Capacitor and Inductors
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Run Capacitor Info-98582
Run Cap Quiz-98582_Layout 1 4/16/15 10:26 AM Page 1 ® Run Capacitor Info WHAT IS A CAPACITOR? Very simply, a capacitor is a device that stores and discharges electrons. While you may hear capacitors referred to by a variety of names (condenser, run, start, oil, etc.) all capacitors are comprised of two or more metallic plates separated by an insulating material called a dielectric. PLATE 1 PLATE 2 A very simple capacitor can be made with two plates separated by a dielectric, in this PLATE 1 PLATE 2 case air, and connected to a source of DC current, a battery. Electrons will flow away from plate 1 and collect on plate 2, leaving it with an abundance of electrons, or a “charge”. Since current from a battery only flows one way, the capacitor plate will stay BATTERY + – charged this way unless something causes current flow. If we were to short across the plates with a screwdriver, the resulting spark would indicate the electrons “jumping” from plate 2 to plate 1 in an attempt to equalize. As soon as the screwdriver is removed, plate 2 will again collect a PLATE 1 PLATE 2 charge. + BATTERY – Now let’s connect our simple capacitor to a source of AC current and in series with the windings of an electric motor. Since AC current alternates, first one PLATE 1 PLATE 2 MOTOR plate, then the other would be charged and discharged in turn. First plate 1 is charged, then as the current reverses, a rush of electrons flow from plate 1 to plate 2 through the motor windings. -
EXPERIMENT 4: RC, RL and RD Circuits
Laboratory 4: The RC Circuit EXPERIMENT 4: RC, RL and RD CIRCUITs Equipment List An assortment of resistor, one each of (330, 1k,1.5k, 10k,100k,1000k) Function Generator Oscilloscope 0.F Ceramic Capacitor 100H Inductor LED and 1N4001 Diode. Introduction We have studied D.C. circuits with resistors and batteries and discovered that Ohm’s Law governs the relationship between current through and voltage across a resistance. It is a linear response; i.e., 푉 = 퐼푅 (1) Such circuit elements are called passive elements. With A.C. circuits we find other passive elements called capacitors and inductors. These, too, obey Ohm’s Law and circuit loop problems can be solved using Kirchoff’ 3 Laws in much the same way as with DC. circuits. However, there is one major difference - in an AC. circuit, voltage across and current through a circuit element or branch are not necessarily in phase with one another. We saw an example of this at the end of Experiment 3. In an AC. series circuit the source voltage and current are time dependent such that 푖(푡) = 푖푠sin(휔푡) (2) 푣(푡) = 푣푠sin(휔푡 + 휙) where, in this case, voltage leads current by the phase angle , and Vs and Is are the peak source voltage and peak current, respectively. As you know or will learn from the text, the phase relationships between circuit element voltages and series current are these: resistor - voltage and current are in phase implying that 휙 = 0 휋 capacitor - voltage lags current by 90o implying that 휙 = − 2 inductor - voltage leads current by 90o implying that 휙 = 휋/2 Laboratory 4: The RC Circuit In this experiment we will study a circuit with a resistor and a capacitor in m. -
Chapter 7: AC Transistor Amplifiers
Chapter 7: Transistors, part 2 Chapter 7: AC Transistor Amplifiers The transistor amplifiers that we studied in the last chapter have some serious problems for use in AC signals. Their most serious shortcoming is that there is a “dead region” where small signals do not turn on the transistor. So, if your signal is smaller than 0.6 V, or if it is negative, the transistor does not conduct and the amplifier does not work. Design goals for an AC amplifier Before moving on to making a better AC amplifier, let’s define some useful terms. We define the output range to be the range of possible output voltages. We refer to the maximum and minimum output voltages as the rail voltages and the output swing is the difference between the rail voltages. The input range is the range of input voltages that produce outputs which are not at either rail voltage. Our goal in designing an AC amplifier is to get an input range and output range which is symmetric around zero and ensure that there is not a dead region. To do this we need make sure that the transistor is in conduction for all of our input range. How does this work? We do it by adding an offset voltage to the input to make sure the voltage presented to the transistor’s base with no input signal, the resting or quiescent voltage , is well above ground. In lab 6, the function generator provided the offset, in this chapter we will show how to design an amplifier which provides its own offset. -
Switched-Capacitor Circuits
Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto ([email protected]) ([email protected]) University of Toronto 1 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Opamps • Ideal opamps usually assumed. • Important non-idealities — dc gain: sets the accuracy of charge transfer, hence, transfer-function accuracy. — unity-gain freq, phase margin & slew-rate: sets the max clocking frequency. A general rule is that unity-gain freq should be 5 times (or more) higher than the clock-freq. — dc offset: Can create dc offset at output. Circuit techniques to combat this which also reduce 1/f noise. University of Toronto 2 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Double-Poly Capacitors metal C1 metal poly1 Cp1 thin oxide bottom plate C1 poly2 Cp2 thick oxide C p1 Cp2 (substrate - ac ground) cross-section view equivalent circuit • Substantial parasitics with large bottom plate capacitance (20 percent of C1) • Also, metal-metal capacitors are used but have even larger parasitic capacitances. University of Toronto 3 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Switches I I Symbol n-channel v1 v2 v1 v2 I transmission I I gate v1 v p-channel v 2 1 v2 I • Mosfet switches are good switches. — off-resistance near G: range — on-resistance in 100: to 5k: range (depends on transistor sizing) • However, have non-linear parasitic capacitances. University of Toronto 4 of 60 © D. Johns, K. Martin, 1997 Basic Building Blocks Non-Overlapping Clocks I1 T Von I I1 Voff n – 2 n – 1 n n + 1 tTe delay 1 I fs { --- delay V 2 T on I Voff 2 n – 32e n – 12e n + 12e tTe • Non-overlapping clocks — both clocks are never on at same time • Needed to ensure charge is not inadvertently lost. -
Electrostatics Voltage Source
012-07038B Instruction Sheet for the PASCO Model ES-9077 ELECTROSTATICS VOLTAGE SOURCE Specifications Ranges: • Fixed 1000, 2000, 3000 VDC ±10%, unregulated (maximum short circuit current less than 0.01 mA). • 30 VDC ±5%, 1mA max. Power: • 110-130 VDC, 60 Hz, ES-9077 • 220/240 VDC, 50 Hz, ES-9077-220 Dimensions: Introduction • 5 1/2” X 5” X 1”, plus AC adapter and red/black The ES-9077 is a high voltage, low current power cable set supply designed exclusively for experiments in electrostatics. It has outputs at 30 volts DC for IMPORTANT: To prevent the risk of capacitor plate experiments, and fixed 1 kV, 2 kV, and electric shock, do not remove the cover 3 kV outputs for Faraday ice pail and conducting on the unit. There are no user sphere experiments. With the exception of the 30 volt serviceable parts inside. Refer servicing output, all of the voltage outputs have a series to qualified service personnel. resistance associated with them which limit the available short-circuit output current to about 8.3 microamps. The 30 volt output is regulated but is Operation capable of delivering only about 1 milliamp before When using the Electrostatics Voltage Source to power falling out of regulation. other electric circuits, (like RC networks), use only the 30V output (Remember that the maximum drain is 1 Equipment Included: mA.). • Voltage Source Use the special high-voltage leads that are supplied with • Red/black, banana plug to spade lug cable the ES-9077 to make connections. Use of other leads • 9 VDC power supply may allow significant leakage from the leads to ground and negatively affect output voltage accuracy. -
Determination of the Magnetic Permeability, Electrical Conductivity
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TII.2018.2885406, IEEE Transactions on Industrial Informatics TII-18-2870 1 Determination of the magnetic permeability, electrical conductivity, and thickness of ferrite metallic plates using a multi-frequency electromagnetic sensing system Mingyang Lu, Yuedong Xie, Wenqian Zhu, Anthony Peyton, and Wuliang Yin, Senior Member, IEEE Abstract—In this paper, an inverse method was developed by the sensor are not only dependent on the magnetic which can, in principle, reconstruct arbitrary permeability, permeability of the strip but is also an unwanted function of the conductivity, thickness, and lift-off with a multi-frequency electrical conductivity and thickness of the strip and the electromagnetic sensor from inductance spectroscopic distance between the strip steel and the sensor (lift-off). The measurements. confounding cross-sensitivities to these parameters need to be Both the finite element method and the Dodd & Deeds rejected by the processing algorithms applied to inductance formulation are used to solve the forward problem during the spectra. inversion process. For the inverse solution, a modified Newton– Raphson method was used to adjust each set of parameters In recent years, the eddy current technique (ECT) [2-5] and (permeability, conductivity, thickness, and lift-off) to fit the alternating current potential drop (ACPD) technique [6-8] inductances (measured or simulated) in a least-squared sense were the two primary electromagnetic non-destructive testing because of its known convergence properties. The approximate techniques (NDT) [9-21] on metals’ permeability Jacobian matrix (sensitivity matrix) for each set of the parameter measurements. -
Momentary Podl Connector and Cable Shorts
Momentary PoDL Connector and Cable Shorts Andy Gardner – Linear Technology Corporation 2 Presentation Objectives • To put forward a momentary connector or cable short fault scenario for Ethernet PoDL. • To quantify the requirements for surviving the energy dissipation and cable voltage transients subsequent to the momentary short. 3 PoDL Circuit with Momentary Short • IPSE= IPD= IL1= IL2= IL3= IL4 at steady-state. • D1-D4 and D5-D8 represent the master and slave PHY body diodes, respectively. • PoDL fuse or circuit breaker will open during a sustained over- current (OC) fault but may not open during a momentary OC fault. 4 PoDL Inductor Current Imbalance during a Cable or Connector Short • During a connector or cable short, the PoDL inductor currents will become unbalanced. • The current in inductors L1 and L2 will increase, while the current in inductors L3 and L4 will reverse. • Maximum inductor energy is limited by the PoDL inductors’ saturation current, i.e. ISAT > IPD(max). • Stored inductor energy resulting from the current imbalance will be dissipated by termination and parasitic resistances as well as the PHYs’ body diodes. • DC blocking capacitors C1-C4 need to be rated for peak transient voltages subsequent to the momentary short. 5 Max Energy Storage in PoDL Coupling Inductors during a Momentary Short • PoDL inductors L1-L4 are constrained by tdroop: −50 × 푡푑푟표표푝 퐿 > 푃표퐷퐿 ln 1 − 0.45 1 퐸 ≈ 4 × × 퐿 × 퐼 2 퐿(푡표푡푎푙) 2 푃표퐷퐿 푆퐴푇 • Example: if tdroop=500ns, LPoDL=42H which yields: ISAT Total EL 1A 84J 3A 756J 10A 8.4mJ 6 Peak Transient Voltage after a Short • The maximum voltage across the PHY DC blocking capacitors C1-C4 following a momentary short assuming damping ratio 휁 is: 퐿푃표퐷퐿 50Ω 푉푚푎푥 ≈ 퐼푠푎푡 × = 퐼푠푎푡 × 퐶휑푏푙표푐푘 2 × 휁 4 × 푡푑푟표표푝 where 퐶 ≥ −휁2 × 휑푏푙표푐푘 50Ω × ln (1 − 0.45) • The maximum voltage differential between the conductors in the twisted pair is then: Vmax(diff) = 2 Vmax ISAT 50/휁 • Example: A critically damped PoDL network (휁=1) with inductor ISAT = 1A yields Vmax(diff) 50V while an inductor ISAT = 10A will yield Vmax(diff) 500V. -
Kirchhoff's Laws in Dynamic Circuits
Kirchhoff’s Laws in Dynamic Circuits Dynamic circuits are circuits that contain capacitors and inductors. Later we will learn to analyze some dynamic circuits by writing and solving differential equations. In these notes, we consider some simpler examples that can be solved using only Kirchhoff’s laws and the element equations of the capacitor and the inductor. Example 1: Consider this circuit Additionally, we are given the following representations of the voltage source voltage and one of the resistor voltages: ⎧⎧10 V fortt<< 0 2 V for 0 vvs ==⎨⎨and 1 −5t ⎩⎩20 V forte>+ 0 8 4 V fort> 0 We wish to express the capacitor current, i 2 , as a function of time, t. Plan: First, apply Kirchhoff’s voltage law (KVL) to the loop consisting of the source, resistor R1 and the capacitor to determine the capacitor voltage, v 2 , as a function of time, t. Next, use the element equation of the capacitor to determine the capacitor current as a function of time, t. Solution: Apply Kirchhoff’s voltage law (KVL) to the loop consisting of the source, resistor R1 and the capacitor to write ⎧ 8 V fort < 0 vvv12+−=ss0 ⇒ v2 =−= vv 1⎨ −5t ⎩16− 8et V for> 0 Use the element equation of the capacitor to write ⎧ 0 A fort < 0 dv22 dv ⎪ ⎧ 0 A fort < 0 iC2 ==0.025 =⎨⎨d −5t =−5t dt dt ⎪0.025() 16−> 8et for 0 ⎩1et A for> 0 ⎩ dt 1 Example 2: Consider this circuit where the resistor currents are given by ⎧⎧0.8 A fortt<< 0 0 A for 0 ii13==⎨⎨−−22ttand ⎩⎩0.8et−> 0.8 A for 0 −0.8 e A fort> 0 Express the inductor voltage, v 2 , as a function of time, t. -
What Is a Neutral Earthing Resistor?
Fact Sheet What is a Neutral Earthing Resistor? The earthing system plays a very important role in an electrical network. For network operators and end users, avoiding damage to equipment, providing a safe operating environment for personnel and continuity of supply are major drivers behind implementing reliable fault mitigation schemes. What is a Neutral Earthing Resistor? A widely utilised approach to managing fault currents is the installation of neutral earthing resistors (NERs). NERs, sometimes called Neutral Grounding Resistors, are used in an AC distribution networks to limit transient overvoltages that flow through the neutral point of a transformer or generator to a safe value during a fault event. Generally connected between ground and neutral of transformers, NERs reduce the fault currents to a maximum pre-determined value that avoids a network shutdown and damage to equipment, yet allows sufficient flow of fault current to activate protection devices to locate and clear the fault. NERs must absorb and dissipate a huge amount of energy for the duration of the fault event without exceeding temperature limitations as defined in IEEE32 standards. Therefore the design and selection of an NER is highly important to ensure equipment and personnel safety as well as continuity of supply. Power Transformer Motor Supply NER Fault Current Neutral Earthin Resistor Nov 2015 Page 1 Fact Sheet The importance of neutral grounding Fault current and transient over-voltage events can be costly in terms of network availability, equipment costs and compromised safety. Interruption of electricity supply, considerable damage to equipment at the fault point, premature ageing of equipment at other points on the system and a heightened safety risk to personnel are all possible consequences of fault situations. -
Quantum Mechanics Electromotive Force
Quantum Mechanics_Electromotive force . Electromotive force, also called emf[1] (denoted and measured in volts), is the voltage developed by any source of electrical energy such as a batteryor dynamo.[2] The word "force" in this case is not used to mean mechanical force, measured in newtons, but a potential, or energy per unit of charge, measured involts. In electromagnetic induction, emf can be defined around a closed loop as the electromagnetic workthat would be transferred to a unit of charge if it travels once around that loop.[3] (While the charge travels around the loop, it can simultaneously lose the energy via resistance into thermal energy.) For a time-varying magnetic flux impinging a loop, theElectric potential scalar field is not defined due to circulating electric vector field, but nevertheless an emf does work that can be measured as a virtual electric potential around that loop.[4] In a two-terminal device (such as an electrochemical cell or electromagnetic generator), the emf can be measured as the open-circuit potential difference across the two terminals. The potential difference thus created drives current flow if an external circuit is attached to the source of emf. When current flows, however, the potential difference across the terminals is no longer equal to the emf, but will be smaller because of the voltage drop within the device due to its internal resistance. Devices that can provide emf includeelectrochemical cells, thermoelectric devices, solar cells and photodiodes, electrical generators,transformers, and even Van de Graaff generators.[4][5] In nature, emf is generated whenever magnetic field fluctuations occur through a surface. -
Selecting the Optimal Inductor for Power Converter Applications
Selecting the Optimal Inductor for Power Converter Applications BACKGROUND SDR Series Power Inductors Today’s electronic devices have become increasingly power hungry and are operating at SMD Non-shielded higher switching frequencies, starving for speed and shrinking in size as never before. Inductors are a fundamental element in the voltage regulator topology, and virtually every circuit that regulates power in automobiles, industrial and consumer electronics, SRN Series Power Inductors and DC-DC converters requires an inductor. Conventional inductor technology has SMD Semi-shielded been falling behind in meeting the high performance demand of these advanced electronic devices. As a result, Bourns has developed several inductor models with rated DC current up to 60 A to meet the challenges of the market. SRP Series Power Inductors SMD High Current, Shielded Especially given the myriad of choices for inductors currently available, properly selecting an inductor for a power converter is not always a simple task for designers of next-generation applications. Beginning with the basic physics behind inductor SRR Series Power Inductors operations, a designer must determine the ideal inductor based on radiation, current SMD Shielded rating, core material, core loss, temperature, and saturation current. This white paper will outline these considerations and provide examples that illustrate the role SRU Series Power Inductors each of these factors plays in choosing the best inductor for a circuit. The paper also SMD Shielded will describe the options available for various applications with special emphasis on new cutting edge inductor product trends from Bourns that offer advantages in performance, size, and ease of design modification. -
Capacitors and Inductors
DC Principles Study Unit Capacitors and Inductors By Robert Cecci In this text, you’ll learn about how capacitors and inductors operate in DC circuits. As an industrial electrician or elec- tronics technician, you’ll be likely to encounter capacitors and inductors in your everyday work. Capacitors and induc- tors are used in many types of industrial power supplies, Preview Preview motor drive systems, and on most industrial electronics printed circuit boards. When you complete this study unit, you’ll be able to • Explain how a capacitor holds a charge • Describe common types of capacitors • Identify capacitor ratings • Calculate the total capacitance of a circuit containing capacitors connected in series or in parallel • Calculate the time constant of a resistance-capacitance (RC) circuit • Explain how inductors are constructed and describe their rating system • Describe how an inductor can regulate the flow of cur- rent in a DC circuit • Calculate the total inductance of a circuit containing inductors connected in series or parallel • Calculate the time constant of a resistance-inductance (RL) circuit Electronics Workbench is a registered trademark, property of Interactive Image Technologies Ltd. and used with permission. You’ll see the symbol shown above at several locations throughout this study unit. This symbol is the logo of Electronics Workbench, a computer-simulated electronics laboratory. The appearance of this symbol in the text mar- gin signals that there’s an Electronics Workbench lab experiment associated with that section of the text. If your program includes Elec tronics Workbench as a part of your iii learning experience, you’ll receive an experiment lab book that describes your Electronics Workbench assignments.