Beryllium Mineralogy of the Kola Peninsula, Russia—A Review

Total Page:16

File Type:pdf, Size:1020Kb

Beryllium Mineralogy of the Kola Peninsula, Russia—A Review minerals Review Beryllium Mineralogy of the Kola Peninsula, Russia—A Review Lyudmila M. Lyalina *, Ekaterina A. Selivanova , Dmitry R. Zozulya and Gregory Yu. Ivanyuk Geological Institute, Kola Science Centre, Russian Academy of Sciences, Fersmana 14, 184209 Apatity, Russia; [email protected] (E.A.S.); [email protected] (D.R.Z.); [email protected] (G.Y.I.) * Correspondence: [email protected]; Tel.: +7-81555-7-96-66 Received: 1 October 2018; Accepted: 21 December 2018; Published: 25 December 2018 Abstract: This paper reviews the available information on the beryllium mineralogy of the different type of occurrences in the Kola Peninsula, northwest Russia. Beryllium mineralization in the region is mainly associated with alkaline and felsic rocks, which differ significantly in petrological, geochemical, mineralogical features and age. In total 28 beryllium minerals are established on the Kola Peninsula up today. Beryl is one of the ore minerals in the differentiated granite pegmatites of the Kolmozerskoe lithium deposit. A large diversity of beryllium minerals occur in the pegmatites and hydrothermal veins formed in the late stages of the Lovozero and Khibiny alkaline massifs. Most of these minerals, as leifite, lovdarite, odintsovite, sphaerobertrandite and tugtupite are rare in other environments and have unique properties. These minerals formed under conditions of extreme alkalinity and their formation was favored by abrupt changes in the alkalinity regimes. Some of minerals, as chrysoberyl in xenoliths of hornfels, genthelvite and unique intergrowth of meliphanite and leucophanite formed in contrasting geochemical fronts between felsic/intermediate and mafic rocks. Keywords: beryllium minerals; chemical composition; mineral data; alkaline rocks; granite; pegmatites; hydrothermal veins; Kola Peninsula 1. Introduction In 2018, 220 years have passed since the discovery of beryllium by the French chemist N.-L. Vauquelin. He made a report ”De l’aigue marine, ou béril; et découverte d’une terre nouvelle dans cette pierre” (About the aquamarine or beryl, and discovery of a new earth in this stone) at the National Institute of France on the 14 February 1798 [1,2]. However, beryl and their colored varieties: emerald, aquamarine, and “chrysoberyl” (golden beryl, not the sensu stricto chrysoberyl), were known from much earlier times. Many branches of contemporary industry use this chemical element due to the unique properties of the beryllium-bearing compounds. Thus, in metallurgy, beryllium is used effectively in alloys in order to increase their strength, hardness, and corrosion resistance. Such additives increase the service life of parts in several times. Alloys with beryllium are incredibly light and heat-resistant, which determines their use in the aerospace industry. Beryllium is indispensable in the nuclear and electronic industry, in the electro- and radiotechnics and many other high-tech industries. USA is the main producer of beryllium ore from bertrandite-bearing tuff in the Spor Mountain deposit, Utah. Russia plans to resume the mining of beryllium ore (bertrandite-phenakite) in Ermakovsky deposit, Buryatia in 2019. The Russian production of beryllium is planned to be started in 2020. Minerals 2019, 9, 12; doi:10.3390/min9010012 www.mdpi.com/journal/minerals Minerals 2019, 9, 12 2 of 42 Minerals 2019, 9, x FOR PEER REVIEW 2 of 48 History, properties,properties, distribution,distribution, analytical methods of determination,determination, economics, fieldsfields of application, mineralogy,mineralogy, petrology,petrology, geochemistry geochemistry and and crystal crystal chemistry chemistry of of beryllium beryllium can can be be found found in numerousin numerous reviews reviews [3– [316–].16]. Beryllium is a a rare rare lithophile lithophile element; element; it itis isconcentrated concentrated mainly mainly in felsic in felsic and andalkaline alkaline rocks. rocks. The Theberyllium beryllium content content in rocks inrocks is low, is and low, the and average the average concentration concentration of Be in of the Be Earth’s in the Earth’supper crust upper is crust2.1 ppm, is 2.1 while ppm, in whileprimitive in primitive mantle it mantleshows a it 30 shows-fold adecreasing 30-fold decreasing up to 0.07 upppm to Be 0.07 [17]. ppm Beryllium Be [17]. Berylliumtends to tendsaccumulate to accumulate in late inderivatives late derivatives of alkaline of alkaline and andfelsic felsic rocks, rocks, i.e., i.e., pegmatites pegmatites and hydrothermal veins.veins. DueDueto to specific specific crystal crystal chemistry chemistry properties properties [6 [6,18],,18], there there is is a significanta significant amount amount of Beof mineralsBe minerals (121 (12 minerals,1 minerals, according according to IMA to listIMA from list March from 2018).March Discoveries 2018). Discoveries of beryllium of beryllium minerals areminerals accelerating are accelerating and 18 new and minerals 18 new were minerals described were since described 2010 (IMA sincelist 2010 of Minerals,(IMA list Marchof Minerals, 2018). MineralsMarch 2018). of extremely Minerals unusual of extremely composition unusual have composition been defined have among been them, defined forexample among verbieritethem, for 3+ 3+ BeCrexample2TiO verbierite6 [19]. BeCr 2TiO6 [19]. 2. Geological Overview of the KolaKola Peninsula.Peninsula. Deposit and Occurrences ofof BerylliumBeryllium MineralsMinerals The KolaKola Peninsula Peninsula isthe is northeasternthe northeastern part of thepart Fennoscandian of the Fennoscandian Shield, the largestShield, representative the largest ofrepresentative the Early Precambrian of the Early crystalline Precambrian basement crystalline of the East-European basement of craton. the East The-European major structural craton.units The andmajor rocks structural are given units in and Figure rocks1. are An given essential in Figure role of 1. alkaline An essential magmatism role of inalkaline the Kola magmatism Peninsula in shouldthe Kola be emphasizedPeninsula should [20]. It tookbe emphasized place during [20] the.formation It took place of the Fennoscandianduring the formation Shield from of thethe ArcheanFennoscandian to Paleozoic. Shield Keivy fromblock the Archean is formed to by Paleozoic. the rocksof Keivy Archean block peralkaline is formed granite by the magmatism rocks of (2.6–2.7Archean Ga) peralkaline [21]. The granite emplacement magmatism of Sakharjok (2.6–2.7 nepheline Ga) [21]. The syenite emplacement within the of Keivy Sakharjok terrane nepheline occurred duringsyenite thewithin final stagethe Keivy of the peralkalineterrane occurred granite during magmatismin the final (2.6 stage Ga). Alkalineof the magmatismperalkaline activitygranite reachedmagmatismin the peak (2.6 during Ga). Alkaline the Paleozoic magmatism (350–400 activity Ma) andreached gave the the peak world’s during largest the alkaline Paleozoic plutons, (350– Khibiny400 Ma) andand Lovozero,gave the world’s and a number largest ofalkaline other alkaline-ultrabasicplutons, Khibiny and massifs, Lovozero, all of and them a containingnumber of carbonatitesother alkaline [22-ultrabasic]. massifs, all of them containing carbonatites [22]. Figure 1.1.Simplified Simplified geological geological map map of theof the Kola Kola Peninsula Peninsula (after (after [22]). The[22]). numbers The numbers indicate indicate be deposit be anddeposit occurrences: and occurrences: 1 = Khibiny, 1 = Khibiny, 2 = Lovozero, 2 = Lovozero, 3 = Kovdor, 3 =4 Kovdor, = Sakharjok, 4 = Sakharjok, 5 = El’ozero, 5 = 6 El’ozero, = Keivy, 76 == Kanozero,Keivy, 7 = 8Kanozero, = Shongui, 8 9== Shongui, Jona, 10 =9 Strel’na,= Jona, 10 11 = Strel’na, Kolmozero-Voronja, 11 = Kolmozero 12 =- Olenegorsk.Voronja, 12 Abbreviations:= Olenegorsk. AR–Archaean,Abbreviations: PR–Proterozoic,AR–Archaean, PR D–Devonian,–Proterozoic BIF–Banded, D–Devonian Iron, BIF Formation.–Banded Iron Formation. The Uraguba-Kolmozero-Voronja greenstone belt (Figure 1) is composed mainly by Neoarchean basic-intermediate-acid metavolcanic and metasedimentary suites metamorphosed at Minerals 2019, 9, 12 3 of 42 The Uraguba-Kolmozero-Voronja greenstone belt (Figure1) is composed mainly by Neoarchean basic-intermediate-acid metavolcanic and metasedimentary suites metamorphosed at amphibolite facies. Younger igneous events are represented by voluminous intrusions of plagio-microcline granites and small stocks of tourmaline granites. Six pegmatite fields, comprising Polmostundra, Kolmozero and Vasin-Mylk (Voronja Tundra) ore deposits, with a total ensemble of more than 100 bodies are confined to the Kolmozero-Voronja belt. The pegmatites intrude in amphibolites, metasediments and rarely gabbro-anorthosite and have 50–700 m long and 10–35 m in thickness. Quartz-albite-microcline pegmatite bodies are extremely enriched in rare element minerals: spodumene (18–20 vol %, locally up to 50 vol %), tantalite, microlite, beryl, lithiophillite, holmquistite, pollucite, and lepidolite. The Kolmozero-Voronja pegmatites are of complex type, spodumene subtype with Li, Cs, Be, Ta geochemical specialization and belong to LCT (lithium-cesium-tantalum) family (according to the classification of Cernˇ ý and Ercit [23]). The overall schematic structure and composition of pegmatites is the following (from contact to central part): (1) aplitic zone of a 1–10 cm width consisting by plagioclase and quartz with minor biotite, tourmaline, apatite, and epidote; (2) granoblastic medium-grained quartz-albite zone of 0.3–5 m in width with
Recommended publications
  • Summary of the Mineral Information Package for the Khanneshin Carbonatite Area of Interest
    Chapter 21A. Summary of the Mineral Information Package for the Khanneshin Carbonatite Area of Interest Contribution by Robert D. Tucker, Harvey E. Belkin, Klaus J. Schulz, Stephen G. Peters, and Kim P. Buttleman Abstract The Khanneshin carbonatite is a deeply dissected igneous complex of Quaternary age that rises approximately 700 meters above the flat-lying Neogene sediments of the Registan Desert, Helmand Province, Afghanistan. The complex consists almost exclusively of carbonate-rich intrusive and extrusive igneous rocks, crudely circular in outline, with only three small hypabyssal plugs of leucite phonolite and leucitite outcropping in the southeastern part of the complex. The complex is broadly divisible into a central intrusive vent (or massif), approximately 4 kilometers in diameter, consisting of coarse-grained sövite and brecciated and agglomeratic barite-ankerite alvikite; a thin marginal zone (less than 1 kilometer wide) of outwardly dipping (5°–45°). Neogene sedimentary strata; and a peripheral apron of volcanic and volcaniclastic strata extending another 3–5 kilometers away from the central intrusive massif. Small satellitic intrusions of biotite-calcite carbonatite, no larger than 400 meters in diameter, crop out on the southern and southeastern margin of the central intrusive massif. In the 1970s several teams of Soviet geologists identified prospective areas of interest for uranium, phosphorus, and light rare earth element (LREE) mineralization in four regions of the carbonatite complex. High uranium concentrations are reported in two regions; the greatest concentrations are confined to silicified shear zones in sandy clay approximately 1.1 kilometers southwest of the peripheral part of the central vent. An area of phosphorus enrichment, primarily occurring in apatite, is present in coarse-grained agglomeratic alvikite, with abundant fenite xenoliths, approximately 750 meters south of the periphery of the central vent.
    [Show full text]
  • The Anjahamiary Pegmatite, Fort Dauphin Area, Madagascar
    The Anjahamiary pegmatite, Fort Dauphin area, Madagascar Federico Pezzotta* & Marc Jobin** * Museo Civico di Storia Naturale, Corso Venezia 55, I-20121 Milano, Italy. ** SOMEMA, BP 6018, Antananarivo 101, Madagascar. E-mail:<[email protected]> 21 February, 2003 INTRODUCTION Madagascar is among the most important areas in the world for the production, mainly in the past, of tourmaline (elbaite and liddicoatite) gemstones and mineral specimens. A large literature database documents the presence of a number of pegmatites rich in elbaite and liddicoatite. The pegmatites are mainly concentrated in central Madagascar, in a region including, from north to south, the areas of Tsiroanomandidy, Itasy, Antsirabe-Betafo, Ambositra, Ambatofinandrahana, Mandosonoro, Ikalamavony, Fenoarivo and Fianarantsoa (e.g. Pezzotta, 2001). In general, outside this large area, elbaite-liddicoatite-bearing pegmatites are rare and only minor discoveries have been made in the past. Nevertheless, some recent work made by the Malagasy company SOMEMEA, discovered a great potential for elbaite-liddicoatite gemstones and mineral specimens in a large, unusual pegmatite (the Anjahamiary pegmatite), hosted in high- metamorphic terrains. The Anjahamiary pegmatite lies in the Fort Dauphin (Tôlanaro) area, close to the southern coast of Madagascar. This paper reports a general description of this locality, and some preliminary results of the analytical studies of the accessory minerals collected at the mine. Among the most important analytical results is the presence of gemmy blue liddicoatite crystals with a very high Ca content, indicating the presence in this tourmaline crystal of composition near the liddicoatite end-member. LOCATION AND ACCESS The Anjahamiary pegmatite is located about 70 km NW of the town of Fort Dauphin (Tôlanaro) (Fig.
    [Show full text]
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Key to Rocks & Minerals Collections
    STATE OF MICHIGAN MINERALS DEPARTMENT OF NATURAL RESOURCES GEOLOGICAL SURVEY DIVISION A mineral is a rock substance occurring in nature that has a definite chemical composition, crystal form, and KEY TO ROCKS & MINERALS COLLECTIONS other distinct physical properties. A few of the minerals, such as gold and silver, occur as "free" elements, but by most minerals are chemical combinations of two or Harry O. Sorensen several elements just as plants and animals are Reprinted 1968 chemical combinations. Nearly all of the 90 or more Lansing, Michigan known elements are found in the earth's crust, but only 8 are present in proportions greater than one percent. In order of abundance the 8 most important elements Contents are: INTRODUCTION............................................................... 1 Percent composition Element Symbol MINERALS........................................................................ 1 of the earth’s crust ROCKS ............................................................................. 1 Oxygen O 46.46 IGNEOUS ROCKS ........................................................ 2 Silicon Si 27.61 SEDIMENTARY ROCKS............................................... 2 Aluminum Al 8.07 METAMORPHIC ROCKS.............................................. 2 Iron Fe 5.06 IDENTIFICATION ............................................................. 2 Calcium Ca 3.64 COLOR AND STREAK.................................................. 2 Sodium Na 2.75 LUSTER......................................................................... 2 Potassium
    [Show full text]
  • Heat Capacities and Thermodynamic Functions for Beryl, Beralrsiuotr
    American Mineralogist, Volume 7I, pages 557-568, 1986 Heat capacitiesand thermodynamicfunctions for beryl, BerAlrSiuOtr, phenakite, BerSiOn,euclase, BeAlSiOo(OH)' bertranditeo BeoSirOt(OH)r,and chrysoberyl' BeAl2Oa B. S. HnluNcw.q,Y U.S. GeologicalSurvey, Reston, Y irgrnia22092 M. D. B.nnroN Departmentof Earthand SpaceSciences, University of California,Los Angeles,Los Angeles,California 90024 R. A. Ronrn, H. T. HLsnr.roN, Jn. U.S. GeologicalSurvey, Reston, Y irginia22092 Ansrru,cr The heat capacities of beryl, phenakite, euclase,and bertrandite have been measured betweenabout 5 and 800 K by combined quasi-adiabaticcryogenic calorimetry and dif- ferential scanningcalorimetry. The heat capacitiesof chrysoberylhave beenmeasured from 340 to 800 K. The resulting data have been combined with solution and phase-equilibrium experimentaldata and simultaneouslyfit using the program pHAS2oto provide an internally consistent set of thermodynamic properties for several important beryllium phases.The experimentalheat capacitiesand tablesof derived thermodynamic propertiesare presented in this report. The derived thermodynamic properties at I bar and 298.15 K for the stoichiometric beryllium phasesberyl, phenakite, euclase,and bertrandite are entropies of 346.7 + 4.7, 63.37+0.27,89.09+0.40, andl72.l+0.77 J/(mol'K),respectively,andGibbsfree energiesof formation(elements) of -8500.36 + 6.39, -2028.39 + 3.78, -2370.17 + 3.04, and -4300.62 + 5.45 kJlmol, respectively,and, -2176.16 + 3.18kJ/mol for chrysoberyl. The coefficientscr to c, of the heat-capacityfunctions are as follows: valid phase ct c2 c, x 105 c4 c, x 10-6 range beryl 1625.842 -0.425206 12.0318 -20 180.94 6.82544 200-1800K phenakite 428.492 -0.099 582 1.9886 -5 670.47 2.0826 200-1800K euclase 532.920 -0.150729 4.1223 -6726.30 2.1976 200-1800K bertrandite 825.336 -0.099 651 -10 570.31 3.662r7200-1400 K chrysoberyl 362.701 -0.083 527 2.2482 -4033.69 -6.7976 200-1800K whereC!: cr * ctT + crT2 * coT-os* crT-2and Zisinkelvins.
    [Show full text]
  • Mineralogy and Geochemistry of Ocelli in the Damtjernite Dykes and Sills, Chadobets Uplift, Siberian Craton: Evidence of the Fluid–Lamprophyric Magma Interaction
    minerals Article Mineralogy and Geochemistry of Ocelli in the Damtjernite Dykes and Sills, Chadobets Uplift, Siberian Craton: Evidence of the Fluid–Lamprophyric Magma Interaction Anna A. Nosova 1,*, Ludmila V. Sazonova 1,2, Alexey V. Kargin 1 , Elena O. Dubinina 1 and Elena A. Minervina 1 1 Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Academy of Sciences (IGEM RAS), 119017 Moscow, Russia; [email protected] (L.V.S.); [email protected] (A.V.K.); [email protected] (E.O.D.); [email protected] (E.A.M.) 2 Geology Department, Lomonosov Moscow State University, 119991 Moscow, Russia * Correspondence: [email protected]; Tel.:+7-499-230-8414 Abstract: The study reports petrography, mineralogy and carbonate geochemistry and stable iso- topy of various types of ocelli (silicate-carbonate globules) observed in the lamprophyres from the Chadobets Uplift, southwestern Siberian craton. The Chadobets lamprophyres are related to the REE-bearing Chuktukon carbonatites. On the basis of their morphology, mineralogy and relation with the surrounding groundmass, we distinguish three types of ocelli: carbonate-silicate, containing carbonate, scapolite, sodalite, potassium feldspar, albite, apatite and minor quartz ocelli (K-Na-CSO); carbonate–silicate ocelli, containing natrolite and sodalite (Na-CSO); and silicate-carbonate, con- taining potassium feldspar and phlogopite (K-SCO). The K-Na-CSO present in the most evolved Citation: Nosova, A.A.; Sazonova, damtjernite with irregular and polygonal patches was distributed within the groundmass; the patches L.V.; Kargin, A.V.; Dubinina, E.O.; consist of minerals identical to minerals in ocelli. Carbonate in the K-Na-CSO are calcite, Fe-dolomite Minervina, E.A.
    [Show full text]
  • Cafetite, Ca[Ti2o5](H2O): Crystal Structure and Revision of Chemical Formula
    American Mineralogist, Volume 88, pages 424–429, 2003 Cafetite, Ca[Ti2O5](H2O): Crystal structure and revision of chemical formula SERGEY V. K RIVOVICHEV,1,* VICTOR N. YAKOVENCHUK,2 PETER C. BURNS,3 YAKOV A. PAKHOMOVSKY,2 AND YURY P. MENSHIKOV2 1Department of Crystallography, St. Petersburg State University, University Embankment 7/9, St. Petersburg 199034, Russia 2Geological Institute, Kola Science Centre, Russian Academy of Sciences, Fersmana 14, 184200-RU Apatity, Russia 3Department of Civil Engineering and Geological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0767, U.S.A. ABSTRACT The crystal structure of cafetite, ideally Ca[Ti2O5](H2O), (monoclinic, P21/n, a = 4.9436(15), b = 12.109(4), c = 15.911(5) Å, b = 98.937(5)∞, V = 940.9(5) Å3, Z = 8) has been solved by direct methods and refined to R1 = 0.057 using X-ray diffraction data collected from a crystal pseudo-merohedrally twinned on (001). There are four symmetrically independent Ti cations; each is octahedrally coordi- nated by six O atoms. The coordination polyhedra around the Ti cations are strongly distorted with individual Ti-O bond lengths ranging from 1.743 to 2.223 Å (the average <Ti-O> bond length is 1.98 Å). Two symmetrically independent Ca cations are coordinated by six and eight anions for Ca1 and Ca2, respectively. The structure is based on [Ti2O5] sheets of TiO6 octahedra parallel to (001). The Ca atoms and H2O groups are located between the sheets and link them into a three-dimensional struc- ture. The structural formula of cafetite confirmed by electron microprobe analysis is Ca[Ti2O5](H2O), .
    [Show full text]
  • Contributions to the Mineralogy of Norway
    NORSK GEOLOGISK TIDSSKRIFT CONTRIBUTIONS TO THE MINERALOGY OF NORWAY No. 5. Trace element variations in three generations of felds­ pars from the Landsverk I pegmatite, Evje, southern Norway. BY S. R. TAYLOR l, K. S. HEIER 2 and T. L. SvERDRUP3 A bstract: Li, Na, K, Rb, Cs, Pb, Tl, Ca, Sr and Ba have been determined in potassium feldspars and coexisting albites of three different generations from one large pegmatite (Landsverk I, Evje, southern Norway). In additio n Fe, Cr, Mn, Cu, Co, Ni, V, Sn and F were determined in a pink microcline and a green amazonite which were seen to grade into each other. Same element concentrations and ratios reflect the different conditions of formation of the feldspars fro m the three generations. The data indicate that the amazonite formed through metasomatic action of a "pegmatitic rest liquid" (fro m which cleavelandite crystallised) on the pink microcline of the first gene­ ration. The trace element data also indicate that the youngest K- feldspar is no t a late fractio nation product of the pegmatite, but rather a late seco ndary mineralisati on. The cause of the colouring of the amazonite is discussed and it is concluded that it is not to be found in a signi fi cant difference in compositio n fro m the pink mi crocline for any of the elements determined. lntroduction. Two of the authors (K. S. H. and S. R. T.) have made previously an extensive study of the distribution of trace elements in K-feld­ spars from a variety of pre-Cambrian basement rocks from southern Norway (TAYLOR and HEIER; 1958 a, b, 1960; HEIER and TAYLOR, l Dept.
    [Show full text]
  • Studies of the Zeolites Composition of Zeolites of the Natrolite Group and Compositional Relations Among Thomsonites Gonnardites, and Natrolites
    r-'1 ~ Q I ~ c lt') ~ r-'1 'JJ ~ Q.) < ~ ~ ......-~ ..,.;;j ~ <z 0 0 Q.) 1-4 rJ:J rJ:J N r-'1 ~ Q.) 0 ~ ..c ~ ~ ~ I r-'1 ~ > ~ 0 I ~ rJ:J 'JJ ..,.;;j Q.) < .....-~ 0 . 1-4 ~ C"-' 0 ~ ..,.;;j ~ 0 r-'1 00 C"-' Foster-STUDIES•. OF THE ZEOLITES-Geological Survey Professional Paper 504-D, E Studies of the Zeolites Composition of Zeolites of the Natrolite Group and Compositional Relations among Thomsonites Gonnardites, and Natrolites By MARGARET D. FOSTER SHORTER CONTRIBUTIONS TO GENERAL GEOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 504-D, E UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1965 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretory GEOLOGICAL SURVEY Thomas B. Nolan, Director The U.S. Geological Survey Library has cataloged this publication as follows: Foster, Margaret Dorothy, 1895- Studies of the zeolites. D. Composition of zeolites of the natrolite group. E. Compositional relations among thom­ sonites, gonnardites, and natrolites. Washington, U.S. Govt. Print. Off., 1965. v, 7; iii, 10 p. diagrs., tables. 30 em. (U.S. Geological Survey. Professional paper 504-D, E) Shorter contributions to general geology. Each part also has separate title page. Includes bibliographies. (Continued on next card) Foster, Margaret Dorothy, 1895- Studies of the zeolites. 1965. (Card 2) 1. Zeolites. I. Title. II. Title: Composition of zeolites of the natro­ lite group. III. Title: Compositional relations among thomsonites, gonnardites, and natrolites. (Series) For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 25 cents (paper cover) Studies of the Zeolites Composition of Zeolites of the N atrolite Group By MARGARET D.
    [Show full text]
  • Nd, Pb and Sr Isotopic Data from the Napak Carbonatite-Nephelinite Centre, Eastern Uganda: an Example of Open-System Crystal Fractionation
    Contrib Mineral Petrol (1994) 115:356-366 Contributions tO Mineralogy and Petrology Springer-Verlag 1994 Nd, Pb and Sr isotopic data from the Napak carbonatite-nephelinite centre, eastern Uganda: an example of open-system crystal fractionation Antonio Simonetti and Keith Bell Ottawa-Carleton Geoscience Centre, Department of Earth Sciences, Carleton University, Ottawa, Ontario K1S 5B6, Canada Received June 30, 1992 / Accepted May 25, 1993 Abstract. Nd, Pb and Sr isotopic data from nephelinite magmas cannot be in equilibrium with a lherzolitic mantle lavas from the Tertiary nephelinite-carbonatite complex source (Bultitude and Green 1968, 1971; Allen et al. 1975; of Napak, eastern Uganda, show large isotopic variations Merrill and Wyllie 1975), but are probably the products of that can only be attributed to open-system behaviour. small ( < 5%) degrees of partial melting of a carbonated Possible explanations of the data include mixing between (high C02/H20 ratio) peridotite or pyrolite at high pres- nephelinitic melts derived from an isotopically heterogen- sures (Brey and Green 1977; Brey 1978; Olafsson and eous mantle, or interaction between a HIMU melt and Eggler 1983; Wallace and Green 1988). Experimental re- mafic granulites. In both models crystal fractionation, sults are consistent with derivation of a primary involving olivine and clinopyroxene, played an important nephelinitic liquid from an amphibole peridotite at pres- role. Major element chemistry, textural evidence and iso- sures of 20 to 25 kbar (Olafsson and Eggler 1983; Eggler topic data from clinopyroxene phenocrysts from the ol- 1989). ivine-bearing nephelinites, suggest that the pyroxenes did The eastern branch of the East African Rift Valley not crystallize from their host liquids.
    [Show full text]
  • Adamsite-(Y), a New Sodium–Yttrium Carbonate Mineral
    1457 The Canadian Mineralogist Vol. 38, pp. 1457-1466 (2000) ADAMSITE-(Y), A NEW SODIUM–YTTRIUM CARBONATE MINERAL SPECIES FROM MONT SAINT-HILAIRE, QUEBEC JOEL D. GRICE§ and ROBERT A. GAULT Research Division, Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario K1P 6P4, Canada ANDREW C. ROBERTS Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada MARK A. COOPER Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada ABSTRACT Adamsite-(Y), ideally NaY(CO3)2•6H2O, is a newly identified mineral from the Poudrette quarry, Mont Saint-Hilaire, Quebec. It occurs as groups of colorless to white and pale pink, rarely pale purple, flat, acicular to fibrous crystals. These crystals are up to 2.5 cm in length and form spherical radiating aggregates. Associated minerals include aegirine, albite, analcime, ancylite-(Ce), calcite, catapleiite, dawsonite, donnayite-(Y), elpidite, epididymite, eudialyte, eudidymite, fluorite, franconite, gaidonnayite, galena, genthelvite, gmelinite, gonnardite, horváthite-(Y), kupletskite, leifite, microcline, molybdenite, narsarsukite, natrolite, nenadkevichite, petersenite-(Ce), polylithionite, pyrochlore, quartz, rhodochrosite, rutile, sabinaite, sérandite, siderite, sphalerite, thomasclarkite-(Y), zircon and an unidentified Na–REE carbonate (UK 91). The transparent to translucent mineral has a vitreous to pearly luster and a white streak. It is soft (Mohs hardness 3) and brittle with perfect {001} and good {100} and {010} cleav- ␣ ␤ ␥ ° ° ages. Adamsite-(Y) is biaxial positive, = V 1.480(4), = 1.498(2), = 1.571(4), 2Vmeas. = 53(3) , 2Vcalc. = 55 and is nonpleochroic. Optical orientation: X = [001], Y = b, Z a = 14° (in ␤ obtuse). It is triclinic, space group P1,¯ with unit-cell parameters refined from powder data: a 6.262(2), b 13.047(6), c 13.220(5) Å, ␣ 91.17(4), ␤ 103.70(4), ␥ 89.99(4)°, V 1049.1(5) Å3 and Z = 4.
    [Show full text]
  • The Journal of Gemmology Editor: Dr R.R
    he Journa TGemmolog Volume 25 No. 8 October 1997 The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London Eel N SSU Tel: 0171 404 1134 Fax: 0171 404 8843 e-mail: [email protected] Website: www.gagtl.ac.uklgagtl President: Professor R.A. Howie Vice-Presidents: LM. Bruton, Af'. ram, D.C. Kent, R.K. Mitchell Honorary Fellows: R.A. Howie, R.T. Liddicoat Inr, K. Nassau Honorary Life Members: D.). Callaghan, LA. lobbins, H. Tillander Council of Management: C.R. Cavey, T.]. Davidson, N.W. Decks, R.R. Harding, I. Thomson, V.P. Watson Members' Council: Aj. Allnutt, P. Dwyer-Hickey, R. fuller, l. Greatwood. B. jackson, J. Kessler, j. Monnickendam, L. Music, l.B. Nelson, P.G. Read, R. Shepherd, C.H. VVinter Branch Chairmen: Midlands - C.M. Green, North West - I. Knight, Scottish - B. jackson Examiners: A.j. Allnutt, M.Sc., Ph.D., leA, S.M. Anderson, B.Se. (Hons), I-CA, L. Bartlett, 13.Se, .'vI.phil., I-G/\' DCi\, E.M. Bruton, FGA, DC/\, c.~. Cavey, FGA, S. Coelho, B.Se, I-G,\' DGt\, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, f1GA, Cj.E. Halt B.Sc. (Hons), FGr\, G.M. Howe, FG,'\, oo-, G.H. jones, B.Se, PhD., FCA, M. Newton, B.Se, D.PhiL, H.L. Plumb, B.Sc., ICA, DCA, R.D. Ross, B.5e, I-GA, DGA, P..A.. Sadler, 13.5c., IGA, DCA, E. Stern, I'GA, DC/\, Prof. I.
    [Show full text]