Original Paper

dx.doi.org/10.22093/wwj.2019.148977.2748 Archive of SID 76

Jouranl of Water and Wastewater, Vol. 31, No.2, pp: 76-87 Evaluation of the Concentration of 4-Nonylphenol and Octylphenol Estrogen-like Compounds in Surface Sediments of the South and Southeast Rivers of the Caspian Sea in Mazandaran Province

N. Komaki1, A. R. Riyahi Bakhtiari2

FormerGraduateStudent,DeptofEnvironmentalScience,FacultyofNatural ResourcesandMarineSciences,TarbiatModaresUniversity,Tehran,Iran Prof,DeptofEnvironmentalScience,FacultyofNaturalResourcesand MarineSciences,TarbiatModaresUniversity,Tehran,Iran (CorrespondingAuthor) riahi@modaresacir

(Received Sep. 16, 2018 Accepted July 23, 2019)

To cite this article: Komaki, N., Riyahi Bakhtiari, A. R., 2020. “Evaluation of the concentration of 4-nonylphenol and octylphenol estrogen-like compounds in surface sediments of the south and southeast rivers of the Caspian Sea in Mazandaran Province” Journal of Water and Wastewater, 31(2), 76-87. Doi: 10.22093/wwj.2019.148977.2748. (In Persian)

Abstract Estrogen-like compounds are very important for causing negative effects in humans and animals. These compounds at low concentrations cause negative effects and can be transported through the food chain. Therefore, there is concern about the presence of these pollutants in Caspian coastal waters. In order to determine the concentration of 4- nonylphenol and octylphenol compounds, surface sediment samples from 25 rivers leading to the Caspian Sea were collected in Mazandaran province. After the preparation steps (drying, extraction and column chromatography), the specimens were injected into a mass spectrometer (GC-MS) gas chromatography apparatus. The mean concentration of 4-nonylphenol and octylphenol compounds was determined in the range of 114.43-4681.31 ng/gdw for 4-nonylphenol and 7.26-1281.52 ng/gdw for octylphenol, respectively. Based on the results of this research, stations located in densely populated and urban areas showed higher concentrations than stations located in low-population and rural areas. No significant relationship was found between these compounds and TOC. Therefore, the changes in the concentration of these compounds are not a function of changes in the concentration of TOC in sediments. Therefore, it is expected that the arrival of untreated sewage will control the distribution of these compounds in river water. In general, the results of this study point to the necessity of continuous improvement of sewage treatment systems in Mazandaran province. Keywords: Rivers of Mazandaran Province, Estrogen-like Compounds, 4-Nonylphenol, Octylphenol, TOC

Journal of Water and Wastewater    Vol. 31, No. 2, 2020      www.SID.ir  

dx.doi.org/10.22093/wwj.2019.148977.2748 Archive77 of SID

76-87 :  2   31       P  P!* P P !UT R ) &$ $!*) ,/S "1  GK ( W) J < J < ( &K  0V " F1 F

0x%>'( v1" ,% 3 -vJK  =.*

C1Oa Y* 5B # ,;H 6 5@ ,  C) A 2 8X # >=   ,  ,] ;* 5/ # ,C  # D !E  ,C  # D !E  C1Oa Y* 5B # ,;H 6 5@ ,#2) >F   ,  ,] ;* 5/ # [email protected] (4 JH 5H )

( //  //  )

:!)6" 78 )1  &" &9 : &" ;< ()" <G   0 ZD 8d& , & D \% \#!  \% \CV b#& 0. , .! "47c  I  "  . .  #  ; I .F `a Doi: 10.22093/wwj.2019.148977.2748 ._PCf_ (@) <*= %  <5 07> "F F #& D UZ  ID e <G 

 65 G^3n H%7 8# .# 9 #p ;  % #%" # &d #I# K# G3(  &4 9/# H< H%7 Q …QH # 6 Q@ &Q#- #? .< 9 &#?n )%K@ :E  p 8%!>5 <& &d #I# K# z( $% R7 6Q5 > .  %97#  % j H%7 G^3n &/  ^  . # ; $T 6 &3"/ 6O 5 )BO 8# v" JQT) 6@Q/ ) Q O "# K# @# =X .< G<#  # @ 9/# $T 6  &9 T xh @# &DS/ L/ . Q< FQ $ (GC-MS) &Q ; eQ/ sQ%E Q &# 7 @ )-9/  5 > .(&9/ &# 7 †#9/# . 7 Q Q% j 6#Q jmog/ig ng/gdw  gjj/ji 8% ) D q%   %97#  % j H%7 G^3n 8%-% FEQ Qp# 6Q5 )-9Q# V5 WQX 8Q# @# [" e9 f/#  .< O  %97# 6# gxog/hx ng/gdw  |/xm .Q # Q # 69Q% GQ^3n Q# )< p# &9/ G%>; R7 FE 7 &5 )-9#  GH 6< G%>;X #Q%%b @# &Q QH%7 8Q# GQ^3n #%%b #? . )5 6 # &  …H # TOC H%7 8# G^3n 8% 8%!>5 LO QH%7 8Q# Q@ :Q97 Q ( .)Q %d LMN & ^9# 8# .G% / TOC G^3n ) Q<# # Q@ 9Q/# LMN %d 65R9%/ H  #  N  .V5 WX 8# e9 &37 E  .< 5 T . #

TOC IV 3V *5 IV 3V W I)F* 2 L 58 I# # * ,  2 @ :,$G,  =F

)7 6 % + * ) .(Porte et al., 2006) #3"  07 41  M n  % + <n B 3€ J@I G$ D 0J   ƒ )+ < n  BGJ 4B)  e" 43J 4!B < n  .# H #% )  " O H2  <G   H)     &$  )  9 /9 $  < ; O ) H) # I < ; O ) "  ;  _  B ) * 

2 1 Alkylphenols Endocrine Disrupting Chemicals

Journal of Water and Wastewater    Vol. 31, No. 2, 2020    www.SID.ir   Archive dx.doi.org/10.22093/wwj.2019.148977.2748 of SID ...+ _2) O OA ;.!V +*  78

+ *  ; &$  41 " L/ # )   B *+ œ0$ "4 3J 4!B .(Liu et al., 2011)#  H)+ ,/$ ) (  ; !   * 3 <  H#% *G   ) "  " )!/9 #/=  #3" M\     ; + #3   :  " H#3 5 *  /N "H  H(T 4` "  " H#   n #  n  3$ #>  .(Xu et al., 2008) % N( *%) .(Cherniaev et al., 2016) # %   )  {3 ) + *  )#G C3 ) $ 4B) < )  ) + *  H) Y` *3E"  n  4 3 J 4   x”    +   L/ *G Y#"  D" 2I *   39   43J 4!B + + %)    I   )O ›? .# % S7  # ;  >)  ()  ‘~ ) 43J 4+ ;  #3  S?9 O' ":   + ) › '( + <?%   " E ;" 3   ()  :V  *  ; H)A D"+  #$  #3   {  *  *3E" #3" " H  )3 H) #O ) +  "  ()  ;  ) ; 3" 43J 4!B + .#3  .9  + G3N <&% "# I :?uJ + )   "  ()  ) #+   "D+ H@ ) H#33+ B   39 " @+  *   3+ b )   ; .# % ) "   ; @+ .(Lopez-Espinosa et al., 2009)#   +  " \?I S7   u  *  _ #3"  0  # I "    "B  b ) e43J 4 x” )  œ@3 *  "  ()  ) + *  D3+I *G 3; ) D" 2I ) ) $  " ?+  43J 4 x”  07 < ; O .#3+ #3F )    + I ) 43J4  x” .(Soares et al., 2008)  :?uJ <"D +H @ <b )  <; ) </I C 3N <" * ;  8   + 6 5 `O )  ()  ‘~ ; )   <7 (+ b ( ": ?uJ < ; O ) 43J4+  &  " DV ; S ~Œ 0  :  "    ()  !?I Y | : " ( A` ; 4N  & "  $ Hb) ; H)A     Q  AN {9 ; (,` \ )0 )  # %   " O ) U P+ + *  <#3" f 1 ; [I "   .#%   C$ * : )   '( }G )  Z H7 ; .  )   #33+  Z^  0 *  / _ ) # # % Z #  + < 3 B 4 J 4() ) *J ) ; /9  . (Vazquez-Duhalt et al., 2005) #3")  1 -‘Œ ) )  () ) 4=3 Hb@ ;  •@( c    ) ; 4  + *  <F )  ZI.?O  , u )  @= y 4!% .# #% #&b A" \ # k / $)

1 Xenobiotic 2 4-Nonylphenol 4 3 Grab Van Veen Octylphenol

Journal of Water and Wastewater    Vol. 31, No. 2, 2020    www.SID.ir   Archive dx.doi.org/10.22093/wwj.2019.148977.2748 of SID 2T* +b  :!E  +Rc $;1 79

Fig. 1. The map of the stations studied in the rivers of Mazandaran province # ;  "  ()  ) GB' )  "Hb  @= -- ZJ

)  B ! y Hb)  H#% { 0 7 .#% L3 k / .#")  @  )  "Hb  H)A )  "Hb) .%) 1 Split less B ) Hb) +% H + <!  Q11 .#  4% D" 2I *  ) b ) F"%% Y%* 66 Œ/ŒŒŒy 1)  .7 )  ; < B Nabertherm GmbH ; B " .? 4% D" 2I *  ) H#% Y`  % )  OPR-x‹Œy‘ .#  )0 J < /b  AAA ‘~ŒL .# S .n!/ \ # /+ # <. 0b" <  <.  /$ B IKARV yŒ .#  ) H#33+V Hb)

 & ) .#% S7  H#% #$ 1 l    0" @ 1 Merck 2 3 Capillary Column Surrogate Internal Injection Standard (SIIS)

Journal of Water and Wastewater    Vol. 31, No. 2, 2020    www.SID.ir    Archive dx.doi.org/10.22093/wwj.2019.148977.2748 of SID ...+ _2) O OA ;.!V +*  80

)  " " : )+ s( .n!/ )+ +  .#% .#3" "  \ )0 H# )  "L/ + #% H#"@  !% Hb) ; H)A   H ) <  )+ I * MR ; + " L/ G YO    </+ H#91 \  39   41 / ) < J 7 D"+   .#% H)) !  k *   . . 1 41 ) ; "H)) 1) ) % *G #N) x” + ;#$  .#% Z  .n!/   #N) f/Ri 43J 4 xf +  G YO  0 0b"  /+ ) .? B / ‘Œ ; 43J4+ 43J 4 )) @ •  .#% O #N) e/Ql 43J 4+ +  ; H#% #$ + #% H)A •~:•~ 7   . . . 1 41 )  ) ;

Journal of Water and Wastewater    Vol. 31, No. 2, 2020    www.SID.ir   Archive dx.doi.org/10.22093/wwj.2019.148977.2748 of SID 2T* +b  :!E  +Rc $;1 81

GB' )  "  (  O'   ) 43J 4+ 43J4  x” + )#  YO  L/ *b  x- )P Table 1. Average concentration and standard deviation of 4-nonylphenol and octylphenol compounds in surface sediments of studied rivers Code River name 4-NP±SD OP±SD R1 Nekarood 87.483±24.1406 229.40±116.47 R2 Chinam Dehne 592.72±172.75 97.07±27.15 R3 Tajan 779.90±82.07 228.95±64.46 R4 Siyahrood 2626.55±159.54 434.14±98.41 R5 Talarood 2787.18±974.56 1281.52±122.49 R6 Shazderood 770.38±142.13 206.69±9.45 R7 Babolrood 3283.38±41.11 367.25±18.74 R8 Fereydunkenar 353.87±28.08 59.62±4.21 R9 Sorkhrood 1145.43±115.40 618.03±85.51 R10 Mahmudabad 2591.16±321.04 355.81±11.83 R11 Chapakrood 822.10±325.52 143.40±33.94 R12 Nur 774.84±94.14 466.94±116. 12 R13 Royan 177.71±36.95 13.97±5.58 R14 Kheirood 634.60±180.51 345.01±143.71 R15 Nowshahr 1261.62±237.69 148. 78±35.92 R16 Chalus 2000.61±481.45 284. 39±89.39 R17 Sardabrood 193.24±88.17 33.93±1.85 R18 Hachirood 311.96±88.49 48.05±17.42 R19 Namakabrood 114.43±25.73 7.26±2.12 R20 Kazemrood 729.40±288.92 733.34±171.28 R21 Nashtarood 2430.92±1013.00 329.50±130.60 R22 Cheshmekileh 49.526±31.4681 786.19±3.21 R23 Shirood 2775.39±503.44 912.80±148.04 R24 Chalakrood 667.19±145.07 74.83±23.75 R25 Nesarood 4162.05±241.30 714.80±117.61

.#% )  ‘Œy• 4+ ) '( L/  =  <B ; 3 ; [I .#%  J \ M [   0B  ; 43J4 + 43J4  x” + WU(  V">* 6 " * ) 3G " Y?( *G   I ) #% H)A ) "  ()    ) 43J 4+ 43J 4 x” + L/ *G  .#% H)A e* !  ) ; ; " Hb  ; \ ng/gdw 43J 4 x”  ”•Šy/•y  yy”/”• H) #O ) 4 3 J 4    +  43J4   x” + L/ * b" ng/gdw •  .#% O 43J 4+  y‘Šy/~‘  ‹/‘• b" ; ; " H)) )  .  N ) TOC   y . #$ ) 43J 4+ 43J 4 x” + 0B  ; 4N H)A f*q b" ; < N *   ) l I . H#% H)  B+ 3O3 ; H)A  0 + L/ *G .#% )  "  ()  * ) 43J 4 x” L/  = 

p> 1 ; ; ( Œ/Œ~) "H)) )  . ; 3 ; [I < Analysis of Variance (ANOVA) 2 ANOVA Dunacan •  .#% H)A )3G Y?(   3 Pearson Product-Moment Correlatioin Coefficient 4 Spearman’s Rank Correlation Coefficient (SRCC)

Journal of Water and Wastewater    Vol. 31, No. 2, 2020    www.SID.ir   Archive dx.doi.org/10.22093/wwj.2019.148977.2748 of SID ...+ _2) O OA ;.!V +*  82

/+ @F "  ()  ) ,  43J 4+ 43J4  x” * (p>Œ/Œ~) ) 3G Y?( ) $ H #3") @ 4N  ()  ) + *  0 * + (R5) ) 5 (R22) ; 0$   ZB <)   )  "  ()  <3@ &% " BGJ )  A .#%  3% (R19) )  \ 4N •  ‘ 4€% ) .#% H)A *! ) *b   = ; )  "  ()  I ) ; @+ G3N <   ) 43J 4+ • 4€% ) 43J 4 x” ,+ L/  = ; *  L/ )  A /N 4 9  39  #   D" 2I + L/ * @ . H#% >  )  "  () 

6000 l o

n a e

h 5000 p l

y a n o N - 4000 4 ) n w bc b o d i bc t

g cd / a g r bcd cd t

n 3000 ( n

e de c n o c

e 2000 ef g

a fg r e fg fgh fgh v fgh A 1000 fgh fgh gh gh gh h h h h h 0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 Station Fig. 2. The average concentration of 4-nonylphenol in surface sediments of 25 rivers studied in Mazandaran province # ;  ) GB' )   ()  eQ O'   ) 43J4  xf L/ *b  x0 ZJ

1600 l

o a

n 1400 e h p l y

t 1200 c

o b n )

o 1000 i w t

d bc

a bc g r

/ bc t g

n 800 n e ( c cd n

o de c 600 e def efg g

a efgh efg r efghij efg

e 400 efghi v

A efghij fghij ghij ghij 200 hij ij ij ij j j j 0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25 Station Fig. 3. The average concentration of octylphenol in surface sediments of 25 rivers studied in Mazandaran province # ;  ) GB' )   ()  eQ O'   ) 43J4 + L/ *b  x5 ZJ

Journal of Water and Wastewater    Vol. 31, No. 2, 2020    www.SID.ir   Archive dx.doi.org/10.22093/wwj.2019.148977.2748 of SID 2T* +b  :!E  +Rc $;1 83

)   ) ; "  ()  + Pearl  ()  ,` ) <3; *  ) H#% S7  D" 2I .#% "  ()  *  ) +   ) ,  43J 4 x” 43J 4+ 0 <# %  0 < p/V {3 ) + *  L/ )  A /9 { . H)  ‹ŠŒ‹ng/gdw  ~‰ ‰• ng/gdw  y O' .(Liu et al.,  H)   DV   :?uJ )  C1 G3N  {3 ) +  "  ()  ) D" 2I *  •  .2011)  r=   ; @ ,  + *  0 <#  H#% #      )  n  % "H #3 5  ƒ C1 ) .(Chen et al., 2014) ; ! H#3 5 C3 ; /NJ + #% )#G 4 9 ; tz @  )  " ()  ) + *  /+  = . a `( *  ) H#% +T )  *  & . 43J4 + ; @ ,  43J4  x” #= + )) " @   #3   " +J 0 " D" 2I ; ƒG ) ) 43J 4+   43J 4 x” L/ )  @ ” 4!% 4   9 ; ! 0J  #% DVI r?( <) < % <` ) *  .#") @   )  "  ()  O'      H#% +T   )  " H #3 5 *  C7 ) Z tz + #3" "4 3J4!B S  + H# ; "  ; ,+ S7  "D " 2I  u D" 2I •  . (Yang et al., 2011) ) (   H# 1 #N) ‘Œ 43J 4+ #N) ŠŒ 43J 4 x” .#")  @  &@ U #  " @+   ) H#% .#") a`( ) 43J4   ! B  + 0 /b  ) y‰‰‰ . ) :?uJ A` "#3 J   O ) " 43J 4!B Tyne Tees , `  ) ; "  .#%  H;#    ) ( H# ; "    & ) # %  ;  07 F) ) 43J 4 x” 0 Tees G3N ='3 ) .# #%   C$ :  . +  bB , u <*   H ?9 .# %  4 # ng/gdw  •Œ 43J4+ 0 y•ŒŒ ng/gdw  ‰~    +  ”/y‘ 4 3 J 4   +  ”/”Š 4 3 J 4   x” (LogKo/w) < %) + G3N J@I + Tyne ,` ) •”Œ C7  43J 4+   43J 4 x” @ 4  H#3") @  ŠŒ ng/gdw  •Œ 43J 4 x”  + *  0 " ()  ) @ " L/ H#"@ 7 )   ) .(Lye et al., 1999)  H)  ‘Œng/gdw  ‘ 43J4+

5000 4-Nonylphenol Octylphenol ) w d g /

g 4000 n ( s n o i t

a 3000 r t n e c n o c 2000 e g a r e v

A 1000

0 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 R17 R18 R19 R20 R21 R22 R23 R24 R25

Station Fig. 4. Comparison of the mean concentration of 4-nonylphenol and octylphenol in surface sediments of 25 rivers studied in Mazandaran province # ;  ) GB' )   ()  ‘~ O'   ) 43J4 + 43J4  x” L/ *b   = xi ZJ

Journal of Water and Wastewater    Vol. 31, No. 2, 2020   www.SID.ir    Archive dx.doi.org/10.22093/wwj.2019.148977.2748 of SID ...+ _2) O OA ;.!V +*  84

 ( Z$ Z%>K  Z$ Z%*+* 6E ?2%K,D =t u F:>/2 66 .(Ahel et al., 1994)   )  (TOC) ZK F I(,K   ) 43J 4+ 43J 4 x” L/ #= ‘ . #$ ) C7 ) +    ) & " +J ; ! TOC . H#% H)   =  &$ p/V {3 "  ()  $   + *  <) $ *    Z tz B " H#3 5         )  "  ()  ) + *  L/ " D3+ '  TOC )  ) <# ) +    ) "   ()   3$ H+ ) Han < J ) Seine " ()  .(David et al., #3  C7    #G )  )  ) :  B0  :5   B  H)  @ *F ) Huangpu  " 43J4!B L/ #")  @ )#G " D" 2I 2009)  G3N &% " :?uJ )  . H)  + , :Z$ ) & D= +    ) ) $  TOC 0  .#3" t†  4 9 /$ ; b%) 3@ &% G  ' .(Johnson et al., 1998) )) + *   U   =      ) (  ;  " B; ; @V <G$I "&% ) 43J4 + 43J 4 x” L/ * r   .(Takada et al., #33+  )  "  +  "  ()  .# % H)A I b" ; ; K  Z$Z %*+* 6E ?2%K,D =t u F:>/2 66 #3 O'   )  43J 4+ 43J 4 x” +  I b" ; ; <" H)) )  .  $   b" 4/O  07 .# )+  H;#    ) ’3% >_ •  .#% H)A 43J 4+ 43J 4 x” L/ * ' *G L/ .3+ ) & D= B )  4+ B *+ + )) @ p<Œ/Œ~) )    3 G  P b" + )) @ .(Dong et al., #3_  A    ) 43J4 + 43J4  x” b" .)) ) $ + *  L/ 0 * (r=Œ/••Š .2015) ) "  ! @  C3 b  U5 + *  * .  )  "  () 

# ; " ()    ) 4 3J4 !B + L/ H#% d0  )=  = 60 )P (ng/gdw) &$ p/V {3 ) H#% S7  GB' (  Table 2. Comparison of reported concentrations of alkylphenol compounds in sediments of Mazandaran rivers with some studies in different regions of the world (ng /gdw) Area 4-Nonylphenol Octylphenol Source France, Seine river 22-2087 1-400 (Fenet et al., 2003) South Korea, 46-256 - (Li et al., 2004) Iran, Anzali Wetland 50-29000 10-1260 (Mortazavi et al., 2012) , Huangpu River 119/44 9/49 (Wu et al., 2013) Iran, 25 Mazandaran Rivers 114/43-4681/31 7/26-1281/52 Present study

Journal of Water and Wastewater    Vol. 31, No. 2, 2020    www.SID.ir   Archive dx.doi.org/10.22093/wwj.2019.148977.2748 of SID 2T* +b  :!E  +Rc $;1 85

1400 ) w d g /

g 1200 n ( l o n

e 1000 h p l y t

c 800 O n o i t

a 600 r t n e c

n 400 o c e g a

r 200 e v A 0 0500100015002000250030003500400045005000

Average concentration 4-Nonylphenol (ng/gdw)

Fig. 5. Correlation between the concentration of alkylphenol compounds in sediments of 25 rivers studied in Mazandaran province # ;  ) GB' )   () ‘~   ) 4 3J4 !B + L/ * b" xn ZJ

1400 5000 (a) )

l (b) o w 1200 - n d e 4

g 4000 / h n

g 1000 p o l n i ( y t t l a 3000 )

c 800 r o w t O n d n e e g n 600 h / c 2000 o p i g n l t n o y a ( 400 r n C t o 1000 n N

e 200 c n

0 o 0 10 30 50 70 90 110 C 10 30 50 70 90 110 TOC (mg/g) TOC (mg/g)

Fig. 6. Correlation 4-nonylphenol (a) and octylphenol (b) concentration in surface sediments of 25 rivers leading to Caspian Sea with TOC TOC  0(  )  &3  () eQ O'   ) (b) 43J4+ (a) 43J4  xf L/ b" xN ZJ

{3 *  " ()  4   " H#3 5 )  7 D 0J   ) 43J4   € B  _ * b" Q 4€% ) 89 + " L/ )  n  % +  ƒ . H#% 43J 4 xf L/ * b" * 6E 4=3   #3  5 6 '   Z H7 ; .  ) #3   )!  9 / {3 )    "BGJ D 0J ) + *  L/ .# Zb $  A3 t # % , ='3  3+ b%)   O %#& . N

Journal of Water and Wastewater    Vol. 31, No. 2, 2020    www.SID.ir   Archive dx.doi.org/10.22093/wwj.2019.148977.2748 of SID ...+ _2) O OA ;.!V +*  86

F*)e 6L "L/   = ) 0(  )  &3 "  ()  B G 1 #% 3%_   I 7 D" 2I *    B% "&% ) .)  @  ) r=   ) H#% d0 Hb@ ) G C3 H#€@ ) Hb@ ; ) _  !+ =   ":?uJ <:?uJ A`  #=J /9  kq , b@" 2I . H#% S7  k#  .# %   " + ) H#@ A` •    D" 2I *  S7  _ )J  ;  ) ( €@ *  ) &% :?uJ "  (A` z ¦# .#3   S?9 <# )  0    "  +  :?uJ @  #    {3 .#") D"+ &$  41

References Ahel, M., Giger, W. & Schaffner, C. 1994. Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment-II. Occurrence and transformation in rivers. Water Research, 28(5), 1143-1152. Bakhtiari, A. R., Zakaria, M. P., Yaziz, M. I., Lajis, M. N. H., Bi, X. & Rahim, M. C. A. 2009. Vertical distribution and source identification of polycyclic aromatic hydrocarbons in anoxic sediment cores of Chini Lake, Malaysia: perylene as indicator of land plant-derived hydrocarbons. Applied Geochemistry, 24(9), 1777-1787. Chen, R., Yin, P., Zhao, L., Yu, Q., Hong, A. & Duan, S. 2014. Spatial–temporal distribution and potential ecological risk assessment of nonylphenol and octylphenol in riverine outlets of delta, China. Journal of Environmental Sciences, 26(11), 2340-2347. Cherniaev, A. P., Kondakova, A. S. & Zyk, E. N. 2016. Contents of 4-nonylphenol in surface sea water of Bay (Japan/East Sea). Achievements in the Life Sciences, 10(1), 65-71. David, A., Fenet, H. & Gomez, E. 2009. Alkylphenols in marine environments: distribution monitoring strategies and detection considerations. Marine Pollution Bulletin, 58(7), 953-960. Dong, C. D., Chen, C. W. & Chen, C. F. 2015. Seasonal and spatial distribution of 4-nonylphenol and 4-tert- octylphenol in the sediment of Kaohsiung Harbor, Taiwan. Chemosphere, 134, 588-597. Fenet, H., Gomez, E., Pillon, A., Rosain, D., Nicolas, J. C., Casellas, C. et al. 2003. Estrogenic activity in water and sediments of a French river: contribution of alkylphenols. Archives of Environmental Contamination and Toxicology, 44(1), 1-6. Iida, Y., Ichiba, H., Saigusa, E., Sato, N. & Takayama, M. 2008. Study of endocrine disruptor octylphenol isomers using collision-induced dissociation mass spectrometry. Journal of the Mass Spectrometry Society of Japan, 56(5), 215-222. Johnson, A., White, C., Besien, T. & Jurgens, M. 1998. The sorption potential of octylphenol, a xenobiotic oestrogen, to suspended and bed-sediments collected from industrial and rural reaches of three English rivers. Science of the Total Environment, 210, 271-282. Li, D., Kim, M., Shim, W. J., Yim, U. H., Oh, J. R. & Kwon, Y. J. 2004. Seasonal flux of nonylphenol in Han river, Korea. Chemosphere, 56(1), 1-6. Liu, J., Wang, R., Huang, B., Lin, C., Wang, Y. & Pan, X. 2011. Distribution and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in wild fish species from Dianchi Lake, China. Environmental Pollution, 159(10), 2815-2822.

Journal of Water and Wastewater    Vol. 31, No. 2, 2020   www.SID.ir    Archive dx.doi.org/10.22093/wwj.2019.148977.2748 of SID 2T* +b  :!E  +Rc $;1 87

Lopez Espinosa, M., Freire, C., Arrebola, J., Navea, N., Taoufiki, J., Fernandez, M. et al. 2009. Nonylphenol and octylphenol in adipose tissue of women in Southern Spain. Chemosphere, 76(6), 847-852. Lye, C., Frid, C., Gill, M., Cooper, D. & Jones, D. 1999. Estrogenic alkylphenols in fish tissues, sediments, and waters from the UK Tyne and Tees estuaries. Environmental Science and Technology, 33(7), 1009-1014. Mashinchian Moradi, A., Dashti, A., Fatemi, M. & Aberoumandazar, P. 2012. Study of linear alkyl benzene (LABs) as molecular marker of sewage pollution in Bivalves Mollusk “AnodontaCygnea” in Anzali lagoon. International Journal of Marine Science and Engineering, 2(2), 171-176. Moggs, J. G. 2005. Molecular responses to xenoestrogens: mechanistic insights from toxicogenomics. Toxicology, 213(3), 177-193. Mortazavi, S., Bakhtiari, A. R., Sari, A. E., Bahramifar, N. & Rahbarizade, F. 2012. Phenolic endocrine disrupting chemicals (EDCs) in Anzali wetland, Iran: elevated concentrations of 4-nonylphenol, octhylphenol and bisphenol A. Marine Pollution Bulletin, 64(5), 1067-1073. Nelson, D. W. & Sommers, L. E. 1996. Total carbon, organic carbon, and organic matter. In: Methods of soil analysis part 3-chemical methods, American Society of Agronomy, Madison. Porte, C., Janer, G., Lorusso, L., Ortiz Zarragoitia, M., Cajaraville, M., Fossi, M. et al. 2006. Endocrine disruptors in marine organisms: approaches and perspectives. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology, 143(3), 303-315. Soares, A., Guieysse, B., Jefferson, B., Cartmell, E. & Lester, J. 2008. Nonylphenol in the environment: a critical review on occurrence, fate, toxicity and treatment in wastewaters. Environment International, 34(7), 1033-1049. Takada, H., Ishiwatari, R. & Ogura, N. 1992. Distribution of linear alkylbenzenes (LABs) and linear alkylbenzenesulphonates (LAS) in Tokyo Bay sediments. Estuarine, Coastal and Shelf Science, 35(2), 141- 156. Vazquez Duhalt, R., Marquez Rocha, F., Ponce, E., Licea, A. & Viana, M. T. 2005. Nonylphenol, an integrated vision of a pollutant. Applied Ecology and Environmental Research, 4(1), 1-25. Wu, M., Wang, L., Xu, G., Liu, N., Tang, L., Zheng, J. et al. 2013. Seasonal and spatial distribution of 4-tert- octylphenol, 4-nonylphenol and bisphenol A in the Huangpu River and its , , China. Environmental Monitoring and Assessment, 185(4), 3149-3161. Xu, X., Wang, Y. & Li, X. 2008. Sorption behavior of bisphenol A on marine sediments. Journal of Environmental Science and Health, Part A, 43(3), 239-246. Yang, G. P., Ding, H. Y., Cao, X. Y. & Ding, Q. Y. 2011. Sorption behavior of nonylphenol on marine sediments: effect of temperature, medium, sediment organic carbon and surfactant. Marine Pollution Bulletin, 62(11), 2362-2369. Zgola-Grzeskowiak, A. & Grzeskowiak, T. 2011. Determination of alkylphenols and their short-chained ethoxylates in Polish river waters. International Journal of Environmental Analytical Chemistry, 91(6), 576- 584.

Journal of Water and Wastewater    Vol. 31, No. 2, 2020   www.SID.ir