Nitrogen Contamination in the Yangtze River System, China
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Consequences of Spatially Differentiated Water Pollution Regulation in China
NBER WORKING PAPER SERIES THE CONSEQUENCES OF SPATIALLY DIFFERENTIATED WATER POLLUTION REGULATION IN CHINA Zhao Chen Matthew E. Kahn Yu Liu Zhi Wang Working Paper 22507 http://www.nber.org/papers/w22507 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 August 2016 We would like to thank seminar participants at Xiamen University, Shanghai Jiaotong University, Fudan-UC Young Scholars Conference 2015, Urban Economic Association 2015 Annual Meeting in Portland. We thank Matthew Norris for useful comments. Any remaining errors are our own. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications. © 2016 by Zhao Chen, Matthew E. Kahn, Yu Liu, and Zhi Wang. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. The Consequences of Spatially Differentiated Water Pollution Regulation in China Zhao Chen, Matthew E. Kahn, Yu Liu, and Zhi Wang NBER Working Paper No. 22507 August 2016 JEL No. Q25,Q52 ABSTRACT China’s environmental regulators have sought to reduce the Yangtze River’s water pollution. We document that this regulatory effort has had two unintended consequences. First, the regulation’s spatial differential stringency has displaced economic activity upstream. As polluting activity agglomerates upstream, more Pigouvian damage is caused downstream. -
What Does China Want?
What Does China Want? by Ross Terrill hen China first intrigued America, in the late 18th century, we desired its tea and silk. The American missionaries and traders who reached Canton and other ports did not trouble to reflect Won what China might want of us—nothing more than the Christian gospel and gadgets and tobacco, they seemed to assume. In the years since, Americans sel- dom have had occasion to ponder the question. The historical pattern was that 5 0 Wilson Quarterly Shanghai’s Pudong financial district, sprouting on former farmlands across the Huangpu River from the city’s famous 19th-century Bund, has already established itself as one of Asia’s financial hubs. America influenced China, and that unequal dynamic climaxed in the World War II alliance with Chiang Kai-shek’s shaky Kuomintang gov- ernment against the fascist powers. In the 1940s it was presumed that China desired simply to recov- er from Japanese occupation, poverty, disunity, and corruption. When “our China,” the Nationalist regime of Chiang, went up in a puff of smoke at the end of the 1940s and the Communists took over Beijing, China became The Other. In the acrimonious years after Mao Zedong’s triumph in 1949, China was beyond our influence. But we knew what China wanted: Mao had warned that he would “lean to one side,” and soon he declared, “The Soviet Union’s today is China’s tomorrow.” We were the “imperialists,” and Mao was against us. After Moscow and Beijing quarreled in the early 1960s and the Vietnam War escalated later in the decade, what China wanted became more complex. -
A Garrison in Time Saves Nine
1 A Garrison in Time Saves Nine: Frontier Administration and ‘Drawing In’ the Yafahan Orochen in Late Qing Heilongjiang Loretta E. Kim The University of Hong Kong [email protected] Abstract In 1882 the Qing dynasty government established the Xing’an garrison in Heilongjiang to counteract the impact of Russian exploration and territorial expansion into the region. The Xing’an garrison was only operative for twelve years before closing down. What may seem to be an unmitigated failure of military and civil administrative planning was in fact a decisive attempt to contend with the challenges of governing borderland people rather than merely shoring up physical territorial limits. The Xing’an garrison arose out of the need to “draw in” the Yafahan Orochen population, one that had developed close relations with Russians through trade and social interaction. This article demonstrates that while building a garrison did not achieve the intended goal of strengthening control over the Yafahan Orochen, it was one of several measures the Qing employed to shape the human frontier in this critical borderland. Keywords 1 2 Butha, Eight Banners, frontier administration, Heilongjiang, Orochen Introduction In 1882, the Heilongjiang general’s yamen began setting up a new garrison. This milestone was distinctive because 150 years had passed since the last two were established, which had brought the actual total of garrisons within Heilongjiang to six.. The new Xing’an garrison (Xing’an cheng 興安城) would not be the last one built before the end of the Qing dynasty (1644-1911) but it was notably short-lived, in operation for only twelve years before being dismantled. -
Report on Shanghai Water Projects
Consulate General of Switzerland in Shanghai Commercial Section ISSUE NO.4 July 2003 Report on Shanghai Water Projects ‘A glass of water with half a glass of dirt’ was the vivid picture of the quality of drinking water in Shanghai some 25 years ago. People could still clearly remember the strange taste of the water at that time. Half a century’s industrialisation not only led to Shanghai’s fast development, but also to serious environmental problems. As the Chinese saying goes, a city with a river running through it is a city full of life. But this cannot be applied to Shanghai. Having two heavily polluted rivers running across the city, the Huangpu River and the Suzhou Creek, Shanghai has to deal with two problematic water currants. Back to even five years ago, walking along the famous Bund area was not a pleasant experience because of the bad smell emanating from the Huangpu River. For people living close to the Suzhou Creek, the situation was even worse. People had to keep windows closed day and night to avoid the foul smell from the water in the neighbourhood. Instead of being green and clear, the Creek was black and opaque, full of sewage. The drinking water for urban residents is seriously polluted as it comes mainly from outlying sections of these two rivers - the upper stretch of the Huangpu River near the Songpu Bridge in Minhang District, and the river mouth where the Yangtze River merges with the East China Sea. Faced with the threat of worsening water pollution, and demands of meeting international environmental standards, the Shanghai government decided to adopt measures for improving the environmental situation in the city. -
The Framework on Eco-Efficient Water Infrastructure Development in China
KICT-UNESCAP Eco-Efficient Water Infrastructure Project The Framework on Eco-efficient Water Infrastructure Development in China (Final-Report) General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, China December 2009 Contents 1. WATER RESOURCES AND WATER INFRASTRUCTURE PRESENT SITUATION AND ITS DEVELOPMENT IN CHINA ............................................................................................................................. 1 1.1 CHARACTERISTICS OF WATER RESOURCES....................................................................................................... 6 1.2 WATER USE ISSUES IN CHINA .......................................................................................................................... 7 1.3 FOUR WATER RESOURCES ISSUES FACED BY CHINA .......................................................................................... 8 1.4 CHINA’S PRACTICE IN WATER RESOURCES MANAGEMENT................................................................................10 1.4.1 Philosophy change of water resources management...............................................................................10 1.4.2 Water resources management system .....................................................................................................12 1.4.3 Environmental management system for water infrastructure construction ..............................................13 1.4.4 System of water-draw and utilization assessment ...................................................................................13 -
2012 Wildearth Guardians and Friends of Animals Petition to List
PETITION TO LIST Fifteen Species of Sturgeon UNDER THE U.S. ENDANGERED SPECIES ACT Submitted to the U.S. Secretary of Commerce, Acting through the National Oceanic and Atmospheric Administration and the National Marine Fisheries Service March 8, 2012 Petitioners WildEarth Guardians Friends of Animals 1536 Wynkoop Street, Suite 301 777 Post Road, Suite 205 Denver, Colorado 80202 Darien, Connecticut 06820 303.573.4898 203.656.1522 INTRODUCTION WildEarth Guardians and Friends of Animals hereby petitions the Secretary of Commerce, acting through the National Marine Fisheries Service (NMFS)1 and the National Oceanic and Atmospheric Administration (NOAA) (hereinafter referred as the Secretary), to list fifteen critically endangered sturgeon species as “threatened” or “endangered” under the Endangered Species Act (ESA) (16 U.S.C. § 1531 et seq.). The fifteen petitioned sturgeon species, grouped by geographic region, are: I. Western Europe (1) Acipenser naccarii (Adriatic Sturgeon) (2) Acipenser sturio (Atlantic Sturgeon/Baltic Sturgeon/Common Sturgeon) II. Caspian Sea/Black Sea/Sea of Azov (3) Acipenser gueldenstaedtii (Russian Sturgeon) (4) Acipenser nudiventris (Ship Sturgeon/Bastard Sturgeon/Fringebarbel Sturgeon/Spiny Sturgeon/Thorn Sturgeon) (5) Acipenser persicus (Persian Sturgeon) (6) Acipenser stellatus (Stellate Sturgeon/Star Sturgeon) III. Aral Sea and Tributaries (endemics) (7) Pseudoscaphirhynchus fedtschenkoi (Syr-darya Shovelnose Sturgeon/Syr Darya Sturgeon) (8) Pseudoscaphirhynchus hermanni (Dwarf Sturgeon/Little Amu-Darya Shovelnose/Little Shovelnose Sturgeon/Small Amu-dar Shovelnose Sturgeon) (9) Pseudoscaphirhynchus kaufmanni (False Shovelnose Sturgeon/Amu Darya Shovelnose Sturgeon/Amu Darya Sturgeon/Big Amu Darya Shovelnose/Large Amu-dar Shovelnose Sturgeon/Shovelfish) IV. Amur River Basin/Sea of Japan/Sea of Okhotsk (10) Acipenser mikadoi (Sakhalin Sturgeon) (11) Acipenser schrenckii (Amur Sturgeon) (12) Huso dauricus (Kaluga) V. -
9781107069879 Index.Pdf
Cambridge University Press 978-1-107-06987-9 — The Qing Empire and the Opium War Mao Haijian , Translated by Joseph Lawson , Peter Lavelle , Craig Smith , Introduction by Julia Lovell Index More Information Index 18th Regiment , 286 , 306 35 – 37 , 45 , 119 – 21 , 122 , 209 ; coastal , 34 , 26th Regiment , 205 , 242 , 286 35 – 36 , 38 , 115 ; concealed , 208 ; early- 37th Regiment , 257 warning , 199 ; fortii ed , vi , 36 , 121 , 209 , 37th Regiment of Madras Native Infantry , 206 218 – 20 , 281 , 493 ; sand- bagged , 210 , 218 , 49th Regiment , 205 , 286 232 , 309 55th Regiment , 286 , 306 Battle at Dinghai, showing the British attacks, 98th Regiment , 384 Qing defensive positions, and the walled town of Dinghai , 305 Ackbar , 385 Battle at Guangzhou, showing British Aigun , 500 attacks , 241 American citizens , 452 , 456 – 58 , 460 , 462 , Battle at Humen, showing the British attacks 463 – 64 , 465 – 68 , 475 , 478 , 511 , 513 and Qing defensive positions , 198 American envoys , 458 – 59 , 461 Battle at Wusong, showing British attacks and American merchants , 96 , 97 – 99 , 152 , 218 , Qing defensive positions , 380 227 , 455 – 57 , 503 Battle at Xiamen, showing main British American ships , 103 , 456 – 57 , 467 attacks and Qing defensive positions , 287 American treaties , 478 Battle at Zhapu, showing Qing defensive Amoy , 427 , 452 positions and British attacks , 376 Anhui , 50 – 51 , 88 , 111 , 163 – 64 , 178 , 324 , 328 , Battle at Zhenhai, showing the Qing defensive 331 , 353 – 54 , 358 positions and British attacks , 311 Ansei -
Earth-Science Reviews 197 (2019) 102900
Earth-Science Reviews 197 (2019) 102900 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev From the headwater to the delta: A synthesis of the basin-scale sediment load regime in the Changjiang River T ⁎ Leicheng Guoa,NiSub, , Ian Townenda,c, Zheng Bing Wanga,d,e, Chunyan Zhua,d, Xianye Wanga, Yuning Zhanga, Qing Hea a State Key Lab of Estuarine and Coastal Research, East China Normal University, Dongchuang Road 500, Shanghai 200241, China b State Key Lab of Marine Geology, Tongji University, Siping Road 1239, Shanghai 200090, China c School of Ocean and Earth Sciences, University of Southampton, Southampton, UK d Department of Hydraulic Engineering, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft 2600GA, the Netherlands e Marine and Coastal Systems Department, Deltares, Delft 2629HV, the Netherlands ARTICLE INFO ABSTRACT Keywords: Many large rivers in the world delivers decreasing sediment loads to coastal oceans owing to reductions in Sediment load sediment yield and disrupted sediment deliver. Understanding the sediment load regime is a prerequisite of Source-to-sink sediment management and fluvial and deltaic ecosystem restoration. This work examines sediment load changes Sediment starvation across the Changjiang River basin based on a long time series (1950–2017) of sediment load data stretching from Changjiang the headwater to the delta. We find that the sediment loads have decreased progressively throughout the basin at multiple time scales. The sediment loads have decreased by ~96% and ~74% at the outlets of the upper basin and entire basin, respectively, in 2006–2017 compared to 1950–1985. -
Examining Spatial Patterns of Urban Distribution and Impacts of Physical Conditions on Urbanization in Coastal and Inland Metropoles
remote sensing Article Examining Spatial Patterns of Urban Distribution and Impacts of Physical Conditions on Urbanization in Coastal and Inland Metropoles Dengsheng Lu 1,2,3,* ID , Longwei Li 4, Guiying Li 1,2 ID , Peilei Fan 3, Zutao Ouyang 3 and Emilio Moran 3 ID 1 Fujian Provincial Key Laboratory for Subtropical Resources and Environment, Fujian Normal University, Fuzhou 350007, China; [email protected] 2 School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China 3 Center for Global Change and Earth Observations, Michigan State University, East Lansing, MI 48823, USA; [email protected] (P.F.); [email protected] (Z.O.); [email protected] (E.M.) 4 School of Environmental & Resource Sciences, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; [email protected] * Correspondence: [email protected]; Tel./Fax: +86-571-6374-6366 Received: 15 June 2018; Accepted: 8 July 2018; Published: 11 July 2018 Abstract: Urban expansion has long been a research hotspot and is often based on individual cities, but rarely has research conducted a comprehensive comparison between coastal and inland metropoles for understanding different spatial patterns of urban expansions and driving forces. We selected coastal metropoles (Shanghai and Shenzhen in China, and Ho Chi Minh City in Vietnam) and inland metropoles (Ulaanbaatar in Mongolia, Lanzhou in China, and Vientiane in Laos) with various developing stages and physical conditions for examining the spatiotemporal patterns of urban expansions in the past 25 years (1990–2015). Multitemporal Landsat images with 30 m spatial resolution were used to develop urban impervious surface area (ISA) distributions and examine their dynamic changes. -
Paul Manning T ITLES in the SERIES
R IVER A DVENTURES Travel the Yangtze River from its source on the Qinghai-Tibetan Plateau to its mouth in the East China Sea. On the way, meet the Naxi people Y of Lijiang, watch cormorant fi shermen and take a ANGTZE boat trip through the spectacular Three Gorges. RIVER ADVENTURES takes you on a fascinating journey along the world’s great rivers. Fully illustrated with maps and photographs, each book explores how the river shapes the landscape and lives of the people along its banks. Paul Manning Paul T ITLES IN THE SERIES 978 1 4451 1037 0 978 1 4451 1039 4 978 1 4451 1040 0 978 1 4451 1035 6 978 1 4451 1036 3 978 1 4451 1038 7 ISBN 978-1-4451-1038-7 £13.99 9 781445 110387 Covers final.indd 6 4/1/12 16:41:45 First published 2012 by Franklin Watts Printed in China Hachette Children’s Books 338 Euston Road Franklin Watts is a division of London NW1 3BH Hachette Children’s Books, an Hachette UK company Franklin Watts Australia www.hachette.co.uk Level 17/207 Kent Street Sydney, NSW 2000 Key to images Top cover image: Pudong district, Shanghai © Franklin Watts 2012 Main cover image: Cormorant fishing on the Yangtze Previous page: Cormorant with alligator gar fish All rights reserved This page: The Three Gorges Dam, Hubei province, China. Designed, edited and produced by Paul Manning Maps by Stefan Chabluk Note to Teachers and Parents Proofread and indexed by Alice Harman Every effort has been made to ensure that the websites Produced for Franklin Watts by listed on page 32 are suitable for children, that they are White-Thomson Publishing Ltd of the highest educational value and that they contain no inappropriate or offensive material. -
Evaluation of the Concentration of 4-Nonylphenol and Octylphenol
Original Paper dx.doi.org/10.22093/wwj.2019.148977.2748 Archive of SID 76 Jouranl of Water and Wastewater, Vol. 31, No.2, pp: 76-87 Evaluation of the Concentration of 4-Nonylphenol and Octylphenol Estrogen-like Compounds in Surface Sediments of the South and Southeast Rivers of the Caspian Sea in Mazandaran Province N. Komaki1, A. R. Riyahi Bakhtiari2 FormerGraduateStudent,DeptofEnvironmentalScience,FacultyofNatural ResourcesandMarineSciences,TarbiatModaresUniversity,Tehran,Iran Prof,DeptofEnvironmentalScience,FacultyofNaturalResourcesand MarineSciences,TarbiatModaresUniversity,Tehran,Iran (CorrespondingAuthor) riahi@modaresacir (Received Sep. 16, 2018 Accepted July 23, 2019) To cite this article: Komaki, N., Riyahi Bakhtiari, A. R., 2020. “Evaluation of the concentration of 4-nonylphenol and octylphenol estrogen-like compounds in surface sediments of the south and southeast rivers of the Caspian Sea in Mazandaran Province” Journal of Water and Wastewater, 31(2), 76-87. Doi: 10.22093/wwj.2019.148977.2748. (In Persian) Abstract Estrogen-like compounds are very important for causing negative effects in humans and animals. These compounds at low concentrations cause negative effects and can be transported through the food chain. Therefore, there is concern about the presence of these pollutants in Caspian coastal waters. In order to determine the concentration of 4- nonylphenol and octylphenol compounds, surface sediment samples from 25 rivers leading to the Caspian Sea were collected in Mazandaran province. After the preparation steps (drying, extraction and column chromatography), the specimens were injected into a mass spectrometer (GC-MS) gas chromatography apparatus. The mean concentration of 4-nonylphenol and octylphenol compounds was determined in the range of 114.43-4681.31 ng/gdw for 4-nonylphenol and 7.26-1281.52 ng/gdw for octylphenol, respectively. -
A Case Study for the Yangtze River Basin Yang
RESERVOIR DELINEATION AND CUMULATIVE IMPACTS ASSESSMENT IN LARGE RIVER BASINS: A CASE STUDY FOR THE YANGTZE RIVER BASIN YANG XIANKUN NATIONAL UNIVERSITY OF SINGAPORE 2014 RESERVOIR DELINEATION AND CUMULATIVE IMPACTS ASSESSMENT IN LARGE RIVER BASINS: A CASE STUDY FOR THE YANGTZE RIVER BASIN YANG XIANKUN (M.Sc. Wuhan University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHYLOSOPHY DEPARTMENT OF GEOGRAPHY NATIONAL UNIVERSITY OF SINGAPORE 2014 Declaration I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. ___________ ___________ Yang Xiankun 7 August, 2014 I Acknowledgements I would like to first thank my advisor, Professor Lu Xixi, for his intellectual support and attention to detail throughout this entire process. Without his inspirational and constant support, I would never have been able to finish my doctoral research. In addition, brainstorming and fleshing out ideas with my committee, Dr. Liew Soon Chin and Prof. David Higgitt, was invaluable. I appreciate the time they have taken to guide my work and have enjoyed all of the discussions over the years. Many thanks go to the faculty and staff of the Department of Geography, the Faculty of Arts and Social Sciences, and the National University of Singapore for their administrative and financial support. My thanks also go to my friends, including Lishan, Yingwei, Jinghan, Shaoda, Suraj, Trinh, Seonyoung, Swehlaing, Hongjuan, Linlin, Nick and Yikang, for the camaraderie and friendship over the past four years.