4)2(O4H4,F4)1]Σ3. Most garnets have cubic symmetry, with space group Ia3d, but a few uncommon exceptions have been reported with tetragonal symmetry, and space group I41/acd. A sample of kimzeyite, from type- locality, Magnet Cove, Arkansas, USA, a sample of henritermierite, from Wessels Mine X, Kalahari manganese field, Northern Cape Province, South Africa, and a sample of (OH,F)- bearing spessartine, from Tongbei, near Yunxiao, Fujian Province, China were studied using electron-probe microanalysis (EPMA), back-scattered electron imaging (BSE), single crystal X- ray diffraction (SCXRD) and synchrotron high-resolution powder X-ray diffraction (HRPXRD). For kimzeyite, structural Rietveld refinements confirmed cubic space group Ia3d and achieved reduced χ2 and overall R(F2) values of 1.840 and 0.0647, respectively. The kimzeyite sample contains an intergrowth of two cubic phases that began as oscillatory growth zoning, with later fluid-enhanced dissolution and re-precipitation giving rise to patchy intergrowths. For henritermierite and (OH,F)-bearing spessartine, the SCXRD structure refinements confirmed 2 tetragonal space group I41/acd, and produced a goodness of fit on F of 1.209 and 1.232 for henritermierite and (OH,F)-spessartine, respectively. In henritermierite, the deviation of unit-cell parameters from cubic symmetry is significant (a = 12.4908(2) Å, c = 11.6446(2) Å, c/a = 0.9534). Tetragonal henritermierite has a vacant Z2 site that contains the substituent O4H4 tetrahedron. The H atom is bonded to an O3 atom (O3 – H3) = 0.73(2) Å. Because of O2 – 3+ 3+ Mn – O2 Jahn-Teller elongation of the Mn O6 octahedron, a weak hydrogen bond is formed to the under-bonded O2 atom. This causes the large deviation from cubic symmetry. In (OH,F)- iii spessartine, the Z2 site is fully occupied, but the Z1 site contains vacancies. The Z1 and Z2 sites occupied by Si atoms are surrounded by four O atoms, as seen in cubic garnets. When the Z site is vacant, a larger [(O2H2)(F2)] tetrahedron is formed, and is similar to the O4H4 tetrahedron in hydrogarnets. These results indicate a new possible end-member: 2+ Mn 3Al2[(SiO4)2(O2H2)0.5(F2)0.5]Σ3, which remains unknown. Finally, this study also examines a tetragonal spinel mineral, hausmannite, ideally Mn3O4. The sample comes from the henritermierite specimen previously described, and has tetragonal space group I41/amd. The SCXRD structure refinement confirmed the tetragonal symmetry, and produced a goodness of fit 2 on F of 1.144 and R indices of R1 = 0.0277 and wR2 = 0.0559. Henritermierite and hausmannite spinel occur as an intergrowth, observed in a BSE image. Hausmannite is thought to be an original mineral from which henritermierite was formed by a reaction that includes quartz, SiO2, calcite, CaCO3, and H2O. iv ACKNOWLEDGEMENTS I would like to express sincere thanks to my supervisor, Dr. Sytle Antao, for her guidance, encouragement and support during my time at the University of Calgary, during both my undergraduate and graduate degrees. Being given the opportunity to be a member of her research group for the last three years, through my undergraduate research project and my graduate degree has contributed significantly to both my personal and professional development. Her passion for mineralogy has continually inspired me to never stop learning. I would like to thank Dr. Robert Marr for his assistance with electron-probe microanalysis throughout the course of my research, and Benjamin Gelfand, for his assistance with single crystal X-ray diffraction data collection. Inayat Dhaliwal, Melissa Greig, Han Nguyen, Joseph Ma, and Jeffrey Salvador are thanked for their valuable advice, discussions and support throughout my time at the University of Calgary. Finally, I am most grateful to my family for their unconditional love and encouragement, and would like to thank my parents for raising me to always believe that I could do whatever I wanted to do and be whoever I wanted to be. v TABLE OF CONTENTS Abstract............................................................................................................................................ii Acknowledgements.........................................................................................................................iv Table of Contents............................................................................................................................v List of Tables..................................................................................................................................vi List of Figures...............................................................................................................................viii CHAPTER 1 INTRODUCTION TO THE GARNET GROUP MINERALS.................................1 1.1 Organization of the Thesis............................................................................................2 CHAPTER 2 CRYSTAL CHEMISTRY OF KIMZEYITE............................................................4 2.1 Introduction to Kimzeyite.............................................................................................4 2.2 Sample Description and Experimental Techniques......................................................8 2.2.1 Electron-probe Microanalysis (EPMA).........................................................9 2.2.2 Synchrotron High-resolution Powder X-ray Diffraction (HRPXRD).........12 2.2.3 Rietveld Structure Refinement.....................................................................12 2.3 Results.........................................................................................................................13 2.4 Discussion...................................................................................................................22 2.5 Conclusions.................................................................................................................25 CHAPTER 3 CRYSTAL CHEMISTRY OF HENRITERMIERITE AND (OH,F)- SPESSARTINE ............................................................................................................................27 3.1 Introduction to Henritermierite and (OH,F)-bearing Spessartine...............................27 3.2 Sample Description.....................................................................................................31 3.2.1 Electron-probe Microanalysis (EPMA).......................................................31 3.2.2 Single Crystal X-ray Diffraction (SCXRD).................................................33 3.2.3 Synchrotron High-resolution Powder X-ray Diffraction (HRPXRD).........34 3.3 Results.........................................................................................................................39 3.3.1 Henritermierite.............................................................................................41 3.3.2 (OH,F)-bearing Spessartine.........................................................................47 3.4 Conclusions.................................................................................................................51 CHAPTER 4 CRYSTAL CHEMISTRY OF HAUSMANNITE..................................................52 4.1 Introduction to Hausmannite.......................................................................................52 4.2 Sample Description and Experimental Techniques....................................................54 4.2.1 Electron-probe Microanalysis (EPMA).......................................................55 4.2.2 Single Crystal X-ray Diffraction (SCXRD).................................................55 4.3 Results.........................................................................................................................56
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Charlesite, a New Mineral of the Ettringite Group, from Franklin, New Jersey
    American Mineralogist, Volume 68, pages 1033-1037,1983 Charlesite, a new mineral of the ettringite group, from Franklin, New Jersey PBre J. DuxN Department of Mineral Sciences SmithsonianInstitution, Washington,D. C. 20560 DoNero R. Peecon Department of GeologicalSciences University of Michigan, Ann Arbor, Michigan 48109 PBrnn B. LBavBNs Departmentof Geology Universityof Delaware, Newark, Delaware l97ll eNo JonN L. Beuu Franklin Mineral Museum Franklin. New Jersey 07416 Abstract Charlesite,ideally C4(AI,Si)z(SO4)2(B(OH)4)(OH,O)r2.26H2Ois a member of the ettrin- gite group from Franklin, New Jersey, and is the Al analogueof sturmanite. Chemical analysisyielded CaO27.3, Al2O3 5.1, SiO2 3.1, SO3 12.8,B2o33.2, H2O 48.6, sum : 100.1 percent.-Charlesiteis hexagonal,probable spacegroup P3lc, with a = ll.16(l), c = 21.21(2)4. The strongest lines in the X-ray powder difraction pattern (d, IlIo, hkl) are: 9.70,100, 100;5.58, 80, 110;3.855,80, ll4;2.749,70,304;2.538,70,126;2.193,70,2261 404. Charlesite occurs as simple hexagonal crystals tabular on {0001} and has a perfect {10T0}cleavage. The densityis 1.77glcm3 (obs.) and 1.79glcms (calc.). Optically, charlesite is uniaxial( -) with a : | .492(3)and e : 1.475(3).It occurswith clinohedrite,ganophyllite, xonotlite, prehnite, roeblingite and other minerals in severalparageneses at Franklin, New Jersey. Charlesite is named in honor of the late Professor Charles Palache. Introduction were approved, prior to publication, by the Commission Minerals and Mineral Names. I. M. A. The An ettringite-like mineral was first described from on New specimenwas divided into three portions.
    [Show full text]
  • Topographical Index
    997 TOPOGRAPHICAL INDEX EUROPE Penberthy Croft, St. Hilary: carminite, beudantite, 431 Iceland (fsland) Pengenna (Trewethen) mine, St. Kew: Bondolfur, East Iceland: pitchsbone, beudantite, carminite, mimetite, sco- oligoclase, 587 rodite, 432 Sellatur, East Iceland: pitchs~one, anor- Redruth: danalite, 921 thoclase, 587 Roscommon Cliff, St. Just-in-Peuwith: Skruthur, East Iceland: pitchstonc, stokesite, 433 anorthoclase, 587 St. Day: cornubite, 1 Thingmuli, East Iceland: andesine, 587 Treburland mine, Altarnun: genthelvite, molybdenite, 921 Faroes (F~eroerne) Treore mine, St. Teath: beudantite, carminite, jamesonite, mimetite, sco- Erionite, chabazite, 343 rodite, stibnite, 431 Tretoil mine, Lanivet: danalite, garnet, Norway (Norge) ilvaite, 921 Gryting, Risor: fergusonite (var. risSrite), Wheal Betsy, Tremore, Lanivet: he]vine, 392 scheelite, 921 Helle, Arendal: fergusonite, 392 Wheal Carpenter, Gwinear: beudantite, Nedends: fergusonite, 392 bayldonite, carminite, 431 ; cornubite, Rullandsdalen, Risor: fergusonite, 392 cornwallite, 1 Wheal Clinton, Mylor, Falmouth: danal- British Isles ire, 921 Wheal Cock, St. Just-in- Penwith : apatite, E~GLA~D i~D WALES bertrandite, herderite, helvine, phena- Adamite, hiibnerite, xliv kite, scheelite, 921 Billingham anhydrite mine, Durham: Wheal Ding (part of Bodmin Wheal aph~hitalite(?), arsenopyrite(?), ep- Mary): blende, he]vine, scheelite, 921 somite, ferric sulphate(?), gypsum, Wheal Gorland, Gwennap: cornubite, l; halite, ilsemannite(?), lepidocrocite, beudantite, carminite, zeunerite, 430 molybdenite(?),
    [Show full text]
  • General Index
    CAL – CAL GENERAL INDEX CACOXENITE United States Prospect quarry (rhombs to 3 cm) 25:189– Not verified from pegmatites; most id as strunzite Arizona 190p 4:119, 4:121 Campbell shaft, Bisbee 24:428n Unanderra quarry 19:393c Australia California Willy Wally Gully (spherulitic) 19:401 Queensland Golden Rule mine, Tuolumne County 18:63 Queensland Mt. Isa mine 19:479 Stanislaus mine, Calaveras County 13:396h Mt. Isa mine (some scepter) 19:479 South Australia Colorado South Australia Moonta mines 19:(412) Cresson mine, Teller County (1 cm crystals; Beltana mine: smithsonite after 22:454p; Brazil some poss. melonite after) 16:234–236d,c white rhombs to 1 cm 22:452 Minas Gerais Cripple Creek, Teller County 13:395–396p,d, Wallaroo mines 19:413 Conselheiro Pena (id as acicular beraunite) 13:399 Tasmania 24:385n San Juan Mountains 10:358n Renison mine 19:384 Ireland Oregon Victoria Ft. Lismeenagh, Shenagolden, County Limer- Last Chance mine, Baker County 13:398n Flinders area 19:456 ick 20:396 Wisconsin Hunter River valley, north of Sydney (“glen- Spain Rib Mountain, Marathon County (5 mm laths donite,” poss. after ikaite) 19:368p,h Horcajo mines, Ciudad Real (rosettes; crystals in quartz) 12:95 Jindevick quarry, Warregul (oriented on cal- to 1 cm) 25:22p, 25:25 CALCIO-ANCYLITE-(Ce), -(Nd) cite) 19:199, 19:200p Kennon Head, Phillip Island 19:456 Sweden Canada Phelans Bluff, Phillip Island 19:456 Leveäniemi iron mine, Norrbotten 20:345p, Québec 20:346, 22:(48) Phillip Island 19:456 Mt. St-Hilaire (calcio-ancylite-(Ce)) 21:295– Austria United States
    [Show full text]
  • The Stability of Danalite, Feober(Sior3s Donero M. Bunr
    American Mineralogist, Volume 65, pages 355-360, 1980 The stability of danalite, FeoBer(SiOr3S DoNero M. Bunr Department of Geology, Arizona State University Tempe,Arizona 85281 Abstract End-memberdanalite is compositionallyequivalent to a mixture of pyrrhotite, phenakite, and fayalite, but danalite's natural occurrenceswith pyrite, magnetite,and quartz suggest that it is stable under somewhat more sulfidizing conditions than pyrrhotite and more oxidiz- ing conditions than fayatte. Danalite tends not to occur with hematite. Thesefacts can be usedto constructa tentative log /",-log f o,diagtan for the stability of the end member. The diagram shows that danalite, if it is stable at all, has an extremely narrow stability field cen- tered near the pyrrhotite,/magnetitefield boundary. Outside this field, phenakite (or, at low temperatures,bertrandite) is stablewith magnetite,pyrrhotite (or pyrite), and quartz. A natu- ral example of theseequilibria apparently occurs at Iron Mountain, Bartlett, New Hamp- shire, where zoned danalite-helvite solid solutions occur as overgrowths on phenakite with magnetite,pyrite, and quartz. Danalite is the only end memberof the helvite group that is appreciablysensitive to hypo- gene oxidation. The Mn and Zn end,members helvite and genthelviteare instead sensitive only to S-O exchange(variation in log /",//",). Introduction 2 FeoBe,(SiOo)rS:2 FeS+ 3 Be,SiOo+ 3 FerSiOo Danalite, FeoBer(SiOo)rS,is a rare beryllium ore danalite: troilite * phenakite* fayalite mineral in iron-rich skarns,greisens, and related me- Troilite (Tr) is not a common terrestrial phase; for tasomaticrocks (Glasset al., 19441,Beus, 1966; Dunn, the purposesofthis discussionit can be replacedby 1976). lt typically contains considerable helvite, pyrrhotite, Fe,-,S.
    [Show full text]
  • Olmiite, Camn[Sio3(OH)](OH), the Mn-Dominant Analogue of Poldervaartite, a New Mineral Species from Kalahari Manganese Fields (Republic of South Africa)
    Mineralogical Magazine, April 2007, Vol. 71(2), pp. 193–201 Olmiite, CaMn[SiO3(OH)](OH), the Mn-dominant analogue of poldervaartite, a new mineral species from Kalahari manganese fields (Republic of South Africa) 1, 2 3 4 1 1 P. BONAZZI *, L. BINDI ,O.MEDENBACH ,R.PAGANO ,G.I.LAMPRONTI AND S. MENCHETTI 1 Dipartimento di Scienze della Terra, Universita` degli Studi di Firenze, Via La Pira, 4, I-50121, Firenze, Italy 2 Museo di Storia Naturale, sezione di Mineralogia, Universita` di Firenze, Via La Pira 4, I-50121 Firenze, Italy 3 Institut fu¨r Geologie, Mineralogie und Geophysik, Ruhr-Universita¨t Bochum, Universita¨tsstraße 150, D-44780 Bochum, Germany 4 P.O. Box 37, I-20092 Cinisello, Milano, Italy [Received 10 April 2007; Accepted 12 July 2007] ABSTRACT Olmiite, ideally CaMn[SiO3(OH)](OH), is a newly identified mineral from the N’Chwaning II mine of the Kalahari manganese fields (Republic of South Africa), which occurs as a product of hydrothermal alteration associated with poldervaartite, celestine, sturmanite, bultfonteinite and hematite. The mineral occurs as wheat-sheaf aggregates consisting of pale to intense reddish pink minute crystals. Olmiite is transparent with vitreous lustre, and exhibits deep-red fluorescence under short-wave UV-light. The mineral is brittle, with irregular fracture. Streak is white and Mohs hardness is 5À5Ý. No cleavage was observed. The measured density (pycnometer method) is 3.05(3) g/cm3. The calculated density is 3.102 g/cm3 or 3.109 g/cm3 using the unit-cell volume from single-crystal or powder data, respectively. Olmiite is biaxial positive, with refractive indices a = 1.663(1), b = 1.672(1), g = 1.694(1) (589 nm), 2Vmeas = 71.8(1)º, 2Vcalc = 66(8)º.
    [Show full text]
  • A Specific Gravity Index for Minerats
    A SPECIFICGRAVITY INDEX FOR MINERATS c. A. MURSKyI ern R. M. THOMPSON, Un'fuersityof Bri.ti,sh Col,umb,in,Voncouver, Canad,a This work was undertaken in order to provide a practical, and as far as possible,a complete list of specific gravities of minerals. An accurate speciflc cravity determination can usually be made quickly and this information when combined with other physical properties commonly leads to rapid mineral identification. Early complete but now outdated specific gravity lists are those of Miers given in his mineralogy textbook (1902),and Spencer(M,i,n. Mag.,2!, pp. 382-865,I}ZZ). A more recent list by Hurlbut (Dana's Manuatr of M,i,neral,ogy,LgE2) is incomplete and others are limited to rock forming minerals,Trdger (Tabel,l,enntr-optischen Best'i,mmungd,er geste,i,nsb.ildend,en M,ineral,e, 1952) and Morey (Encycto- ped,iaof Cherni,cal,Technol,ogy, Vol. 12, 19b4). In his mineral identification tables, smith (rd,entifi,cati,onand. qual,itatioe cherai,cal,anal,ys'i,s of mineral,s,second edition, New york, 19bB) groups minerals on the basis of specificgravity but in each of the twelve groups the minerals are listed in order of decreasinghardness. The present work should not be regarded as an index of all known minerals as the specificgravities of many minerals are unknown or known only approximately and are omitted from the current list. The list, in order of increasing specific gravity, includes all minerals without regard to other physical properties or to chemical composition. The designation I or II after the name indicates that the mineral falls in the classesof minerals describedin Dana Systemof M'ineralogyEdition 7, volume I (Native elements, sulphides, oxides, etc.) or II (Halides, carbonates, etc.) (L944 and 1951).
    [Show full text]
  • Diamond Dan's Mineral Names Dictionary
    A Dictionary of Mineral Names By Darryl Powell Mineral Names What do they mean? Who created them? What can I learn from them? This mineral diction‐ ary is unique because it is illustrated, both with mineral drawings as well as pictures of people and places after which some minerals are named. The people pictured on this page have all made a con‐ tribution to what is formally called “mineral nomenclature.” Keep reading and you will discover who they are and what they did. In 1995, Diamond Dan Publications pub‐ lished its first full book, “A Mineral Collector’s Guide to Common Mineral Names: Their Ori‐ gins & Meanings.” Now it is twenty years later. What you will discover in this issue and in the March issue is a re‐ vised and improved version of this book. This Mineral Names Dictionary contains mineral names that the average mineral collector will encounter while collecting minerals, attending shows and visiting museum displays. In addition to the most common min‐ eral names, there are some unofficial names which you will still find on labels. Each mineral name has a story to tell or a lesson to teach. If you wanted to take the time, each name could become a topic to study. Armalcolite, for example, could quickly be‐ come a study of a mineral, first discovered on the moon, and brought back to earth by the astronauts Armstrong, Aldrin and Collins (do you see parts of their names in this mineral name?) This could lead you to a study of American astronauts landing on the moon, what it took to get there and what we discovered by landing on the moon.
    [Show full text]
  • Mineralogy and Petrology of the Amazonite Pegmatite at Bakstevalåsen, Øvre Eiker
    Master Thesis, Department of Geosciences Mineralogy and petrology of the amazonite pegmatite at Bakstevalåsen, øvre Eiker Øyvind Sunde Mineralogy and petrology of the amazonite pegmatite at Bakstevalåsen, øvre Eiker Øyvind Sunde Master Thesis in Geosciences Discipline: Geology Department of Geosciences Faculty of Mathematics and Natural Sciences University of Oslo July 2013 © Øyvind Sunde, 2013 Supervised by associate prof. Rune S. Selbekk and prof. Tom Andersen Cover picture: Hand specimen of the amazonite pegmatite at Bakstevalåsen measuring a 15 cm cross-section with amazonite matrix and abundant danalite. This work is published digitally through DUO – Digitale Utgivelser ved UiO http://www.duo.uio.no It is also catalogued in BIBSYS (http://www.bibsys.no/english) All rights reserved. No part of this publication may be reproduced or transmitted, in any form or by any means, without permission. Acknowledgements This thesis marks the end of a 5 –year period of time with relentless studies at the Department of Geosciences, University of Oslo. There are many people I have met during this 5-year ride who in various ways have contributed in shaping my interest for geology. I have never, ever, regretted my decision on setting sail onto this journey. You all know who you are and a huge thank you! My thesis would not have been possible without the help of several clever individuals, and I would like to aim a special appreciation to the following personnel: Rune Selbekk: first of all, thank you for letting me volunteer at the natural History Museum during my infant years of studying. It brought more geology into a curriculum diluted with meteorology and philosophy.
    [Show full text]
  • Abstract Introduction Danalite, Fe4be3(Si04)3S, Is a Rare
    American Mineralogist, Volume 65, pages 355-360, 1980 DONALD M. BURT Department of Geology, Arizona State University Tempe, Arizona 85281 Abstract End-member danalite is compositionally equivalent to a mixture of pyrrhotite, phenakite, and fayalite, but danalite's natural occurrences with pyrite, magnetite, and quartz suggest that it is stable under somewhat more sulfidizing conditions than pyrrhotite and more oxidiz- ing conditions than fayalite. Danalite tends not to occur with hematite. These facts can be used to construct a tentative log f s,-log f 0, diagram for the stability of the end member. The diagram shows that danalite, if it is stable at all, has an extremely narrow stability field cen- tered near the pyrrhotite/magnetite field boundary. Outside this field, phenakite (or, at low temperatures, bertrandite) is stable with magnetite, pyrrhotite (or pyrite), and quartz. A natu- ral example of these equilibria apparently occurs at Iron Mountain, Bartlett, New Hamp- shire, where zoned danalite-helvite solid solutions occur as overgrowths on phenakite with magnetite, pyrite, and quartz. Danalite is the only end member of the helvite group that is appreciably sensitive to hypo- gene oxidation. The Mn and Zn end members helvite and genthelvite are instead sensitive only to 8-0 exchange (variation in log f s,lf 0,)' Introduction 2 Fe4Be3(Si04)3S = 2 FeS + 3 BezSi04 + 3 FezSi04 Danalite, Fe4Be3(Si04)3S, is a rare beryllium ore danalite = troilite + phenakite + fayalite mineral in iron-rich skarns, greisens, and related me- Troilite (Tr) is not a common terrestrial phase; for tasomatic rocks (Glass et aI., 1944; Beus, 1966; Dunn, the purposes of this discussion it can be replaced by 1976).
    [Show full text]
  • Seventh Day GEOLOGY of the OTANMÄKI MINE
    Seventh day GEOLOGY OF THE OTANMÄKI MINE - by Ole Lindholm and Risto Anttonen Introduction Investigating methods Location The magnetite-ilmenite deposits at Otanmaki are distinguished by their heterogeneity. Several The Otanmäki mine (stop 7) lies close to the hundred known ore lenses are spread over a geographical Centre of Finland, south of the fairly large zone. Lenses of unequal size con- large lake Oulujarvi. The nearest town is taining abundant gangue inclusions and often Kajaani, about 40 km to the east. The mine and with illdefined boundaries occur capriciously. adjacent plants employ about 650 persons. Mining geology has to provide an exceptionally large amount of detailed information to aid the design of the stopes and to direct the stoping. About 45 000-50 000 m of investigation drilling is required annually. To make this economically Discover_y and deoelopment feasible, diamond drilling is supplemented and The history of the discovery of Otanmaki is partly replaced by inexpensive and fast per- very similar to that of other ore deposits found cussion drilling. With the percussion drilling in the thirties. In 1937 two magnetite-ilmenite no sludge samples are taken, instead the holes floats were found about 40 km southeast of are surveyed geophysically by permeameter, Otanmaki. One year later, in 1938, their source which is calibrated to show the magnetite con- was pinpointed on the basis of magnetic indica- tent of the rock. This method is made viable tions. Further studies revealed several smaller by the constant magnetite-ilmenite ratio in the magnetite-ilmenite deposits within a radius of ore. The annual amount of percussion drilling 10 km around Otanmaki.
    [Show full text]
  • J. P. Cooke on Danalite from Rockport, Mass. ART. XL-On Danalite, a New
    J. P. Cooke on Danalite from Rockport, Mass. 73 ART. XL-On Danalite, a new Mineral Species from the (banite of Rockport, Mass.; by JOSIAH P. COOKE, Jr. DISSDINATED through the Rockport granite, which is quar­ ried at the extremity of Cape Ann, Massachusetts, and much used for building in Boston and the vicinity, are occasional ~in8 of o.llesh-red mineral somewhat resembling Rhodonite. The mineral has heen at times found in masses of considerable size, and for a s~ecimen of this sort I am indebted to the kind­ ness of Mr. W. J. Knowlton, ~f the Lawrence Scientific School. The characters of the mineral are as follows: Color, Besh· red to gray. ' Str~ similar in color to the mineral but lighter. Lustre, vitreo·resinous. Translucent. Fracture subconchoidal uneven. Brittle. Hardness 6'6 to 6. Specific gravity-two de· terminations-S·427. The exterior portion of the mass showed no indication of crystalline (orm and there was no distinct cleavage j but on breaking it open a well developed octahedron of the regular system was found in the interior. The angle be· tween the oetaliedral faces measured with an application gonia ometer 1090 80'. The· edges of the octahedron were replaced by planes of a rhombic dodecahedron, strongly striated parallel to the longer diagonal of the face. The mineral, tberefore, crys­ tallizes in the holohedral forms of the monometric svstem. Before the blowpipe the mineral readily fuses on the edges to a black enamel. Hence its fusibility is about 4 of von Kobell's scale. On charcoal with carbonate of soda it giv~ a slight coating of oxyd of zinc.
    [Show full text]