<<

ESE319 Introduction to

High BJT Model

2008 Kenneth R. Laker, update 12Oct10 KRL 1 ESE319 Introduction to Microelectronics

Gain of 10 – Non-ideal

Gain starts dropping at about 1MHz.

Why! Because of internal transistor that we have ignored in our models.

2008 Kenneth R. Laker, update 12Oct10 KRL 2 ESE319 Introduction to Microelectronics Sketch of Typical Gain Response for a CE Amplifier ∣Av∣dB Low Midband High Frequency Frequency Band ALL capacitances are neglected Band Due to exter- nal blocking 3dB Due to BJT parasitic and bypass capacitors C and C capacitors π µ

20log10∣Av∣dB

f  Hz f L f H (log scale) BW f f f = H − L≈ H GBP=∣Av∣BW 2008 Kenneth R. Laker, update 12Oct10 KRL 3 ESE319 Introduction to Microelectronics High Frequency Small- Model C SPICE r  x CJC = C µ0 CJE = C je0 C  TF = τF RB = r x

C  0 C = m Two capacitors and a added. V CB 1  V 0c A base to emitter capacitor, Cπ C A base to collector capacitor, C C =C je0 ≈C 2C µ  de V m de je0 A resistor, r , representing the base 1− BE  x V 0 e C de=F g m terminal resistance (r << r ) x π = forward-base transit time τF 2008 Kenneth R. Laker, update 12Oct10 KRL 4 ESE319 Introduction to Microelectronics

High Frequency Small-signal Model The internal capacitors on the transistor have a strong effect on circuit high frequency performance! They attenuate base , decreasing vbe since their reactance approaches zero () as frequency increases.

As we will see later is the principal cause of this gain loss at Cµ high . At the base looks like a capacitor of value Cµ connected between base and emitter, where and may k Cµ k > 1 be >> 1.

This phenomenon is called the Miller Effect.

2008 Kenneth R. Laker, update 12Oct10 KRL 5 ESE319 Introduction to Microelectronics

Frequency-dependent “beta” hfe

short-circuit current

The relationship ic = βib does not apply at high frequencies f > fH! Using the relationship = – find the new relationship – ic f(Vπ ) between i and i . For i (using phasor notation (I & V ) for b c b x x frequency domain analysis): 1 @ node B': I = sC sC V where r x≈0 (ignore r ) b r    x    NOTE: s = σ + jω, in sinusoidal steady-state s = jω. 2008 Kenneth R. Laker, update 12Oct10 KRL 6 ESE319 Introduction to Microelectronics

Frequency-dependent hfe or “beta”

1 (ignore r ) I = sC sC V @ node C: I c=g m−sC  V  o b r       Leads to a new relationship between the Ib and Ic:

I c g m−sC  h fe= = I b 1 s C s C  r 

2008 Kenneth R. Laker, update 12Oct10 KRL 7 ESE319 Introduction to Microelectronics

Frequency Response of hfe g −sC m  I V h fe= C T 1 g m= r = V  I s C s C  T C r multiply N&D by r and set s = j π ω C 1 For small ωs=  low : low ≪1 g m− j C r g m 10 h =   fe 1 j C C r      1 and: low C C r≪1 factor N to isolate gm 10  C  C  C C r C C  1 j g r Note: low    =low    ≫low  −   m  g m g m gm h = fe 1 j C C r      We have: h fe=g m r =

2008 Kenneth R. Laker, update 12Oct10 KRL 8 ESE319 Introduction to Microelectronics

Frequency Response of hfe cont.

C  f h dB  1− j 1 j fe 1− j   g m r − g z f z m     20log  h fe= = g m r =  10 1 j C C r  f 1 j 1 j  f       f  f  f z  C  C C r=C C  ≫ => f z ≫ f  g m g m Hence, the lower break frequency or frequency is – 3dB fβ

1 g m 1 g m f = = the upper: f = = 2C C  r 2C C  z      2C  / g m 2C 

where f z10 f 

2008 Kenneth R. Laker, update 12Oct10 KRL 9 ESE319 Introduction to Microelectronics

Frequency Response of hfe cont.

Using Bode plot concepts, for the range where: f  f 

h fe=g m r= 1− j f / f ≈1 For the range where: f   f  f z s.t. ∣ z∣

We consider the frequency-dependent numerator term to be 1 and focus on the response of the denominator:

g m r  h = = fe f f 1 j 1 j f f      

2008 Kenneth R. Laker, update 12Oct10 KRL 10 ESE319 Introduction to Microelectronics

Frequency Response of hfe cont.

g m r  Neglecting numerator term: h =  = fe f f 1 j 1 j f f      

 f  And for f / f >>1 (but < f / f z ): h ≈ =  ∣ fe∣ f f f   

f  Unity gain bandwidth: h fe =1⇒  ¿¿| f f =1⇒ f T = f ∣ ∣ f = T 

T BJT unity-gain fre- f T = = f  quency or GBP 2

2008 Kenneth R. Laker, update 12Oct10 KRL 11 ESE319 Introduction to Microelectronics

Frequency Response of hfe cont.

−3 =100 r=2500 C =12 pF C =2 pF g m=40⋅10 S

12 −3 1 10 ⋅10 6  = = =28.57⋅10 rps  12 2 2.5 C C   r    ⋅

 28.57 6 f f 455 MHz f = = 10 Hz=4.55 MHz T = =  2 6.28

−3 12 g m 40⋅10 ⋅10 9 z= = Hz=20⋅10 rps C  2  f = z =3.18⋅109 Hz=3180 MHz z 2

2008 Kenneth R. Laker, update 12Oct10 KRL 12 ESE319 Introduction to Microelectronics

Scilab fT Plot

//fT Bode Plot Beta=100; KdB= 20*log10(Beta); fz=3180; fp=4.55; f= 1:1:10000; term1=KdB*sign(f); //Constant array of len(f) term2=max(0,20*log10(f/fz)); //Zero for f < fz; term3=min(0,-20*log10(f/fp)); //Zero for f < fp; BodePlot=term1+term2+term3; plot(f,BodePlot);

2008 Kenneth R. Laker, update 12Oct10 KRL 13 ESE319 Introduction to Microelectronics

hfe Bode Plot (dB)

f T

2008 Kenneth R. Laker, update 12Oct10 KRL 14 ESE319 Introduction to Microelectronics

Multisim Simulation

v-pi I c I b

v-pi

mS

Insert 1 ohm – we want to measure a current ratio.

I c g m−s C  h fe= = I b 1 sC C  r 

2008 Kenneth R. Laker, update 12Oct10 KRL 15 ESE319 Introduction to Microelectronics Simulation Results

Theory:

f T = f =455 MHz Low frequency |hfe| 

Unity Gain frequency about 440 MHz.

2008 Kenneth R. Laker, update 12Oct10 KRL 16