Taxonomic Studies on the Genus Aspergillus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Method for Producing Methacrylic Acid And/Or Ester Thereof
(19) TZZ _T (11) EP 2 894 224 A1 (12) EUROPEAN PATENT APPLICATION published in accordance with Art. 153(4) EPC (43) Date of publication: (51) Int Cl.: 15.07.2015 Bulletin 2015/29 C12P 7/62 (2006.01) C12N 15/09 (2006.01) (21) Application number: 13835104.4 (86) International application number: PCT/JP2013/005359 (22) Date of filing: 10.09.2013 (87) International publication number: WO 2014/038216 (13.03.2014 Gazette 2014/11) (84) Designated Contracting States: (72) Inventors: AL AT BE BG CH CY CZ DE DK EE ES FI FR GB • SATO, Eiji GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Yokohama-shi PL PT RO RS SE SI SK SM TR Kanagawa 227-8502 (JP) Designated Extension States: • YAMAZAKI, Michiko BA ME Yokohama-shi Kanagawa 227-8502 (JP) (30) Priority: 10.09.2012 JP 2012198840 • NAKAJIMA, Eiji 10.09.2012 JP 2012198841 Yokohama-shi 31.01.2013 JP 2013016947 Kanagawa 227-8502 (JP) 30.07.2013 JP 2013157306 • YU, Fujio 01.08.2013 JP 2013160301 Yokohama-shi 01.08.2013 JP 2013160300 Kanagawa 227-8502 (JP) 20.08.2013 JP 2013170404 • FUJITA, Toshio Yokohama-shi (83) Declaration under Rule 32(1) EPC (expert Kanagawa 227-8502 (JP) solution) • MIZUNASHI, Wataru Yokohama-shi (71) Applicant: Mitsubishi Rayon Co., Ltd. Kanagawa 227-8502 (JP) Tokyo 100-8253 (JP) (74) Representative: Hoffmann Eitle Patent- und Rechtsanwälte PartmbB Arabellastraße 30 81925 München (DE) (54) METHOD FOR PRODUCING METHACRYLIC ACID AND/OR ESTER THEREOF (57) To provide a method for directly and efficiently producing methacrylic acid in a single step from renew- able raw materials and/or biomass arising from the utili- zation of the renewable raw materials. -
Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant
J. Microbiol. Biotechnol. (2014), 24(9), 1149–1161 http://dx.doi.org/10.4014/jmb.1402.02035 Research Article Review jmb Diversity of Endophytic Fungi from Different Verticillium-Wilt-Resistant Gossypium hirsutum and Evaluation of Antifungal Activity Against Verticillium dahliae In Vitro Zhi-Fang Li†, Ling-Fei Wang†, Zi-Li Feng, Li-Hong Zhao, Yong-Qiang Shi, and He-Qin Zhu* State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, P. R. China Received: February 18, 2014 Revised: May 16, 2014 Cotton plants were sampled and ranked according to their resistance to Verticillium wilt. In Accepted: May 16, 2014 total, 642 endophytic fungi isolates representing 27 genera were recovered from Gossypium hirsutum root, stem, and leaf tissues, but were not uniformly distributed. More endophytic fungi appeared in the leaf (391) compared with the root (140) and stem (111) sections. First published online However, no significant difference in the abundance of isolated endophytes was found among May 19, 2014 resistant cotton varieties. Alternaria exhibited the highest colonization frequency (7.9%), *Corresponding author followed by Acremonium (6.6%) and Penicillium (4.8%). Unlike tolerant varieties, resistant and Phone: +86-372-2562280; susceptible ones had similar endophytic fungal population compositions. In three Fax: +86-372-2562280; Verticillium-wilt-resistant cotton varieties, fungal endophytes from the genus Alternaria were E-mail: [email protected] most frequently isolated, followed by Gibberella and Penicillium. The maximum concentration † These authors contributed of dominant endophytic fungi was observed in leaf tissues (0.1797). The evenness of stem equally to this work. -
Distribution of Methionine Sulfoxide Reductases in Fungi and Conservation of the Free- 2 Methionine-R-Sulfoxide Reductase in Multicellular Eukaryotes
bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Distribution of methionine sulfoxide reductases in fungi and conservation of the free- 2 methionine-R-sulfoxide reductase in multicellular eukaryotes 3 4 Hayat Hage1, Marie-Noëlle Rosso1, Lionel Tarrago1,* 5 6 From: 1Biodiversité et Biotechnologie Fongiques, UMR1163, INRAE, Aix Marseille Université, 7 Marseille, France. 8 *Correspondence: Lionel Tarrago ([email protected]) 9 10 Running title: Methionine sulfoxide reductases in fungi 11 12 Keywords: fungi, genome, horizontal gene transfer, methionine sulfoxide, methionine sulfoxide 13 reductase, protein oxidation, thiol oxidoreductase. 14 15 Highlights: 16 • Free and protein-bound methionine can be oxidized into methionine sulfoxide (MetO). 17 • Methionine sulfoxide reductases (Msr) reduce MetO in most organisms. 18 • Sequence characterization and phylogenomics revealed strong conservation of Msr in fungi. 19 • fRMsr is widely conserved in unicellular and multicellular fungi. 20 • Some msr genes were acquired from bacteria via horizontal gene transfers. 21 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.02.26.433065; this version posted February 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. -
ABSTRACT LEWIS, MARY HUNT. Genetic Structure of Soil
ABSTRACT LEWIS, MARY HUNT. Genetic Structure of Soil Populations of Aspergillus Section Flavi and Efficacy of Biocontrol of Aflatoxin Contamination in Corn. (Under the direction of Dr. Ignazio Carbone and Dr. Peter S. Ojiambo). Corn is contaminated with aflatoxin, a carcinogenic mycotoxin, when aflatoxigenic strains within Aspergillus section Flavi infect corn kernels. Biocontrol using non- aflatoxigenic strains of A. flavus have been shown to have the greatest potential to control aflatoxin contamination in corn. However, factors that influence the efficacy of biocontrol agents in different locations are not fully understood. One factor affecting the effectiveness biocontrol could be the genetic structure of the native soil populations of Aspergillus section Flavi. In this study, we investigated how the genetic structure of native soil populations of Aspergillus section Flavi could impact the effectiveness of two commercially available biological control products in different locations in the southeastern US. Field trials were conducted in Alabama, Georgia and North Carolina in the 2012 and 2013 growing seasons. Biocontrol products AF36 and Afla-Guard® were applied to the corn at the VT stage. Soil samples were collected prior to and 1-week after biocontrol application and at harvest to determine the genetic structure of soil populations. In all states, A. flavus (61-100%) was the most dominant species within section Flavi, with A. parasiticus (<35%) being the second- most frequently isolated species. A. nomius, A. caelatus and A. tamarii were detected only in Alabama, but at very low frequencies (<5%). Multi-locus sequence typing revealed that prior to biocontrol application in North Carolina in 2012, 48% of the isolates were the same haplotype as the biocontrol strain Afla-Guard, which belongs to lineage IB, while only 6% were of the same haplotype as AF36, which belongs to lineage IC. -
Fungal Planet Description Sheets: 716–784 By: P.W
Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H. -
New Taxa in Aspergillus Section Usti
available online at www.studiesinmycology.org StudieS in Mycology 69: 81–97. 2011. doi:10.3114/sim.2011.69.06 New taxa in Aspergillus section Usti R.A. Samson1*, J. Varga1,2, M. Meijer1 and J.C. Frisvad3 1CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, NL-3584 CT Utrecht, the Netherlands; 2Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Közép fasor 52, Hungary; 3BioCentrum-DTU, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark. *Correspondence: Robert A. Samson, [email protected] Abstract: Based on phylogenetic analysis of sequence data, Aspergillus section Usti includes 21 species, inclucing two teleomorphic species Aspergillus heterothallicus (= Emericella heterothallica) and Fennellia monodii. Aspergillus germanicus sp. nov. was isolated from indoor air in Germany. This species has identical ITS sequences with A. insuetus CBS 119.27, but is clearly distinct from that species based on β-tubulin and calmodulin sequence data. This species is unable to grow at 37 °C, similarly to A. keveii and A. insuetus. Aspergillus carlsbadensis sp. nov. was isolated from the Carlsbad Caverns National Park in New Mexico. This taxon is related to, but distinct from a clade including A. calidoustus, A. pseudodeflectus, A. insuetus and A. keveii on all trees. This species is also unable to grow at 37 °C, and acid production was not observed on CREA. Aspergillus californicus sp. nov. is proposed for an isolate from chamise chaparral (Adenostoma fasciculatum) in California. It is related to a clade including A. subsessilis and A. kassunensis on all trees. This species grew well at 37 °C, and acid production was not observed on CREA. -
The Evolution of Secondary Metabolism Regulation and Pathways in the Aspergillus Genus
THE EVOLUTION OF SECONDARY METABOLISM REGULATION AND PATHWAYS IN THE ASPERGILLUS GENUS By Abigail Lind Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in Biomedical Informatics August 11, 2017 Nashville, Tennessee Approved: Antonis Rokas, Ph.D. Tony Capra, Ph.D. Patrick Abbot, Ph.D. Louise Rollins-Smith, Ph.D. Qi Liu, Ph.D. ACKNOWLEDGEMENTS Many people helped and encouraged me during my years working towards this dissertation. First, I want to thank my advisor, Antonis Rokas, for his support for the past five years. His consistent optimism encouraged me to overcome obstacles, and his scientific insight helped me place my work in a broader scientific context. My committee members, Patrick Abbot, Tony Capra, Louise Rollins-Smith, and Qi Liu have also provided support and encouragement. I have been lucky to work with great people in the Rokas lab who helped me develop ideas, suggested new approaches to problems, and provided constant support. In particular, I want to thank Jen Wisecaver for her mentorship, brilliant suggestions on how to visualize and present my work, and for always being available to talk about science. I also want to thank Xiaofan Zhou for always providing a new perspective on solving a problem. Much of my research at Vanderbilt was only possible with the help of great collaborators. I have had the privilege of working with many great labs, and I want to thank Ana Calvo, Nancy Keller, Gustavo Goldman, Fernando Rodrigues, and members of all of their labs for making the research in my dissertation possible. -
Diversity of Fungi in Sediments and Water Sampled from the Hot Springs of Lake Magadi and Little Magadi in Kenya
Vol. 10(10), pp. 330-338, 14 March, 2016 DOI: 10.5897/AJMR2015.7879 Article Number: 128717757661 ISSN 1996-0808 African Journal of Microbiology Research Copyright © 2016 Author(s) retain the copyright of this article http://www.academicjournals.org/AJMR Full Length Research Paper Diversity of fungi in sediments and water sampled from the hot springs of Lake Magadi and Little Magadi in Kenya Anne Kelly Kambura1*, Romano Kachiuru Mwirichia2, Remmy Wekesa Kasili1, Edward Nderitu Karanja3, Huxley Mae Makonde4 and Hamadi Iddi Boga5 1Institute for Biotechnology Research, Jomo Kenyatta University of Agriculture and Technology, P. O. Box 62000 - 00200, Nairobi, Kenya. 2Embu University College, P. O. Box 6 - 60100, Embu, Kenya. 3International Centre of Insect Physiology and Ecology (ICIPE), P. O. Box 30772 - 00100, Nairobi, Kenya. 4Pure and Applied Sciences, Technical University of Mombasa, P. O. Box 90420 - 80100, GPO, Mombasa, Kenya. 5Taita Taveta University College, School of Agriculture, Earth and Environmental Sciences, P. O. Box 635-80300 Voi, Kenya. Received 9 December, 2015; Accepted 26 February, 2016 Lake Magadi and Little Magadi are saline, alkaline lakes lying in the southern part of Kenyan Rift Valley. Their solutes are supplied by a series of alkaline hot springs with temperatures as high as 86°C. Previous culture-dependent and independent studies have revealed diverse prokaryotic groups adapted to these conditions. However, very few studies have examined the diversity of fungi in these soda lakes. In this study, amplicons of Internal Transcribed Spacer (ITS) region on Total Community DNA using Illumina sequencing were used to explore the fungal community composition within the hot springs. -
Paula Cristina Azevedo Rodrigues S L T I F U N O N R T O I S P T
Universidade do Minho Escola de Engenharia m o f r o f e Paula Cristina Azevedo Rodrigues s l t i f u n o n r t o i s p t e a c i h s i c n l e a d i g n i c r x a e o s t m d a l n f m o a o c m d l Mycobiota and aflatoxigenic profile of n o a t a e n a s t o Portuguese almonds and chestnuts from e i o t u i c g b u u o production to commercialisation t d c r o y o r M P p s e u g i r d o R o d e v e z A a n i t s i r C a l u a P 0 1 0 2 | o h n i M U November 2010 Universidade do Minho Escola de Engenharia Paula Cristina Azevedo Rodrigues Mycobiota and aflatoxigenic profile of Portuguese almonds and chestnuts from production to commercialisation Dissertation for PhD degree in Chemical and Biological Engineering Supervisors Professor Doutor Nelson Lima Doutor Armando Venâncio November 2010 The integral reproduction of this thesis or parts thereof is authorized only for research purposes provided a written declaration for permission of use Universidade do Minho, November 2010 Assinatura: THIS THESIS WAS PARTIALLY SUPPORTED BY FUNDAÇÃO PARA A CIÊNCIA E A TECNOLOGIA AND THE EUROPEAN SOCIAL FUND THROUGH THE GRANT REF . SFRH/BD/28332/2006, AND BY FUNDAÇÃO PARA A CIÊNCIA E A TECNOLOGIA AND POLYTECHNIC INSTITUTE OF BRAGANÇA THROUGH THE GRANT REF . -
Aspergillus Luchuensis, an Industrially Important Black Aspergillus in East Asia
CORE Downloaded from orbit.dtu.dk on: Dec 20, 2017 Metadata, citation and similar papers at core.ac.uk Provided by Online Research Database In Technology Aspergillus luchuensis, an industrially important black Aspergillus in East Asia Hong, Seung-Beom ; Lee, Mina; Kim, Dae-Ho ; Varga, J.; Frisvad, Jens Christian; Perrone, G.; Gomi, K.; Yamada, O.; Machida, M.; Houbraken, J.; Samson, Robert A. Published in: PLoS ONE Link to article, DOI: 10.1371/journal.pone.0063769 Publication date: 2013 Document Version Publisher's PDF, also known as Version of record Link back to DTU Orbit Citation (APA): Hong, S-B., Lee, M., Kim, D-H., Varga, J., Frisvad, J. C., Perrone, G., ... Samson, R. A. (2013). Aspergillus luchuensis, an industrially important black Aspergillus in East Asia. PLoS ONE, 8(5), [e63769]. DOI: 10.1371/journal.pone.0063769 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. -
Capítulo Ii Detecção De Ácido Cítrico Em Meio Sólido
UNIVERSIDADE CATÓLICA DE PERNAMBUCO PRÓ-REITORIA DE PESQUISA E PÓS GRADUAÇÃO MESTRADO EM DESENVOLVIMENTO DE PROCESSOS AMBIENTAIS Alexandre D’Lamare Maia de Medeiros PRODUÇÃO DE ÁCIDO CÍTRICO POR AMOSTRAS DE ASPERGILLUS spp. ISOLADAS DA CAATINGA DE PERNAMBUCO UTILIZANDO MEIOS FORMULADOS COM RESÍDUOS AGROINDUSTRIAIS REGIONAIS Recife 2020 Alexandre D’Lamare Maia de Medeiros PRODUÇÃO DE ÁCIDO CÍTRICO POR AMOSTRAS DE ASPERGILLUS spp. ISOLADAS DA CAATINGA DE PERNAMBUCO UTILIZANDO MEIOS FORMULADOS COM RESÍDUOS AGROINDUSTRIAIS REGIONAIS Dissertação apresentada ao Programa de Pós-Graduação em Desenvolvimento em Processos Ambientais Universidade Católica de Pernambuco como pré-requisito para obtenção do título de Mestre em Desenvolvimento de Processos Ambientais. Área de Concentração: Desenvolvimento em Processos Ambientais Linha de Pesquisa: Biotecnologia e Meio Ambiente. Orientador: Prof Dr Carlos Alberto Alves da Silva Co-orientador: Prof Dr Raphael Fonseca do Nascimento Recife 2020 D’Lamare, Alexandre M. M. Produção de ácido cítrico por amostras de Aspergillus spp. isoladas da Caatinga de Pernambuco utilizando meios formulados com resíduos agroindustriais regionais, 2020, 84. Dissertação (Mestrado) - Universidade Católica de Pernambuco. Pró-reitoria Acadêmica. Curso de Mestrado em Desenvolvimento de Processos Ambientais, 2020. 1. Ácido Cítrico. 2. Fungos Filamentosos. 3. Resíduos Agroindustriais. Programa de Pós-Graduação em Desenvolvimento de Processos Ambientais. Centro de Ciências e Tecnologia. i PRODUÇÃO DE ÁCIDO CÍTRICO POR AMOSTRAS DE -
The Phylogeny of Plant and Animal Pathogens in the Ascomycota
Physiological and Molecular Plant Pathology (2001) 59, 165±187 doi:10.1006/pmpp.2001.0355, available online at http://www.idealibrary.com on MINI-REVIEW The phylogeny of plant and animal pathogens in the Ascomycota MARY L. BERBEE* Department of Botany, University of British Columbia, 6270 University Blvd, Vancouver, BC V6T 1Z4, Canada (Accepted for publication August 2001) What makes a fungus pathogenic? In this review, phylogenetic inference is used to speculate on the evolution of plant and animal pathogens in the fungal Phylum Ascomycota. A phylogeny is presented using 297 18S ribosomal DNA sequences from GenBank and it is shown that most known plant pathogens are concentrated in four classes in the Ascomycota. Animal pathogens are also concentrated, but in two ascomycete classes that contain few, if any, plant pathogens. Rather than appearing as a constant character of a class, the ability to cause disease in plants and animals was gained and lost repeatedly. The genes that code for some traits involved in pathogenicity or virulence have been cloned and characterized, and so the evolutionary relationships of a few of the genes for enzymes and toxins known to play roles in diseases were explored. In general, these genes are too narrowly distributed and too recent in origin to explain the broad patterns of origin of pathogens. Co-evolution could potentially be part of an explanation for phylogenetic patterns of pathogenesis. Robust phylogenies not only of the fungi, but also of host plants and animals are becoming available, allowing for critical analysis of the nature of co-evolutionary warfare. Host animals, particularly human hosts have had little obvious eect on fungal evolution and most cases of fungal disease in humans appear to represent an evolutionary dead end for the fungus.