Quantum Mechanics Electromotive Force
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Window Layer Structures for Chalcopyrite Thin-Film Solar Cells
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1951 Window Layer Structures for Chalcopyrite Thin-Film Solar Cells FREDRIK LARSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0984-2 UPPSALA urn:nbn:se:uu:diva-416751 2020 Dissertation presented at Uppsala University to be publicly examined in Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Friday, 18 September 2020 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Professor Daniel Lincot (French National Centre for Scientific Research (CNRS)). Abstract Larsson, F. 2020. Window Layer Structures for Chalcopyrite Thin-Film Solar Cells. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1951. 110 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0984-2. This thesis aims to contribute to the development of improved window layer structures for chalcopyrite thin-film solar cells, with an emphasis on the buffer layer, to assist future reductions of the levelized cost of energy. This is realized by exploring the potential of existing materials and deposition processes, as well as developing new buffer layer processes based on atomic layer deposition (ALD). Ternary compound ALD processes are more complicated to control than when depositing binary compounds and the composition can be significantly different at the absorber interface as compared to the bulk. A method based on in-situ quartz crystal microbalance that can measure these compositional variations is demonstrated in the thesis. Furthermore, the addition of alkali- metal fluoride post-deposition treatments (PDTs) can further complicate ALD of buffer layers, due to residual salts that are formed on the absorber surface during a PDT process. -
Introduction to Perovskite Solar Cells in an Undergraduate Laboratory Exercise
Faculty of Health, Science and Technology Oscar Eklund Introduction to Perovskite Solar Cells in an Undergraduate Laboratory Exercise Bachelor’s Thesis, 15 ECTS Engineering Physics Date: 2019-06-04 Supervisor: Leif Ericsson Examiner: Thijs Jan Holleboom Karlstads Universitet 651 88 Karlstad Tfn 054-700 10 00 Fax 054-700 14 60 [email protected] www.kau.se Oscar Eklund Introduction Karlstad University Abstract The course Functional Materials at Karlstad University aims for undergraduates to study some of the functional materials of the 21st century. One of the hottest topics in photovoltaic research is hybrid organic-inorganic perovskite solar cells due to their easy methods of fabrication, cheap costs and potential for high power conversion efficiencies. A laboratory manual is compiled for the course, in which students are encouraged to build perovskite solar cells with a device architecture of FTO/TiO2/MAPbI3/CuSCN/Carbon/FTO using spin coating and annealing for testing in a solar simulator. The power conversion efficiency achieved with this method reaches 0.056 %, with suggestions for improvement when done by students. Absorption properties are examined using UV-vis spectroscopy and the band gap energy of MAPbI3 is established as 1.59 eV. By using these techniques, students will earn a greater understanding for one of the most relevant topics of photovoltaic research and different equipment used in its fabrication and characterization Sammanfattning Kursen Funktionella material på Karlstads universitet har som mål att studenter ska få studera några av 2000-talets funktionella material. Ett av de största ämnena inom solcellsforskning är hybrida organiska/icke-organiska perovskitsolceller eftersom de är lätta att tillverka, billiga och har potential för höga verkningsgrader. -
Electrostatics Voltage Source
012-07038B Instruction Sheet for the PASCO Model ES-9077 ELECTROSTATICS VOLTAGE SOURCE Specifications Ranges: • Fixed 1000, 2000, 3000 VDC ±10%, unregulated (maximum short circuit current less than 0.01 mA). • 30 VDC ±5%, 1mA max. Power: • 110-130 VDC, 60 Hz, ES-9077 • 220/240 VDC, 50 Hz, ES-9077-220 Dimensions: Introduction • 5 1/2” X 5” X 1”, plus AC adapter and red/black The ES-9077 is a high voltage, low current power cable set supply designed exclusively for experiments in electrostatics. It has outputs at 30 volts DC for IMPORTANT: To prevent the risk of capacitor plate experiments, and fixed 1 kV, 2 kV, and electric shock, do not remove the cover 3 kV outputs for Faraday ice pail and conducting on the unit. There are no user sphere experiments. With the exception of the 30 volt serviceable parts inside. Refer servicing output, all of the voltage outputs have a series to qualified service personnel. resistance associated with them which limit the available short-circuit output current to about 8.3 microamps. The 30 volt output is regulated but is Operation capable of delivering only about 1 milliamp before When using the Electrostatics Voltage Source to power falling out of regulation. other electric circuits, (like RC networks), use only the 30V output (Remember that the maximum drain is 1 Equipment Included: mA.). • Voltage Source Use the special high-voltage leads that are supplied with • Red/black, banana plug to spade lug cable the ES-9077 to make connections. Use of other leads • 9 VDC power supply may allow significant leakage from the leads to ground and negatively affect output voltage accuracy. -
Integrated Chemical Microsensor Systems in CMOS Technology by A
microtechnology and mems microtechnology and mems Series Editor: H. Baltes H. Fujita D. Liepmann The series Microtechnology and MEMS comprises text books, monographs, and state-of-the-art reports in the very active field of microsystems and microtech- nology. Written by leading physicists and engineers, the books describe the basic science, device design, and applications. They will appeal to researchers, engineers, and advanced students. Mechanical Microsensors By M. Elwenspoek and R. Wiegerink CMOS Cantilever Sensor Systems Atomic Force Microscopy and Gas Sensing Applications By D. Lange, O. Brand, and H. Baltes Micromachines as Tools for Nanotechnology Editor: H. Fujita Modelling of Microfabrication Systems By R. Nassar and W. Dai Laser Diode Microsystems By H. Zappe Silicon Microchannel Heat Sinks Theories and Phenomena By L. Zhang, K.E. Goodson, and T.W. Kenny Shape Memory Microactuators By M. Kohl Force Sensors for Microelectronic Packaging Applications By J. Schwizer, M. Mayer and O. Brand Integrated Chemical Microsensor Systems in CMOS Technology By A. Hierlemann A. Hierlemann Integrated Chemical Microsensor Systems in CMOS Technology With 125 Figures 123 Professor Dr. Andreas Hierlemann Physical Electronics Laboratory ETH Hoenggerberg, HPT-H 4.2, IQE 8093 Zurich Switzerland Email: [email protected] Series Editors: Professor Dr. H. Baltes ETH Zürich, Physical Electronics Laboratory ETH Hoenggerberg, HPT-H6, 8093 Zürich, Switzerland Professor Dr. Hiroyuki Fujita University of Tokyo, Institute of Industrial Science 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan Professor Dr. Dorian Liepmann University of California, Department of Bioengineering 466 Evans Hall, #1762, Berkeley, CA 94720-1762, USA ISSN 1439-6599 ISBN 3-540-23782-8 Springer Berlin Heidelberg New York LibraryofCongressControlNumber:2004114045 This work is subject to copyright. -
Generalized Detailed Balance Theory of Solar Cells
Generalized detailed balance theory of solar cells Von der Fakult¨at f¨ur Elektrotechnik und Informationstechnik der Rheinisch-Westf¨alischen Technischen Hochschule Aachen zur Erlangung des akademischen Grades eines Doktors der Ingenieurwissenschaften genehmigte Dissertation vorgelegt von Diplom-Ingenieur Thomas Kirchartz aus Karlsruhe Berichter: Universit¨atsprofessor Dr. rer. nat. habil. Uwe Rau Universit¨atsprofessor Dr. phil. Heinrich Kurz Tag der m¨undlichen Pr¨ufung: 6. Februar 2009 Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verf¨ugbar. Contents Abstract 1 Zusammenfassung 5 1 Introduction 9 2 Fundamentals 13 2.1 The principle of detailed balance . 13 2.2 TheShockley-Queisserlimit . 14 2.3 Combining transport with detailed balance . 18 2.3.1 A two state solar cell model . 18 2.3.2 Theonesidedpn-junction . 21 2.3.3 Radiative limit for arbitrary mobilities . 23 2.4 Solar cell and light emitting diode . 24 2.5 Properties of optoelectronic devices - a brief summary . ....... 26 3 Detailed balance model for bipolar charge transport 31 3.1 Introduction................................ 31 3.2 pnandpintypesolarcells . 33 3.3 Superposition, ideality and reciprocity in pin-type solar cells . 37 3.4 Model ................................... 41 3.5 Application to quantum well solar cells . 43 3.5.1 Introduction............................ 43 3.5.2 Opticalresults........................... 45 3.5.3 Results for finite mobilities . 50 3.5.4 Results for non-radiative recombination . 54 i ii CONTENTS 3.5.5 Tandem solar cells . 58 3.5.6 Conclusions ............................ 60 4 Detailed balance model for excitonic and bipolar charge transport 63 4.1 Introduction................................ 63 4.2 Model ................................... 64 4.2.1 Excitonic and bipolar solar cells . -
Fundamentals of Electrochemistry
ffirs.qxd 10/29/2005 11:56 AM Page iii FUNDAMENTALS OF ELECTROCHEMISTRY Second Edition V. S. BAGOTSKY A. N. Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences Moscow, Russia Sponsored by THE ELECTROCHEMICAL SOCIETY, INC. Pennington, New Jersey A JOHN WILEY & SONS, INC., PUBLICATION ftoc.qxd 10/29/2005 12:01 PM Page xiv ffirs.qxd 10/29/2005 11:55 AM Page i FUNDAMENTALS OF ELECTROCHEMISTRY ffirs.qxd 10/29/2005 11:55 AM Page ii THE ELECTROCHEMICAL SOCIETY SERIES The Electrochemical Society 65 South Main Street Pennington, NJ 08534-2839 http://www.electrochem.org A complete list of the titles in this series appears at the end of this volume. ffirs.qxd 10/29/2005 11:56 AM Page iii FUNDAMENTALS OF ELECTROCHEMISTRY Second Edition V. S. BAGOTSKY A. N. Frumkin Institute of Physical Chemistry and Electrochemistry Russian Academy of Sciences Moscow, Russia Sponsored by THE ELECTROCHEMICAL SOCIETY, INC. Pennington, New Jersey A JOHN WILEY & SONS, INC., PUBLICATION ffirs.qxd 10/29/2005 11:56 AM Page iv Copyright © 2006 by John Wiley & Sons, Inc. All rights reserved Published by John Wiley & Sons, Inc., Hoboken, New Jersey Published simultaneously in Canada No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. -
Measuring Electricity Voltage Current Voltage Current
Measuring Electricity Electricity makes our lives easier, but it can seem like a mysterious force. Measuring electricity is confusing because we cannot see it. We are familiar with terms such as watt, volt, and amp, but we do not have a clear understanding of these terms. We buy a 60-watt lightbulb, a tool that needs 120 volts, or a vacuum cleaner that uses 8.8 amps, and dont think about what those units mean. Using the flow of water as an analogy can make Voltage electricity easier to understand. The flow of electrons in a circuit is similar to water flowing through a hose. If you could look into a hose at a given point, you would see a certain amount of water passing that point each second. The amount of water depends on how much pressure is being applied how hard the water is being pushed. It also depends on the diameter of the hose. The harder the pressure and the larger the diameter of the hose, the more water passes each second. The flow of electrons through a wire depends on the electrical pressure pushing the electrons and on the Current cross-sectional area of the wire. The flow of electrons can be compared to the flow of Voltage water. The water current is the number of molecules flowing past a fixed point; electrical current is the The pressure that pushes electrons in a circuit is number of electrons flowing past a fixed point. called voltage. Using the water analogy, if a tank of Electrical current (I) is defined as electrons flowing water were suspended one meter above the ground between two points having a difference in voltage. -
Calculating Electric Power
Calculating electric power We've seen the formula for determining the power in an electric circuit: by multiplying the voltage in "volts" by the current in "amps" we arrive at an answer in "watts." Let's apply this to a circuit example: In the above circuit, we know we have a battery voltage of 18 volts and a lamp resistance of 3 Ω. Using Ohm's Law to determine current, we get: Now that we know the current, we can take that value and multiply it by the voltage to determine power: Answer: the lamp is dissipating (releasing) 108 watts of power, most likely in the form of both light and heat. Let's try taking that same circuit and increasing the battery voltage to see what happens. Intuition should tell us that the circuit current will increase as the voltage increases and the lamp resistance stays the same. Likewise, the power will increase as well: Now, the battery voltage is 36 volts instead of 18 volts. The lamp is still providing 3 Ω of electrical resistance to the flow of electrons. The current is now: This stands to reason: if I = E/R, and we double E while R stays the same, the current should double. Indeed, it has: we now have 12 amps of current instead of 6. Now, what about power? Notice that the power has increased just as we might have suspected, but it increased quite a bit more than the current. Why is this? Because power is a function of voltage multiplied by current, and both voltage and current doubled from their previous values, the power will increase by a factor of 2 x 2, or 4. -
On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch
Andre Koch Torres Assis On the First Electromagnetic Measurement of the Velocity of Light by Wilhelm Weber and Rudolf Kohlrausch Abstract The electrostatic, electrodynamic and electromagnetic systems of units utilized during last century by Ampère, Gauss, Weber, Maxwell and all the others are analyzed. It is shown how the constant c was introduced in physics by Weber's force of 1846. It is shown that it has the unit of velocity and is the ratio of the electromagnetic and electrostatic units of charge. Weber and Kohlrausch's experiment of 1855 to determine c is quoted, emphasizing that they were the first to measure this quantity and obtained the same value as that of light velocity in vacuum. It is shown how Kirchhoff in 1857 and Weber (1857-64) independently of one another obtained the fact that an electromagnetic signal propagates at light velocity along a thin wire of negligible resistivity. They obtained the telegraphy equation utilizing Weber’s action at a distance force. This was accomplished before the development of Maxwell’s electromagnetic theory of light and before Heaviside’s work. 1. Introduction In this work the introduction of the constant c in electromagnetism by Wilhelm Weber in 1846 is analyzed. It is the ratio of electromagnetic and electrostatic units of charge, one of the most fundamental constants of nature. The meaning of this constant is discussed, the first measurement performed by Weber and Kohlrausch in 1855, and the derivation of the telegraphy equation by Kirchhoff and Weber in 1857. Initially the basic systems of units utilized during last century for describing electromagnetic quantities is presented, along with a short review of Weber’s electrodynamics. -
Electromotive Force
Voltage - Electromotive Force Electrical current flow is the movement of electrons through conductors. But why would the electrons want to move? Electrons move because they get pushed by some external force. There are several energy sources that can force electrons to move. Chemical: Battery Magnetic: Generator Light (Photons): Solar Cell Mechanical: Phonograph pickup, crystal microphone, antiknock sensor Heat: Thermocouple Voltage is the amount of push or pressure that is being applied to the electrons. It is analogous to water pressure. With higher water pressure, more water is forced through a pipe in a given time. With higher voltage, more electrons are pushed through a wire in a given time. If a hose is connected between two faucets with the same pressure, no water flows. For water to flow through the hose, it is necessary to have a difference in water pressure (measured in psi) between the two ends. In the same way, For electrical current to flow in a wire, it is necessary to have a difference in electrical potential (measured in volts) between the two ends of the wire. A battery is an energy source that provides an electrical difference of potential that is capable of forcing electrons through an electrical circuit. We can measure the potential between its two terminals with a voltmeter. Water Tank High Pressure _ e r u e s g s a e t r l Pump p o + v = = t h g i e h No Pressure Figure 1: A Voltage Source Water Analogy. In any case, electrostatic force actually moves the electrons. -
Alessandro Volta
Alessandro Volta Alessandro Volta was born in Como, Lombardy, Italy, on February 18, 1745 and died in 1827. He was known for his most famous invention the battery. He was a physicist, chemist and a pioneer of electrical science. He came from a noble family. Until the age of four, Alessandro showed no signs of talking, and his family feared he was not very intelligent. Fortunately, they were wrong as he grew to be very intelligent. Although as a child he was slow to start speaking, he left school being fluent in Latin, French, English, and German. His language talents helped him in later life when he travelled and discussed science with others around the world. In 1775 he devised the electrophorus - a device that produced a static electric charge. He studied gas chemistry and discovered methane. He created experiments such as the ignition of gases by an electric spark. In 1800 he developed the votaic pile, which was the forerunner of the electric battery which produced a steady electric current. He didn’t intend to invent the battery, but to instead perform science experiments to prove another Italian scientist, Luigi Galvani, was incorrect in his scientific ideas. Alessandro set out to prove Galvani’s idea that animal electricity was the same as static electricity was an incorrect theory. In 1792 Volta performed experiments on dead and disembodied frogs legs. He found out that the key to getting them to move is by contacting two different types of metals; if you use the same type of metal the electricity did not pass through the frog. -
Weberˇs Planetary Model of the Atom
Weber’s Planetary Model of the Atom Bearbeitet von Andre Koch Torres Assis, Gudrun Wolfschmidt, Karl Heinrich Wiederkehr 1. Auflage 2011. Taschenbuch. 184 S. Paperback ISBN 978 3 8424 0241 6 Format (B x L): 17 x 22 cm Weitere Fachgebiete > Physik, Astronomie > Physik Allgemein schnell und portofrei erhältlich bei Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte. Weber’s Planetary Model of the Atom Figure 0.1: Wilhelm Eduard Weber (1804–1891) Foto: Gudrun Wolfschmidt in der Sternwarte in Göttingen 2 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Band 19 Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt Weber’s Planetary Model of the Atom Ed. by Gudrun Wolfschmidt Hamburg: tredition science 2011 Nuncius Hamburgensis Beiträge zur Geschichte der Naturwissenschaften Hg. von Gudrun Wolfschmidt, Geschichte der Naturwissenschaften, Mathematik und Technik, Universität Hamburg – ISSN 1610-6164 Diese Reihe „Nuncius Hamburgensis“ wird gefördert von der Hans Schimank-Gedächtnisstiftung. Dieser Titel wurde inspiriert von „Sidereus Nuncius“ und von „Wandsbeker Bote“. Andre Koch Torres Assis, Karl Heinrich Wiederkehr and Gudrun Wolfschmidt: Weber’s Planetary Model of the Atom. Ed. by Gudrun Wolfschmidt. Nuncius Hamburgensis – Beiträge zur Geschichte der Naturwissenschaften, Band 19. Hamburg: tredition science 2011. Abbildung auf dem Cover vorne und Titelblatt: Wilhelm Weber (Kohlrausch, F. (Oswalds Klassiker Nr. 142) 1904, Frontispiz) Frontispiz: Wilhelm Weber (1804–1891) (Feyerabend 1933, nach S.