Theoretical Studies on As and Sb Sulfide Molecules
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
An Investigation of the Crystal Growth of Heavy Sulfides in Supercritical
AN ABSTRACT OF THE THESIS OF LEROY CRAWFORD LEWIS for the Ph. D. (Name) (Degree) in CHEMISTRY presented on (Major) (Date) Title: AN INVESTIGATION OF THE CRYSTAL GROWTH OF HEAVY SULFIDES IN SUPERCRITICAL HYDROGEN SULFIDE Abstract approved Redacted for privacy Dr. WilliarriIJ. Fredericks Solubility studies on the heavy metal sulfides in liquid hydrogen sulfide at room temperature were carried out using the isopiestic method. The results were compared with earlier work and with a theoretical result based on Raoult's Law. A relative order for the solubilities of sulfur and the sulfides of tin, lead, mercury, iron, zinc, antimony, arsenic, silver, and cadmium was determined and found to agree with the theoretical result. Hydrogen sulfide is a strong enough oxidizing agent to oxidize stannous sulfide to stannic sulfide in neutral or basic solution (with triethylamine added). In basic solution antimony trisulfide is oxi- dized to antimony pentasulfide. In basic solution cadmium sulfide apparently forms a bisulfide complex in which three moles of bisul- fide ion are bonded to one mole of cadmium sulfide. Measurements were made extending the range over which the volumetric properties of hydrogen sulfide have been investigated to 220 °C and 2000 atm. A virial expression in density was used to represent the data. Good agreement, over the entire range investi- gated, between the virial expressions, earlier work, and the theorem of corresponding states was found. Electrical measurements were made on supercritical hydro- gen sulfide over the density range of 10 -24 moles per liter and at temperatures from the critical temperature to 220 °C. Dielectric constant measurements were represented by a dielectric virial ex- pression. -
Washington State Minerals Checklist
Division of Geology and Earth Resources MS 47007; Olympia, WA 98504-7007 Washington State 360-902-1450; 360-902-1785 fax E-mail: [email protected] Website: http://www.dnr.wa.gov/geology Minerals Checklist Note: Mineral names in parentheses are the preferred species names. Compiled by Raymond Lasmanis o Acanthite o Arsenopalladinite o Bustamite o Clinohumite o Enstatite o Harmotome o Actinolite o Arsenopyrite o Bytownite o Clinoptilolite o Epidesmine (Stilbite) o Hastingsite o Adularia o Arsenosulvanite (Plagioclase) o Clinozoisite o Epidote o Hausmannite (Orthoclase) o Arsenpolybasite o Cairngorm (Quartz) o Cobaltite o Epistilbite o Hedenbergite o Aegirine o Astrophyllite o Calamine o Cochromite o Epsomite o Hedleyite o Aenigmatite o Atacamite (Hemimorphite) o Coffinite o Erionite o Hematite o Aeschynite o Atokite o Calaverite o Columbite o Erythrite o Hemimorphite o Agardite-Y o Augite o Calciohilairite (Ferrocolumbite) o Euchroite o Hercynite o Agate (Quartz) o Aurostibite o Calcite, see also o Conichalcite o Euxenite o Hessite o Aguilarite o Austinite Manganocalcite o Connellite o Euxenite-Y o Heulandite o Aktashite o Onyx o Copiapite o o Autunite o Fairchildite Hexahydrite o Alabandite o Caledonite o Copper o o Awaruite o Famatinite Hibschite o Albite o Cancrinite o Copper-zinc o o Axinite group o Fayalite Hillebrandite o Algodonite o Carnelian (Quartz) o Coquandite o o Azurite o Feldspar group Hisingerite o Allanite o Cassiterite o Cordierite o o Barite o Ferberite Hongshiite o Allanite-Ce o Catapleiite o Corrensite o o Bastnäsite -
ARSENIC in DRINKING-WATER Pp33-40.Qxd 11/10/2004 10:08 Page 40 Pp41-96.Qxd 11/10/2004 10:19 Page 41
pp33-40.qxd 11/10/2004 10:08 Page 39 ARSENIC IN DRINKING-WATER pp33-40.qxd 11/10/2004 10:08 Page 40 pp41-96.qxd 11/10/2004 10:19 Page 41 ARSENIC IN DRINKING-WATER 1. Exposure Data 1.1 Chemical and physical data Arsenic is the 20th most common element in the earth’s crust, and is associated with igneous and sedimentary rocks, particularly sulfidic ores. Arsenic compounds are found in rock, soil, water and air as well as in plant and animal tissues. Although elemental arsenic is not soluble in water, arsenic salts exhibit a wide range of solubilities depending on pH and the ionic environment. Arsenic can exist in four valency states: –3, 0, +3 and +5. Under reducing conditions, the +3 valency state as arsenite (AsIII) is the dominant form; the +5 valency state as arsenate (AsV) is generally the more stable form in oxygenized environ- ments (Boyle & Jonasson, 1973; National Research Council, 1999; O’Neil, 2001; WHO, 2001). Arsenic species identified in water are listed in Table 1. Inorganic AsIII and AsV are the major arsenic species in natural water, whereas minor amounts of monomethylarsonic acid (MMA) and dimethylarsinic acid (DMA) can also be present. The trivalent mono- methylated (MMAIII) and dimethylated (DMAIII) arsenic species have been detected in lake water (Hasegawa et al., 1994, 1999). The presence of these trivalent methylated arsenical species is possibly underestimated since only few water analyses include a solvent sepa- ration step required to identify these trivalent species independently from their respective a Table 1. Some arsenic species identified in water Name Abbreviation Chemical formula CAS No. -
Effect of Size and Processing Method on the Cytotoxicity of Realgar Nanoparticles in Cancer Cell Lines
International Journal of Nanomedicine Dovepress open access to scientific and medical research Open Access Full Text Article ORIGINAL RESEARCH Effect of size and processing method on the cytotoxicity of realgar nanoparticles in cancer cell lines Weizhong Zhao1 Abstract: In this study, the effects of the size and Chinese traditional processing (including Xun Lu3 elutriation, water cleaning, acid cleaning, alkali cleaning) on realgar nanoparticles (RN)-induced Yuan Yuan1 antitumor activity in human osteosarcoma cell lines (MG-63) and hepatoma carcinoma cell lines Changsheng Liu1 (HepG-2) were investigated. The human normal liver cell line (L-02) was used as control. RN Baican Yang3 was prepared by high-energy ball milling technology. The results showed that with the assistance Hua Hong1 of sodium dodecyl sulfate, the size of realgar could be reduced to 127 nm after 12 hours’ ball milling. The surface charge was decreased from 0.83 eV to -17.85 eV and the content of As O Guoying Wang3 2 3 clearly increased. Except for elutriation, the processing methods did not clearly change the size Fanyan Zeng2 of the RN, but the content of As2O3 was reduced dramatically. In vitro MTT tests indicated that 1The State Key Laboratory in the two cancer cell lines, RN cytotoxicity was more intense than that of the coarse realgar of Bioreactor Engineering, 2Key Laboratory for Ultrafine nanoparticles, and cytotoxicity was typically time- and concentration-dependent. Also, RN Materials of Ministry of Education cytotoxicities in the HepG-2 and L-02 cells all increased with increasing milling time. Due to and Engineering Research Center the reduction of the As O content, water cleaning, acid cleaning, and alkali cleaning decreased for Biomedical Materials of Ministry 2 3 of Education, East China University RN cytotoxicity in HepG-2, but RN after elutriation, with the lowest As2O3 (3.5 mg/g) and the of Science and Technology, 3Pharmacy smallest size (109.3 nm), showed comparable cytotoxicity in HepG-2 to RN without treatment. -
REVISION 1 an Insight at the Inverse Transformation of Realgar Altered By
REVISION 1 An insight at the inverse transformation of realgar altered by light Giovanni Pratesi1,2 and Matteo Zoppi1* 1Museo di Storia Naturale - Sezione Mineralogia e Litologia, Università di Firenze, via La Pira 4, I- 50121 Firenze, Italy. 2Dipartimento di Scienze della Terra, Università di Firenze, via La Pira 4, I-50121 Firenze, Italy. * E-mail: [email protected] ABSTRACT The light-induced alteration of realgar and β-As4S4 is a well known phenomenon but still displays interesting aspects not completely explained. In the transformation from realgar to pararealgar the molecule As4S4 undergoes a structural modification, and ever since the initial studies two important issues have been highlighted: the influence of the oxygen and the reversibility of the process. The previous study on the reversibility of the altered β-As4S4 points out that this polymorph exhibits a dual behaviour. When the light-induced alteration occurs with the presence of the air, pararealgar and arsenolite, along with amorphous material, are the products, while if the air is not present β-As4S4 turns completely into pararealgar. Moreover, when annealing the altered material in the realgar stability fields (220 °C), in the first case pararealgar and amorphous material turn into stoichiometric alacranite, while in the second case the alteration is completely reversible. Similarly, the present study focuses the attention on the question if realgar, when altered by means of the light and when annealed, might behave as β-As4S4 does. These results display that the phenomenon is more complex. The alteration of realgar with the presence of the air yields pararealgar along with arsenolite, a small quantity of uzonite and amorphous material, and when the air is not present pararealgar is the only product. -
Ralphcannonite, Agzn2tlas2s6, a New Mineral of the Routhierite
1 1 Ralphcannonite, AgZn2TlAs2S6, a new mineral of the 2 routhierite isotypic series from Lengenbach, Binn 3 Valley, Switzerland 4 1* 2 3 5 LUCA BINDI , CRISTIAN BIAGIONI , THOMAS RABER , PHILIPPE 4 5 6 ROTH , FABRIZIO NESTOLA 7 8 9 10 1 Dipartimento di Scienze della Terra, Università degli Studi di Firenze, Via G. La Pira, 4, I- 11 50121 Firenze, Italy 12 2 Dipartimento di Scienze della Terra, Università di Pisa, Via Santa Maria, 53, I-56126 Pisa, 13 Italy 14 3 FGL (Forschungsgemeinschaft Lengenbach), Edith-Stein-Str. 9, D-79110 Freiburg, 15 Germany 16 4 FGL (Forschungsgemeinschaft Lengenbach), Ilanzhofweg 2, CH-8057 Zurich, Switzerland 17 5 Dipartimento di Geoscienze, Università di Padova, Via Gradenigo, 6, I-35131 Padova, Italy 18 19 20 21 22 *e-mail address: [email protected] 23 2 24 ABSTRACT 25 The new mineral species ralphcannonite, AgZn2TlAs2S6, was discovered in the Lengenbach 26 quarry, Binn Valley, Wallis, Switzerland. It occurs as metallic black equant, isometric to 27 prismatic crystals, up to 50 μm, associated with dufrénoysite, hatchite, realgar, and baryte. 28 Minimum and maximum reflectance data for COM wavelengths in air are [λ (nm): R (%)]: 29 471.1: 25.8/27.1; 548.3: 25.2/26.6; 586.6: 24.6/25.8; 652.3: 23.9/24.8. Electron microprobe 30 analyses give (wt%): Cu 2.01(6), Ag 8.50(16), Zn 10.94(20), Fe 3.25(8), Hg 7.92(12), Tl 31 24.58(26), As 18.36(19), Sb 0.17(4), S 24.03(21), total 99.76(71). -
Orpiment As2s3 C 2001-2005 Mineral Data Publishing, Version 1
Orpiment As2S3 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Monoclinic. Point Group: 2/m. Commonly in foliated columnar or fibrous aggregates, with cleavages as much as 60 cm across; may be reniform or botryoidal; also granular or powdery; rarely as prismatic crystals, to 10 cm. Twinning: On {100}. Physical Properties: Cleavage: Perfect on {010}, imperfect on {100}; cleavage lamellae are flexible. Tenacity: Sectile. Hardness = 1.5–2 VHN = n.d. D(meas.) = 3.49 D(calc.) = 3.48 Optical Properties: Transparent. Color: Lemon-yellow to golden or brownish yellow. Streak: Pale lemon-yellow. Luster: Resinous, pearly on cleavage surface. Optical Class: Biaxial (–). Pleochroism: In reflected light, strong, white to pale gray with reddish tint; in transmitted light, Y = yellow, Z = greenish yellow. Orientation: X = b; Z ∧ c = 2◦. Dispersion: r> v,strong. α = 2.4 (Li). β = 2.81 (Li). γ = 3.02 (Li). 2V(meas.) = 76◦ Anisotropism: Barely observable because of strong internal reflections. R1–R2: (400) 33.0–36.5, (420) 31.0–35.2, (440) 28.9–33.9, (460) 27.4–31.5, (480) 26.0–30.3, (500) 24.9–29.3, (520) 24.0–28.4, (540) 23.3–27.8, (560) 22.8–27.3, (580) 22.3–26.9, (600) 22.0–26.5, (620) 21.7–26.3, (640) 21.5–26.0, (660) 21.2–25.7, (680) 21.0–25.5, (700) 20.8–25.3 Cell Data: Space Group: P 21/n. a = 11.475(5) b = 9.577(4) c = 4.256(2) β =90◦41(5)0 Z=4 X-ray Powder Pattern: Baia Sprie (Fels˝ob´anya), Romania. -
10700 Orpiment, King's Yellow PY 39
10700 Orpiment, King's Yellow PY 39 Chemical composition: yellow sulphide of arsenic As2S3 The origin of the modern name is derived from the Latin term auripigmentum or auripigmento, literally meaning gold paint. Orpiment was once widely used, particularly in the East, but has now fallen into disuse because of its limited supply and because of its poisonous character. The principal sources in ancient times appear to have been in Hungary, Macedonia, Asia Minor and perhaps in various parts of Central Asia. There was a large deposit near Julamerk in Kurdistan. Current deposits of orpiment are in Romania, Hungary, Germany, Greece, France, Italy, Iran, Peru, China, Japan and the western United States. Orpiment occurs as a low temperature product in hydrothermal veins, as a volcanic sublimation product, as a hot spring deposit and in fire mines. It is often associated with stibnite, pyrite, realgar, calcite and gypsum. Orpiment occurs in many places but not in large quantities. Orpiment is usually described as a lemon or canary yellow or sometimes as a golden or brownish yellow with a fair covering power. Microscopically, orpiment is crystalline and may contain orange-red particles of realgar, to which it is closely related. The larger particles glisten by reflected light and have a waxy-looking surface. The toxicity of the arsenic sulfide pigments has been known since early times. The toxic properties of orpiment have been used to advantage to repel insects. Orpiment is said to be incompatible with lead- or copper-containing pigments. Orpiment is not stable in lime and therefore can not be used for fresco, a fact noted by Cennino Cennini inn the fifteenth century. -
Geological Controls on Pit Lake Chemistry: Implications for the Assessment of Water Quality in Inactive Open Pits
IMWA Proceedings 1998 | © International Mine Water Association 2012 | www.IMWA.info Geological Controls on Pit Lake Chemistry: Implications for the assessment of Water Quality in Inactive Open Pits 1 2 2 2 3 R.J.Bowell , J. Barta , M.Gringrich , W.Mansanares and J. Parshley 'Steffen, Robertson & Kirsten (UK) Limited, Stunmit House, 9 Windsor Place, CardiffCFI 3BX, Wales 2Getchell Gold Corporation, Golconda, Nevada NV89414, USA 3Steffen, Robertson & Kirsten (US) Inc., 1755 E. Plumb Lane, Reno, Nevada NV89502, USA ABSTRACT Open pitting is a method of mining used to exploit many mineral commodities. In many instances mining occurs below the water table leading to active dewatering of the pit during mining. On suspension of activity, pumping is terminated and as infilling of the pit is not always economic the pit is flooded, forming a pit lake. Pit Lakes are viewed as a significant environmental issue owing to their visible presence. It is often, erroneously assumed that all pit lakes will be acid and of poor quality. Consequently in many cases extensive water quality modelling is undertaken to determine the chemical characteristics of a pit lake, with only scant geological knowledge of the pit walls. However, the water quality of a mine pit lake is largely predictable from geological knowledge of the ore deposit, the host rocks and mineralogy. In this paper we present a case study from Nevada of an inactive open pit on which a detailed study was conducted to determine the environmental impacts. This study was greatly enhanced by using geological and geochemical mapping of the pit walls in order to determine controls on pit lake chemistry. -
Growth and Raman Spectroscopic Characterization of As4s4 (II) Single Crystals
*4. Manuscript Click here to view linked References Growth and Raman spectroscopic characterization of As4S4 (II) single crystals Atsushi Kyono Division of Earth Evolution Sciences, Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai Tsukuba, Ibaraki 305-8572, Japan Corresponding author: A. Kyono Present Address: Geophysical Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015-1305, USA Email: [email protected] Phone: +1-202-478-8940, Fax: +1-202-478-8901 pg. 1 ABSTRACT As described by Kutoglu (1976), single crystals of As4S4 (II) phase have been grown using a new two-step synthesis that drastically increases the reproducibility that is attainable in synthetic experiments. First, through photoinduced phase transformation, pararealgar powder is prepared as a precursor instead of AsS melt. Then it is dissolved and recrystallized from CS2 solvent. Results show that single crystals of the As4S4 (II) phase were obtained reproducibly through the dissolution–recrystallization process. Single crystals of As4S4 (II) obtained using the method were translucent and showed a uniform yellow–orange color. The crystal exhibits a platelet-like shape as a thin film with well-developed faces (0 1 0) and (0 -1 0). The grown crystals are as large as 0.50 × 0.50 × 0.01 mm. They were characterized using powder and single crystal X-ray diffraction techniques to confirm the phase identification and the lattice parameters. The As4S4 (II) phase crystallizes in monoclinic system with cell parameters a = 11.202(4) Å, b = 9.954(4) Å, c = 7.142(4) Å, β = 92.81(4)°, V = 795.4(6) Å3, which shows good agreement with the former value. -
High Purity Inorganics
High Purity Inorganics www.alfa.com INCLUDING: • Puratronic® High Purity Inorganics • Ultra Dry Anhydrous Materials • REacton® Rare Earth Products www.alfa.com Where Science Meets Service High Purity Inorganics from Alfa Aesar Known worldwide as a leading manufacturer of high purity inorganic compounds, Alfa Aesar produces thousands of distinct materials to exacting standards for research, development and production applications. Custom production and packaging services are part of our regular offering. Our brands are recognized for purity and quality and are backed up by technical and sales teams dedicated to providing the best service. This catalog contains only a selection of our wide range of high purity inorganic materials. Many more products from our full range of over 46,000 items are available in our main catalog or online at www.alfa.com. APPLICATION FOR INORGANICS High Purity Products for Crystal Growth Typically, materials are manufactured to 99.995+% purity levels (metals basis). All materials are manufactured to have suitably low chloride, nitrate, sulfate and water content. Products include: • Lutetium(III) oxide • Niobium(V) oxide • Potassium carbonate • Sodium fluoride • Thulium(III) oxide • Tungsten(VI) oxide About Us GLOBAL INVENTORY The majority of our high purity inorganic compounds and related products are available in research and development quantities from stock. We also supply most products from stock in semi-bulk or bulk quantities. Many are in regular production and are available in bulk for next day shipment. Our experience in manufacturing, sourcing and handling a wide range of products enables us to respond quickly and efficiently to your needs. CUSTOM SYNTHESIS We offer flexible custom manufacturing services with the assurance of quality and confidentiality. -
Download Download
338 Geologica Macedonica, Vol. 32, No. 2, pp. 95–117 (2018) GEOME 2 IISSN 0352 – 1206 Manuscript received: August 5, 2018 e-ISSN 1857 – 8586 Accepted: November 7, 2018 UDC: 553.46:550.43.08]:504(497.721) 553.497:550.43.08]:504(497.721) Original scientific paper SUPERGENE MINERALOGY OF THE LOJANE Sb-As-Cr DEPOSIT, REPUBLIC OF MACEDONIA: TRACING THE MOBILIZATION OF TOXIC METALS Uwe Kolitsch1,2, Tamara Đorđević2, Goran Tasev3, Todor Serafimovski3, Ivan Boev3, Blažo Boev3 1Mineralogisch-Petrographische Abt., Naturhistorisches Museum, Burgring 7, A-1010 Wien, Austria 2Institut für Mineralogie und Kristallographie, Universität Wien, Althanstr. 14, A-1090 Wien, Austria 3Department of Mineral Deposits, Faculty of Natural and Technical Sciences, “Goce Delčev” University in Štip, Blvd. Goce Delčev 89, 2000 Štip, Republic of Macedonia [email protected] A b s t r a c t: As part of a larger project on the environmental mineralogy and geochemistry of the Lojane Sb- As-Cr deposit, Republic of Macedonia, which was mined for chromite and, later, stibnite until 1979 and is a substantial source of arsenic and antimony pollution, the supergene mineralogy of the deposit was studied. Samples collected on ore and waste dumps were used to identify and characterize the previously uninvestigated suite of supergene mineral phases by standard mineralogical techniques. The following species were determined (in alphabetical order): annaber- gite, arseniosiderite(?), gypsum, hexahydrite, hörnesite, pararealgar, roméite-group minerals, rozenite, scorodite, sen- armontite, stibiconite, sulphur, tripuhyite and valentinite. Their occurrences are described and their local conditions of formation are discussed. High-resolution Raman spectra of hörnesite, hexahydrite and rozenite are provided and com- pared with literature data.