Aspergillus Bombycis, a New Aflatoxigenic Species and Genetic Variation in Its Sibling Species, A

Total Page:16

File Type:pdf, Size:1020Kb

Aspergillus Bombycis, a New Aflatoxigenic Species and Genetic Variation in Its Sibling Species, A Mycologia. 93(4), 2001, pp. 689-703. © 2001 by The Mycological Society of America, Lawrence, KS 66044-8897 Aspergillus bombycis, a new aflatoxigenic species and genetic variation in its sibling species, A. nomius* Stephen W. Peterson1 Key Words: aflatoxin, fungi, molecular systemat­ Microbial Properties Research Unit, National Center ics, ribosomal DNA sequence for Agricultural Utilization Research, Agricultural Research Service, V. S. Department ofAgriculture, 1815 N. University St., Peoria, Illinois 61604-3999 USA INTRODUCTION Yoko Ito Aflatoxin has been the subject of many studies be­ National Research Institute for Vegetables, Ornamental cause of its deadly toxicity to certain domesticated Plants and Tea, Ministry ofAgriculture forestry and animals, including turkeys, ducks and trout (Hessel­ Fisheries, Ano, Mie, 514-2392Japan tine et al 1966). In addition increased incidence of Bruce W. Horn human hepato-carcinoma is associated with ingestion National Peanut Research Laboratory, Agricultural of sublethal doses of aflatoxin (Scholl and Groopman Research Service, V. S. Department ofAgriculture, 1995). Because of aflatoxin's effects on animal and 1011 Forrester Dr. SE, Dawson, Georgia 31742 USA human health, it is essential to determine which spe­ Tetsuhisa Goto cies produce this toxin, as well as details about their National Food Research Institute, Ministry of life histories and distribution in nature. Currently, Agriculture forestry and Fisheries, Kannondai, there are three known aflatoxigenic species from As­ Tsukuba, 305-8642Japan pergillus section Flavi: A. flavus, A. parasiticus, and A. nomius (Cotty et al 1994). An additional species, A. ochraceoroseus (section Circumdati) has recently Abstract: A new aflatoxigenic species of Aspergillus, been reported as aflatoxigenic (Klich et al 1998). As­ A. bombycis, was discovered during isolation of fungi pergillus ochraceoroseus is phylogenetically part of the from insect frass collected in silkworm rearing houses Aspergillus versicolor group (Peterson unpubl). in Japan. The new species resembles A. flavus, but During a study of the incidence of aflatoxigenic produces Band G aflatoxins. It is distinguished from fungal isolates from soil (Peterson et al 2000), we A. flavus and A. nomius by differences in growth encountered some isolates that produced aflatoxins rates at 37 and 42 C, from A. nomius by roughness and whose phylogenetic position (based on ribosom­ of the stipe, and from both of these species by dif­ al DA sequences) among the other species of As­ ferences in the nucleotide sequences in the beta-tu­ pergillus section Flavi suggested that they might be bulin, calmodulin, norsolorinic acid reductase, ITS, undescribed species. One of these unusual fungal and lsu-rD A genes. Aspergillus bombycis is known types (Goto et al 1996) has recently been described from nine isolates, eight collected in silkworm-rear­ as the new aflatoxigenic species Aspergillus pseudota­ ing houses in Japan and one collected in a silk-worm marii Ito et al on the basis of its unique morphology rearing house in Indonesia. Phylogenetic analysis of and phylogenetic distinction from the other species the DNA sequences shows that A. bombycis is a phy­ of section Flavi (Ito et al 2001). logenetically distinct species which is most closely re­ We also isolated fungi from the dust and insect lated to A. nomius and which belongs in Aspergillus frass found in silk worm-rearing houses in eastern section Flavi. Analysis by partition homogeneity did Asia. Some of these isolates have been identified as not reveal evidence of genetic recombination in A. A. nomius, whereas others resemble A. nomius but bombycis, but in A. nomius the patterns of polyrnor­ differ genetically and morphologically from the typ­ phisms in different genes strongly suggest cryptic ge­ ical A. nomius strain. Species from the A. flavus clade netic recombination. can have overlapping character states, making iden­ tification of some isolates by phenotype problemati­ Accepted for publication February 3, 2001. cal (Klich and Pitt 1988, Horn et al 1996), and sev­ I Corresponding author, E-mail: [email protected] eral species are not identifiable phenotypically, such * Names are necessary to report factually on available data; however, as the cryptic species found (but not named) by Geis­ the USDA neither guarantees nor warrants the standard of the prod­ uct, and the use of the name by USDA implies no approval of the er et al (1998). In order to determine the phyloge­ product to the exclusion of others that may also be suitable. netic placement of these isolates and whether they 689 690 MYCOLOGIA might represent a new species, we have sequenced region) were amplified by means of polymerase chain re­ portions of the large subunit rD A and ITS regions action (PCR). Conditions and buffers were those of White as well as the genes for beta-tubulin, calmodulin and et al (1990) except the primers used were ITS1 (White et norsolorinic acid reductase. In addition, morpholog­ al 1990) and D2R (Peterson et al 2000) and the thermal ical and physiological comparisons of these new iso­ profile (96 C, 30 s; 51 C, 45 s; 72 C, 120 s) was repeated 30 lates were made with other species in Aspergillus sec­ times, followed by 7 min at 72 C. The amplified fragment tion Flavi. was purified using GeneClean according to manufacturer's instructions, eluted in 1/10th strength TE and stored at -20 C. Part of the beta-tubulin gene (referred to as BT) MATERIALS AD METHODS was amplified using primers BenO (5'-ATGCGTGA­ GATTGTATGTI) or BenOb (5'-ATGCGTGAGATIGTATG) Isolation data, permanent accession numbers, and prove­ that are identical to the first exon of the gene from A. fla­ nance for the fungi used in this study are listed in TABLE 1. vus (GenBank M38265) as well as several bases in the first These fungi are permanently preserved in the Agricultural intron, and Ben2 (5'-ATCTGGAAACCCTGGAGGC) which Research Service Culture Collection (NRRL) , Peoria, Illi­ nois. is complementary to part of the gene sequence in exon 6. The thermal profile for beta-tubulin amplification was 96 C Isolation offungi.-Fungi were isolated by dispersing 1 g of for 2 min followed by 30 cycles (96 C, 20 s; 51 C, 45 s; 72 substrate (insect frass, dust, etc.) in 100 mL sterile 0.01 % C, 2 min) then 72 C for 5 min. Part of the norsolorinic acid Tween 80 and mixing 0.03-1.0 mL of the substrate dilution reductase gene (referred to as NOR) was amplified using with 15 mL of isolation medium, then pouring the molten the primers and conditions developed by Geisen (1996). A (ca 60 C) agar into a 90-mm petri plate. The isolation me­ portion of the calmodulin gene (referred to as CAL) was dium contained (per liter): 45 g malt extract (Difco); 30 g amplified using the primers and conditions described by NaCI; 30 mg chloramphenicol; 30 mg rose bengal; and 1 Feibelman et al (1998). mg DDVP (Diclorvos) (King et al 1979). Petri plates were incubated in darkness at 27 C for 1-6 d and checked daily DNA sequencing and analysis.-D A sequencing reactions for colony development. Individual colonies from isolation were carried out using Taq polymerase, ABI fluorescent dye plates were subcultured on Czapek agar (Cz) (Raper and labeled dideoxy nucleotides, and DA template and oligo­ Fennell 1965) or other suitable agar media. nucleotide primers. For the ID templates, primers ITS1, Growth and examination of cultures.-For temperature tol­ ITS2, ITS3, ITS4 (White et al 1990) and D1, D1R, D2, D2R erance and morphological examination studies, the isolates (Peterson et al 2000) were used for sequencing. For CAL were inoculated at three points on 90-mm petri plates (Pitt and OR, the primers used for amplification were also used 1979) containing 30 ml of Blakeslee's malt agar (MA). Fun­ for sequencing. For BT, sequences were determined using gal material was viewed with a Zeiss microscope equipped BenO, BenOb, Ben2, br (5'CCAGAAAGCGGCACC) and bf with phase and differential interference contrast. For SEM, (5'-GAGCCCGGTACCATGGA) . nincorporated dye was blocks of agar and fungal material (ca 5 mm X 5 mm) were removed from sequencing reactions by spun-eolumn chro­ cut from a petri plate culture, fixed overnight in 1% os­ matography (Maniatis et al 1982) over Pharmacia ultra-fine mium tetroxide, dehydrated in increasingly concentrated sephadex G-50. The column eluate was dried in a rotary ethanol baths, critical point dried, and sputter coated with vacuum drier and dissolved in 1.2 J.LL ultrapure formamide, gold-paladium (Peterson 1992). For D TA extraction, 100 with or without 20 mg/mL high molecular weight blue dex­ mL of malt extract (ME) broth (Raper and Fennell 1965) tran. The nucleotide sequences were determined by elec­ was autoclaved for 15 min in a 500-mL cotton stoppered trophoresis on an Applied Biosystems 377 DA sequencer. flask. An agar slant culture was flooded with 2-3 mL of 0.1 % The sequence of each fragment was determined from the sterile Triton X-100, spores were dislodged with a wire loop, base sequences of both DA strands. and the spore suspension was pipetted into the malt broth. Sequences were aligned using ClustalW (Thompson et al Flasks were incubated at 25 C on a rotary shaker (200 rpm) 1994) and alignments were checked visually using an ASCII for 1-2 d until 1-2 g biomass had accumulated. editor. D TA analysis was performed using PAUP* ver. DNA extraction and purification.-Biomass was separated 4.004a (Swofford 1998) for parsimony, partition homoge­ from the medium by vacuum filtration over cheesecloth or neity test and bootstrap analysis. Trees were redrawn from Whatman number 54 filter disks, and mycelium was frac­ PA p* tree files using TREEVIEW (Page 1996). tured by vortex mixing with glass beads using the method of Peterson et al (2000).
Recommended publications
  • Distribution of Methionine Sulfoxide Reductases in Fungi and Conservation of the Free- 2 Methionine-R-Sulfoxide Reductase in Multicellular Eukaryotes
    bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution of methionine sulfoxide reductases in fungi and conservation of the free- 2 methionine-R-sulfoxide reductase in multicellular eukaryotes 3 4 Hayat Hage1, Marie-Noëlle Rosso1, Lionel Tarrago1,* 5 6 From: 1Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, 7 Marseille, France. 8 *Correspondence: Lionel Tarrago ([email protected]) 9 10 Running title: Methionine sulfoxide reductases in fungi 11 12 Keywords: fungi, genome, horizontal gene transfer, methionine sulfoxide, methionine sulfoxide 13 reductase, protein oxidation, thiol oxidoreductase. 14 15 Highlights: 16 • Free and protein-bound methionine can be oxidized into methionine sulfoxide (MetO). 17 • Methionine sulfoxide reductases (Msr) reduce MetO in most organisms. 18 • Sequence characterization and phylogenomics revealed strong conservation of Msr in fungi. 19 • fRMsr is widely conserved in unicellular and multicellular fungi. 20 • Some msr genes were acquired from bacteria via horizontal gene transfers. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Paula Cristina Azevedo Rodrigues S L T I F U N O N R T O I S P T
    Universidade do Minho Escola de Engenharia m o f r o f e Paula Cristina Azevedo Rodrigues s l t i f u n o n r t o i s p t e a c i h s i c n l e a d i g n i c r x a e o s t m d a l n f m o a o c m d l Mycobiota and aflatoxigenic profile of n o a t a e n a s t o Portuguese almonds and chestnuts from e i o t u i c g b u u o production to commercialisation t d c r o y o r M P p s e u g i r d o R o d e v e z A a n i t s i r C a l u a P 0 1 0 2 | o h n i M U November 2010 Universidade do Minho Escola de Engenharia Paula Cristina Azevedo Rodrigues Mycobiota and aflatoxigenic profile of Portuguese almonds and chestnuts from production to commercialisation Dissertation for PhD degree in Chemical and Biological Engineering Supervisors Professor Doutor Nelson Lima Doutor Armando Venâncio November 2010 The integral reproduction of this thesis or parts thereof is authorized only for research purposes provided a written declaration for permission of use Universidade do Minho, November 2010 Assinatura: THIS THESIS WAS PARTIALLY SUPPORTED BY FUNDAÇÃO PARA A CIÊNCIA E A TECNOLOGIA AND THE EUROPEAN SOCIAL FUND THROUGH THE GRANT REF . SFRH/BD/28332/2006, AND BY FUNDAÇÃO PARA A CIÊNCIA E A TECNOLOGIA AND POLYTECHNIC INSTITUTE OF BRAGANÇA THROUGH THE GRANT REF .
    [Show full text]
  • The Phylogeny of Plant and Animal Pathogens in the Ascomycota
    Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.
    [Show full text]
  • Phylogeny of Penicillium and the Segregation of Trichocomaceae Into Three Families
    available online at www.studiesinmycology.org StudieS in Mycology 70: 1–51. 2011. doi:10.3114/sim.2011.70.01 Phylogeny of Penicillium and the segregation of Trichocomaceae into three families J. Houbraken1,2 and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence: Jos Houbraken, [email protected] Abstract: Species of Trichocomaceae occur commonly and are important to both industry and medicine. They are associated with food spoilage and mycotoxin production and can occur in the indoor environment, causing health hazards by the formation of β-glucans, mycotoxins and surface proteins. Some species are opportunistic pathogens, while others are exploited in biotechnology for the production of enzymes, antibiotics and other products. Penicillium belongs phylogenetically to Trichocomaceae and more than 250 species are currently accepted in this genus. In this study, we investigated the relationship of Penicillium to other genera of Trichocomaceae and studied in detail the phylogeny of the genus itself. In order to study these relationships, partial RPB1, RPB2 (RNA polymerase II genes), Tsr1 (putative ribosome biogenesis protein) and Cct8 (putative chaperonin complex component TCP-1) gene sequences were obtained. The Trichocomaceae are divided in three separate families: Aspergillaceae, Thermoascaceae and Trichocomaceae. The Aspergillaceae are characterised by the formation flask-shaped or cylindrical phialides, asci produced inside cleistothecia or surrounded by Hülle cells and mainly ascospores with a furrow or slit, while the Trichocomaceae are defined by the formation of lanceolate phialides, asci borne within a tuft or layer of loose hyphae and ascospores lacking a slit.
    [Show full text]
  • Lists of Names in Aspergillus and Teleomorphs As Proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (Doi: 10.3852/14-0
    Lists of names in Aspergillus and teleomorphs as proposed by Pitt and Taylor, Mycologia, 106: 1051-1062, 2014 (doi: 10.3852/14-060), based on retypification of Aspergillus with A. niger as type species John I. Pitt and John W. Taylor, CSIRO Food and Nutrition, North Ryde, NSW 2113, Australia and Dept of Plant and Microbial Biology, University of California, Berkeley, CA 94720-3102, USA Preamble The lists below set out the nomenclature of Aspergillus and its teleomorphs as they would become on acceptance of a proposal published by Pitt and Taylor (2014) to change the type species of Aspergillus from A. glaucus to A. niger. The central points of the proposal by Pitt and Taylor (2014) are that retypification of Aspergillus on A. niger will make the classification of fungi with Aspergillus anamorphs: i) reflect the great phenotypic diversity in sexual morphology, physiology and ecology of the clades whose species have Aspergillus anamorphs; ii) respect the phylogenetic relationship of these clades to each other and to Penicillium; and iii) preserve the name Aspergillus for the clade that contains the greatest number of economically important species. Specifically, of the 11 teleomorph genera associated with Aspergillus anamorphs, the proposal of Pitt and Taylor (2014) maintains the three major teleomorph genera – Eurotium, Neosartorya and Emericella – together with Chaetosartorya, Hemicarpenteles, Sclerocleista and Warcupiella. Aspergillus is maintained for the important species used industrially and for manufacture of fermented foods, together with all species producing major mycotoxins. The teleomorph genera Fennellia, Petromyces, Neocarpenteles and Neopetromyces are synonymised with Aspergillus. The lists below are based on the List of “Names in Current Use” developed by Pitt and Samson (1993) and those listed in MycoBank (www.MycoBank.org), plus extensive scrutiny of papers publishing new species of Aspergillus and associated teleomorph genera as collected in Index of Fungi (1992-2104).
    [Show full text]
  • Caractérisation De La Biodiversité Des Souches D'aspergillus De La Section
    En vue de l'obtention du DOCTORAT DE L'UNIVERSITÉ DE TOULOUSE Délivré par : Institut National Polytechnique de Toulouse (Toulouse INP) Discipline ou spécialité : Pathologie, Toxicologie, Génétique et Nutrition Présentée et soutenue par : Mme JOYA MAKHLOUF le jeudi 11 juillet 2019 Titre : Caractérisation de la biodiversité des souches d'Aspergillus de la section Flavi isolées d'aliments commercialisés au Liban: approche moléculaire, métabolique et morphologique Ecole doctorale : Sciences Ecologiques, Vétérinaires, Agronomiques et Bioingénieries (SEVAB) Unité de recherche : Toxicologie Alimentaire (ToxAlim) Directeur(s) de Thèse : M. JEAN-DENIS BAILLY M. MONZER HAMZE Rapporteurs : M. JEROME MOUNIER, UNIVERSITE DE BRETAGNE OCCIDENTALE Mme MIREILLE KALASSY AOUAD, UNIVERSITE ST JOSEPH DE BEYROUTH Membre(s) du jury : M. ZIAD DAOUD, UNIVERSITE DE BALAMAND, Président M. JEAN-DENIS BAILLY, ECOLE NATIONALE VETERINAIRE DE TOULOUSE, Membre M. MONZER HAMZE, UNIVERSITE LIBANAISE, Membre M. OLIVIER PUEL, INRA TOULOUSE, Membre TABLE DES MATIERES Liste des TABLEAUX ...................................................................................................... 5 Liste des FIGURES .............................................................................................. ……….6 Liste des ABRÉVIATIONS .............................................................................................. 7 INTRODUCTION ........................................................................................................... 9 Première Partie : DONNÉES BIBLIOGRAPHIQUES
    [Show full text]
  • RSC COFI Prelims 1..4
    The Chemistry of Fungi James R. Hanson Department of Chemistry, University of Sussex, Brighton, UK ISBN: 978-0-85404-136-7 A catalogue record for this book is available from the British Library r James R. Hanson, 2008 All rights reserved Apart from fair dealing for the purposes of research for non-commercial purposes or for private study, criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulations 2003, this publication may not be reproduced, stored or transmitted, in any form or by any means, without the prior permission in writing of The Royal Society of Chemistry or the copyright owner, or in the case of reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of the licences issued by the appropriate Reproduction Rights Organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to The Royal Society of Chemistry at the address printed on this page. Published by The Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge CB4 0WF, UK Registered Charity Number 207890 For further information see our web site at www.rsc.org Preface The diverse structures, biosyntheses and biological activities of fungal meta- bolites have attracted chemists for many years. This book is an introduction to the chemistry of fungal metabolites. The aim is to illustrate, within the context of fungal metabolites, the historical progression from chemical to spectroscopic methods of structure elucidation, the development in biosynthetic studies from establishing sequences and mechanisms to chemical enzymology and genetics and the increasing understanding of the biological roles of natural products.
    [Show full text]
  • A Comparative Genomics Study of 23 Aspergillus Species from Section Flavi
    Downloaded from orbit.dtu.dk on: Oct 03, 2021 A comparative genomics study of 23 Aspergillus species from section Flavi Kjærbølling, Inge; Vesth, Tammi Camilla; Frisvad, Jens Christian; Nybo, Jane L.; Theobald, Sebastian; Kildgaard, Sara; Petersen, Thomas Isbrandt; Kuo, Alan; Sato, Atsushi; Lyhne, Ellen Kirstine Total number of authors: 37 Published in: Nature Communications Link to article, DOI: 10.1038/s41467-019-14051-y Publication date: 2020 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Kjærbølling, I., Vesth, T. C., Frisvad, J. C., Nybo, J. L., Theobald, S., Kildgaard, S., Petersen, T. I., Kuo, A., Sato, A., Lyhne, E. K., Kogle, M. E., Wiebenga, A., Kun, R. S., Lubbers, R. J. M., Mäkelä, M. R., Barry, K., Chovatia, M., Clum, A., Daum, C., ... Andersen, M. R. (2020). A comparative genomics study of 23 Aspergillus species from section Flavi. Nature Communications, 11(1), [1106]. https://doi.org/10.1038/s41467-019-14051-y General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. Users may download and print one copy of any publication from the public portal for the purpose of private study or research. You may not further distribute the material or use it for any profit-making activity or commercial gain You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.
    [Show full text]
  • Phylogeny of Penicillium and the Segregation of Trichocomaceae Into Three Families
    available online at www.studiesinmycology.org StudieS in Mycology 70: 1–51. 2011. doi:10.3114/sim.2011.70.01 Phylogeny of Penicillium and the segregation of Trichocomaceae into three families J. Houbraken1,2 and R.A. Samson1 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; 2Microbiology, Department of Biology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands. *Correspondence: Jos Houbraken, [email protected] Abstract: Species of Trichocomaceae occur commonly and are important to both industry and medicine. They are associated with food spoilage and mycotoxin production and can occur in the indoor environment, causing health hazards by the formation of β-glucans, mycotoxins and surface proteins. Some species are opportunistic pathogens, while others are exploited in biotechnology for the production of enzymes, antibiotics and other products. Penicillium belongs phylogenetically to Trichocomaceae and more than 250 species are currently accepted in this genus. In this study, we investigated the relationship of Penicillium to other genera of Trichocomaceae and studied in detail the phylogeny of the genus itself. In order to study these relationships, partial RPB1, RPB2 (RNA polymerase II genes), Tsr1 (putative ribosome biogenesis protein) and Cct8 (putative chaperonin complex component TCP-1) gene sequences were obtained. The Trichocomaceae are divided in three separate families: Aspergillaceae, Thermoascaceae and Trichocomaceae. The Aspergillaceae are characterised by the formation flask-shaped or cylindrical phialides, asci produced inside cleistothecia or surrounded by Hülle cells and mainly ascospores with a furrow or slit, while the Trichocomaceae are defined by the formation of lanceolate phialides, asci borne within a tuft or layer of loose hyphae and ascospores lacking a slit.
    [Show full text]
  • Phylogeny, Identification and Nomenclature of the Genus Aspergillus
    available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 78: 141–173. Phylogeny, identification and nomenclature of the genus Aspergillus R.A. Samson1*, C.M. Visagie1, J. Houbraken1, S.-B. Hong2, V. Hubka3, C.H.W. Klaassen4, G. Perrone5, K.A. Seifert6, A. Susca5, J.B. Tanney6, J. Varga7, S. Kocsube7, G. Szigeti7, T. Yaguchi8, and J.C. Frisvad9 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, The Netherlands; 2Korean Agricultural Culture Collection, National Academy of Agricultural Science, RDA, Suwon, South Korea; 3Department of Botany, Charles University in Prague, Prague, Czech Republic; 4Medical Microbiology & Infectious Diseases, C70 Canisius Wilhelmina Hospital, 532 SZ Nijmegen, The Netherlands; 5Institute of Sciences of Food Production National Research Council, 70126 Bari, Italy; 6Biodiversity (Mycology), Eastern Cereal and Oilseed Research Centre, Agriculture & Agri-Food Canada, Ottawa, ON K1A 0C6, Canada; 7Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; 8Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8673, Japan; 9Department of Systems Biology, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark *Correspondence: R.A. Samson, [email protected] Abstract: Aspergillus comprises a diverse group of species based on morphological, physiological and phylogenetic characters, which significantly impact biotechnology, food production, indoor environments and human health. Aspergillus was traditionally associated with nine teleomorph genera, but phylogenetic data suggest that together with genera such as Polypaecilum, Phialosimplex, Dichotomomyces and Cristaspora, Aspergillus forms a monophyletic clade closely related to Penicillium. Changes in the International Code of Nomenclature for algae, fungi and plants resulted in the move to one name per species, meaning that a decision had to be made whether to keep Aspergillus as one big genus or to split it into several smaller genera.
    [Show full text]
  • Two New Aflatoxin Producing Species, and an Overview of Aspergillus Section Flavi
    Downloaded from orbit.dtu.dk on: Dec 18, 2017 Two new aflatoxin producing species, and an overview of Aspergillus section Flavi Varga, J.; Frisvad, Jens Christian; Samson, R. A. Published in: Studies in Mycology Link to article, DOI: 10.3114/sim.2011.69.05 Publication date: 2011 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Varga, J., Frisvad, J. C., & Samson, R. A. (2011). Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Studies in Mycology, 69(1), 57-80. DOI: 10.3114/sim.2011.69.05 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. available online at www.studiesinmycology.org StudieS in Mycology 69: 57–80. 2011. doi:10.3114/sim.2011.69.05 Two new aflatoxin producing species, and an overview of Aspergillus section Flavi J. Varga1,2*, J.C.
    [Show full text]
  • Taxonomic Studies on the Genus Aspergillus
    Studies in Mycology 69 (June 2011) Taxonomic studies on the genus Aspergillus Robert A. Samson, János Varga and Jens C. Frisvad CBS-KNAW Fungal Biodiversity Centre, Utrecht, The Netherlands An institute of the Royal Netherlands Academy of Arts and Sciences Studies in Mycology The Studies in Mycology is an international journal which publishes systematic monographs of filamentous fungi and yeasts, and in rare occasions the proceedings of special meetings related to all fields of mycology, biotechnology, ecology, molecular biology, pathology and systematics. For instructions for authors see www.cbs.knaw.nl. ExEcutivE Editor Prof. dr dr hc Robert A. Samson, CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] Layout Editor Manon van den Hoeven-Verweij, CBS-KNAW Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands. E-mail: [email protected] SciEntific EditorS Prof. dr Dominik Begerow, Lehrstuhl für Evolution und Biodiversität der Pflanzen, Ruhr-Universität Bochum, Universitätsstr. 150, Gebäude ND 44780, Bochum, Germany. E-mail: [email protected] Prof. dr Uwe Braun, Martin-Luther-Universität, Institut für Biologie, Geobotanik und Botanischer Garten, Herbarium, Neuwerk 21, D-06099 Halle, Germany. E-mail: [email protected] Dr Paul Cannon, CABI and Royal Botanic Gardens, Kew, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, U.K. E-mail: [email protected] Prof. dr Lori Carris, Associate Professor, Department of Plant Pathology, Washington State University, Pullman, WA 99164-6340, U.S.A. E-mail: [email protected] Prof.
    [Show full text]