Droplet Size
Total Page:16
File Type:pdf, Size:1020Kb
Best Practices for Ground Application 1 Pesticide Spray Drift Series—3 Parts • March 15, 2018 webinar: “Strategies for Managing Pesticide Spray Drift” • Presented by Dr. Greg Kruger, University of Nebraska-Lincoln • Covers fundamentals of pesticide spray particle drift management • Materials available: https://www.epa.gov/reducing-pesticide-drift/strategies-managing- pesticide-spray-drift-webinar-materials • September 27, 2018 webinar: “Best Practices for Aerial Application” • Presented by Br. Bradley Fritz, United States Department of Agriculture • Dr. Greg Kruger joined for the Q+A discussion • Webinar materials will be posted online • Today’s webinar: “Best Practices for Ground Application” • Presented by Dr. Greg Kruger, University of Nebraska-Lincoln • Dr. Bradley Fritz will join for the Q+A discussion 4 Joining us for Q+A discussion • Bradley Fritz, Ph.D • Agricultural engineer and Research Leader, Agricultural Research Service, US Department of Agriculture • Research areas: examining the role of spray nozzles, spray solutions, and operational settings in resulting droplet size of spray; exploring the transport and fate of applied spray under field conditions • Numerous publications: https://www.ars.usda.gov/people- locations/person?person-id=33323 5 Presenter Greg Kruger, Ph.D. • Weed science and pesticide application technology specialist • University of Nebraska-Lincoln, Department of Agronomy and Horticulture • Director of the Pesticide Application Technology Laboratory • Areas of research: droplet size and efficacy, spray drift deposition and canopy penetration, influence of nozzle type, orifice size, spray pressure, and carrier volume rate on spray droplet size • Weed Science Society of America liaison to EPA 6 Best Practices for Ground Application Greg R. Kruger Weed Science and Application Technology Specialist WCREC, North Platte, NE NeOiasMa I I ' 8 Definition of Drift: Movement of spray particles and vapors off-target causing less effective control and possible injury to susceptible vegetation, wildlife, and people. Adapted from National Coalition on Drift Minimization 1997 as adopted from the AAPCO Pesticide Drift Enforcement Policy - March 1991 9 Types of Drift: Vapor Drift - associated with volatilization (gas, fumes) Particle Drift - movement of spray particles during or after the spray application 10 Particle Drift – Big 4 1. Wind Speed 11 Particle Drift – Big 4 1.Wind Speed 2.Boom Height 12 Particle Drift – Big 4 1.Wind Speed 2.Boom Height 3.Distance from Susceptible Vegetation 13 Particle Drift – Big 4 1. Wind Speed 2. Boom Height 3. Distance from Susceptible Vegetation 4. Spray Particle Size 14 Comparison of Nozzles 15 Relationship Between Drift and Efficacy Efficacy Drift reduction 16 Chemical Reactions Spray Tank Pump Shear Mixing and Agitation Equipment Contamination Equipment/Application Atomization Physical Properties Drift Losses Atmospheric Conditions Interception by Non-targets Evaporation Volatilization Impaction Micrometerological Effects Redistribution Reflection, Shatter and Losses Spray and Surface Properties Splash Droplet Size and Kinetic Energy Retention Redistribution Run-off Dynamic Spreading Loss of Active Loss of Diluent Volatilization Spreading and Coalescence Deposit Formation Losses Weathering Absorption and Translocation Redistribution Surface Activity Pick-up and Transport to Encounter Probability Biological Effect the Site-of-Action 17 Ebert et al. 1999 TR Kochia Control 9 DAT with XR, DG, and TF Nozzles at 30 psi (2 bars) Paraquat + Atrazine (0.35 + 0.56 kg/ha) XR Tee Jet DG Tee Jet Turbo Flood Jet 100 80 60 .3 .3 .5 .5 .25 .4 .4 .2 F C M C EC M C EC % Control 40 20 XR DG TF XR DG TF XR DG 0 10 gpa 7.5 gpa 5 gpa 94 L/ha 70 L/ha 47 L/ha 18 Carrier Volume Even at lower retention, large droplets showed uptake & translocation in RR corn Total uptake Root translocation 60 20 48.9% Coarse dose 50 dose 15 Medium 40 35.1% 30.1% Fine recov'd recov'd □ • 30 10 Coarse 20 (Avg 4 + SE) as % as (Avg 4 + SE) Medium 5 10 Fine Root 0 0 Uptake as % as Uptake 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 1 1.5 2 2.5 3 3.5 DAT after Roundup spray (32 oz/a) DAT after Roundup spray (32 oz/a) Feng et al., Weed Science 2003 19 Impact of Nozzle Type on Droplet Retention onDroplet Type Impact ofNozzle Relative fluorescence units (thousands) w en 0 0 0 I I I I ■ )> - ■ C, - n ■ I I I 0 N u, -...J I--" u, 0 u, 0 0 0 0 0 Volume mean diameter (µm) 0 20 Impact of Adjuvant on Droplet Retention 80 1000 A vi"' "'C 60 - - 750 C: B B .,,n, ::::s 0 e .s::::. .::.. C .,, -=QJ... ·c- 1ij ::::s n,E QJ OJ C: 40 - - 500 !a QJ C: OJ n, .,, - QJ QJ - - ... E 0 - QJ ::::s - - ;:;:::: E D ::::s QJ > ~ -..:.n, cu a: 20 - E - 250 0 0 MSO NIS Sili cone coc DRA NONE 21 Field Studies Four locations in Nebraska Bancroft, Clay Center, Courtland, Elba Four replications per location Five planted species Amaranth, Flax, Velvetleaf, Soybean, Corn Five Nozzles plus an Untreated XR11002 (Fine), XR11003 (Fine/Medium), TT11002 (Medium), AIXR11002 (Coarse), AI11002 (Extremely Coarse) 22 Glyphosate Amaranth 100 - ♦ 90 (%) ■ Fine 80 Fine/Medium Efficacy ■ Medium Coarse Extremely Coarse ■70 -------r--------.-------.-----------.-----, 0 50 100 150 200 250 I ■ Droplet• size• (μm) • • Creech et al. 2016 23 Dicamba Amaranth 85 ■ 75 (%) ■ ♦ ~ ◊ ♦ Fine 65 Fine/Medium Efficacy ■ Medium Coarse Extremely Coarse ■55 ---------.---------.-------, I0 100 200 300 ---Droplet size (μm) Creech et al. 2016 24 Fomesafen Amaranth 70 ■ 60 (%) ■ · ◊ ♦ Fine ♦ ♦ 50 Fine/Medium Efficacy ■ Medium Coarse Extremely Coarse ■40 --------r-------.----~------r-----, 0 50 100 150 200 250 I ■ Droplet• size• (μm) • • Creech et al. 2016 25 Fomesafen Flax 95 ■ . ◊ 85 (%) ■ ♦ Fine 75 Fine/Medium Efficacy ■ Medium Coarse Extremely Coarse ♦ ■65 +---------r-------.-------.-----------r-~ ---, 0 50 100 150 200 250 I ■ Droplet• size• (μm) • • Creech et al. 2016 26 Clethodim Corn 55 ■ ◊ 45 (%) ♦ ■ ♦ Fine 35 ♦ Fine/Medium Efficacy ■ Medium ♦ Coarse Extremely Coarse 25 ■ I0 100 200 300 ---Droplet size (μm) Creech et al. 2016 27 Carrier Rate • Herbicides • Soybean Management Field Day • Glyphosate (RoundUp PowerMax) – 3 GPA Locations • Glufosinate (Liberty) – 15 GPA • Lexington, NE • Lactofen (Cobra) – 20 GPA • O’Neill, NE • 2,4-D (Weedone) – 10 GPA • Platte Center, NE • Plots • David City, NE • 10’ x 30’ • Weed Control Ratings taken 14 and 28 DAT 28 Materials and Methods Carrier Application volume Nozzle speed GPA mph 5 XR11001 4 7.5 XR11001 4 10 XR11001 4 15 XR110015 4 20 XR11002 4.8 29 Results Velvetleaf NS 90 A A A A B B BC 5 GPA 60 NS □ 7.5 GPA (%) C □ □ 10 GPA C C ■ 15 GPA Control 20 GPA 30 ■ 0 2,4-D Lactofen Glufosinate Glyphosate 30 Results Amaranth A A A NS 90 NS 60 □ 5 GPA -?fl. □ 7.5 GPA -0 ■ 10 GPA ....,'- C ■ 15 GPA 0 u ■ 20 GPA 30 0 2,4-D Lactofen Glufosinate Glyphosate 31 Lactofen 5 GPA Lactofen 10 GPA 32 300 300 2I 4-D Lactofen 100 100 250 250 - 90 E 90 ::1. ... QI ~o 200 .... 0 80 200 QI ... E .... .!!! 0 u670 70 --control 150 --control 150 60 ---vMD 60 ---vMD so 100 so 100 0 5 7.5 10 15 20 0 475 7.570 9410 14015 187 20 300 300 Glufosinate Glyphosate 100 100 250 250 90 90 E ::1. ~ ... !!.. 80 200 ,2! 200 80 QI 0... .... E C .!!! 8 70 70 0 150 150 --control --control 60 60 ---VMD ---vMD so 100 so 100 0 5 7.5 10 15 20 0 5 7.5 10 15 20 GPA GPA Amaranth 33 Experimental Design • Randomized Complete Block Design with 4 Replications • 10 inch tall Palmer amaranth • 25 Total Treatments: • 2 Carrier Volumes (5 and 20 GPA) • 6 Droplet Sizes (150, 300, 450, 600, 750, and 900 μm) • 2 Herbicides [dicamba (Clarity®) and glufosinate (Liberty®)] • 1 Nontreated Control • Applications were made using a Capstan PinPoint® Pulse-width Modulation (PWM) Sprayer • This allows for flow to be controlled by the relative proportion of time each electronically actuated solenoid valve is open (duty cycle)1 • Duty cycle was demonstrated to have minimal impact on droplet size2,3 1Giles and Comino, 1989. J. of Commercial Vehicles. SAE Trans. 98:237-249 2Butts et al., 2015. Proc. North Cent. Weed Sci. 70:111. Indianapolis, IN 34 3Giles et al., 1996. Precision Agriculture. Proc. of the 3rd International Conference. 729-738. Minneapolis, MN Nozzle type, orifice size, and application pressure combinations for each droplet size treatment. Application Herbicide Carrier volume Droplet size Nozzle pressure gal ac-1 μm PSI glufosinate 5 150 ER 110015 60 glufosinate 5 300 SR 11005 40 glufosinate 5 450 DR 11004 40 glufosinate 5 600 UR 11004 35 glufosinate 5 750 UR 11008 40 glufosinate 5 900 UR 11010 30 glufosinate 20 150 ER 110015 50 glufosinate 20 300 SR 11003 30 glufosinate 20 450 MR 11006 35 glufosinate 20 600 DR 11008 39 glufosinate 20 750 UR 11006 33 glufosinate 20 900 UR 11010 36 Butts et al. 2018 35 Nozzle type, orifice size, and application pressure combinations for each droplet size treatment. Application Herbicide Carrier volume Droplet size Nozzle pressure gal ac-1 μm PSI dicamba 5 150 ER 110015 60 dicamba 5 300 ER 11006 42 dicamba 5 450 SR 11006 35 dicamba 5 600 DR 11004 34 dicamba 5 750 DR 11008 35 dicamba 5 900 UR 11006 40 dicamba 20 150 ER 110015 60 dicamba 20 300 SR 11002 30 dicamba 20 450 MR 11004 39 dicamba 20 600 DR 11005 52 dicamba 20 750 DR 11006 38 dicamba 20 900 UR 11006 35 Butts et al. 2018 36 Best Droplet Size for Biomass % Reduction in Biomass Carrier Volume Reduction from Control 5 GPA 150 μm 80 Dicamba 20 GPA 600 μm 73 5 GPA 300 μm 93 Glufosinate 20 GPA 450 μm 80 • Glufosinate: • For both carrier volumes, 750 and 900 μm droplets were not different from nontreated control for biomass reduction • Dicamba: • For both carrier volumes, 900 μm droplets were not different from nontreated control for biomass reduction Butts et al.