A Case Study for the Yangtze River Basin Yang

Total Page:16

File Type:pdf, Size:1020Kb

A Case Study for the Yangtze River Basin Yang RESERVOIR DELINEATION AND CUMULATIVE IMPACTS ASSESSMENT IN LARGE RIVER BASINS: A CASE STUDY FOR THE YANGTZE RIVER BASIN YANG XIANKUN NATIONAL UNIVERSITY OF SINGAPORE 2014 RESERVOIR DELINEATION AND CUMULATIVE IMPACTS ASSESSMENT IN LARGE RIVER BASINS: A CASE STUDY FOR THE YANGTZE RIVER BASIN YANG XIANKUN (M.Sc. Wuhan University) A THESIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHYLOSOPHY DEPARTMENT OF GEOGRAPHY NATIONAL UNIVERSITY OF SINGAPORE 2014 Declaration I hereby declare that this thesis is my original work and it has been written by me in its entirety. I have duly acknowledged all the sources of information which have been used in the thesis. This thesis has also not been submitted for any degree in any university previously. ___________ ___________ Yang Xiankun 7 August, 2014 I Acknowledgements I would like to first thank my advisor, Professor Lu Xixi, for his intellectual support and attention to detail throughout this entire process. Without his inspirational and constant support, I would never have been able to finish my doctoral research. In addition, brainstorming and fleshing out ideas with my committee, Dr. Liew Soon Chin and Prof. David Higgitt, was invaluable. I appreciate the time they have taken to guide my work and have enjoyed all of the discussions over the years. Many thanks go to the faculty and staff of the Department of Geography, the Faculty of Arts and Social Sciences, and the National University of Singapore for their administrative and financial support. My thanks also go to my friends, including Lishan, Yingwei, Jinghan, Shaoda, Suraj, Trinh, Seonyoung, Swehlaing, Hongjuan, Linlin, Nick and Yikang, for the camaraderie and friendship over the past four years. This thesis could not have been conducted without the unflagging and generous support (both material and intellectual) from the staff of the Changjiang (Yangtze) Water Resources Commission. I thank Drs. Ouyang Zhang, Quanxi Xu and the staff from many dam management offices for their generous assistance for my field work and data collection. I also received invaluable assistance from Ms Lee Poi Leng, Mr. Lee Choon Yoong and Ms Wong Lai Wa and other staff in the Department of Geography. They always guided me in negotiating many of the necessary bureaucratic hurdles and mandates required of students in the Ph.D. program. Their limitless patience and sense of humor allowed me to keep my sanity and levelheadedness. Finally, I would like to express my deep appreciation for my family and friends for their continuous support during my doctoral years. They have been a major source of inspiration and are immensely proud of what I have achieved. II Table of contents Declaration ....................................................................................................................... I Acknowledgements ......................................................................................................... II Table of contents ........................................................................................................... III Summary .................................................................................................................... VIII List of Tables ................................................................................................................... X List of Figures .............................................................................................................. XII List of Acronyms and Symbols ................................................................................. XIX 1 Introduction ............................................................................................................. 1 1.1 General background ....................................................................................... 1 1.2 Justification for the study area ..................................................................... 11 1.3 Objectives and significance ......................................................................... 13 1.4 Research questions and framework of the methodology ............................. 15 1.5 Arrangement and structure of the dissertation ............................................. 16 2 Brief literature review ........................................................................................... 20 2.1 Cumulative impacts assessment at a basin-wide scale ................................ 20 2.2 Dam spatial configuration and impact on water regulation ......................... 25 2.3 Cumulative impacts on sediment trapping ................................................... 28 2.4 Cumulative impacts on river connectivity and river landscape fragmentation 33 2.5 The overlooked role of small reservoirs ...................................................... 39 3 Description of the Yangtze River basin ............................................................... 42 3.1 Geography .................................................................................................... 42 3.2 Climate ......................................................................................................... 47 3.3 Hydrology .................................................................................................... 49 3.4 Geology ........................................................................................................ 55 3.5 Major anthropogenic activities .................................................................... 58 III 3.5.1 Deforestation in the upper Yangtze reach ........................................ 58 3.5.2 Soil and water conservation in the upper Yangtze reach ................. 60 3.5.3 Dam and reservoir construction ....................................................... 62 3.5.4 Land reclamation and lake shrinkage .............................................. 64 4 Reservoir delineation and water regulation assessment .................................... 66 4.1 Introduction .................................................................................................. 66 4.2 Data and methods ......................................................................................... 67 4.2.1 Data sources and data preprocessing ............................................... 67 4.2.2 Water body detection and classification ........................................... 69 4.2.3 Estimating reservoir and lake storage capacity ................................ 74 4.3 Results .......................................................................................................... 77 4.3.1 Quantity and surface area of delineated lakes and reservoirs .......... 77 4.3.2 Spatial distribution of lakes and reservoirs ...................................... 82 4.3.3 Estimated volume of lakes and reservoirs ....................................... 86 4.4 Discussion .................................................................................................... 87 4.4.1 Accuracy assessment ....................................................................... 87 4.4.2 Changes in the lakes and reservoirs ................................................. 94 4.4.3 Potential impacts of the lakes and reservoirs ................................... 99 4.5 Summary and conclusions ......................................................................... 104 5 Estimate of cumulative sediment retention by multiple reservoirs ................ 106 5.1 Introduction ................................................................................................ 106 5.2 Data and methods ....................................................................................... 108 5.2.1 Data sources and data processing .................................................. 108 5.2.2 Sediment yield prediction .............................................................. 111 5.2.3 Estimating reservoir sedimentation for representative reservoirs .. 113 5.2.4 Estimating reservoir sedimentation in a multi-reservoir system .... 114 5.2.5 Estimating reservoir sedimentation in small reservoirs ................. 116 5.3 Results ........................................................................................................ 118 5.3.1 Established multiple regression models for each sub-basins ......... 118 IV 5.3.2 Quantity of cumulative sediment trapping by reservoirs ............... 121 5.3.3 Cumulative sediment trapping in different reaches ....................... 125 5.4 Discussion .................................................................................................. 128 5.4.1 Uncertainty and limitations of the model ....................................... 128 5.4.2 Loss of reservoir storage ................................................................ 132 5.4.3 Complexities in river response to sediment trapping ..................... 136 5.5 Summary and conclusions ......................................................................... 140 6 Assessing the cumulative impacts of large dams on river connectivity and river landscape fragmentation ........................................................................... 142 6.1 Introduction ................................................................................................ 142 6.2 Data and methods ....................................................................................... 145 6.2.1 Data sources and data processing .................................................. 145 6.2.2 Theoretical framework and definition of geospatial metrics ......... 147 6.3 Results .......................................................................................................
Recommended publications
  • Using Stable Isotopes to Unravel and Predict the Origins of Great Cormorants (Phalacrocorax Carbo Sinensis) Overwintering at Kinmen
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY Rapid Commun. Mass Spectrom. 2008; 22: 1235–1244 Published online in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/rcm.3487 Using stable isotopes to unravel and predict the origins of great cormorants (Phalacrocorax carbo sinensis) overwintering at Kinmen Yuan-Mou Chang1y, Kent A. Hatch1*,y, Tzung-Su Ding2**,y, Dennis L. Eggett3, Hsiao-Wei Yuan2 and Beverly L. Roeder1 1Department of Biology, Brigham Young University, 401 WIDB, Provo, UT 84602-5181, USA 2School of Forestry and Resource Conservation, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 106, Taiwan 3Department of Statistics, Brigham Young University, 230 TMCB, Provo, UT 84602-5181, USA Received 16 July 2007; Revised 1 February 2008; Accepted 4 February 2008 The Food and Agricultural Organization of the United Nations and the World Organization for Animal Health have called for a better understanding of the role that migrating birds may play in spreading H5N1 highly pathogenic avian influenza (HPAI). Bird banding, traditionally used in studies of migration, is limited by low recapture rates. Telemetry can only be applied to larger species and a limited number of birds. We show that analyses of multiple stable isotopes (d13C, d15N, d18O and dD) can provide an understanding of the number of breeding populations represented at large congregations of wintering birds, probable locations of these breeding populations, and which breeding populations do not contribute migrants to a wintering site. As Asia is thought to be the origin of many HPAI strains and the center of their evolution, and as bird migration is poorly understood in this part of the world, we recommend that, in addition to banding, satellite, and VHF telemetry, the stable isotope analysis of migration patterns should become a part of long-term surveillance studies.
    [Show full text]
  • The Consequences of Spatially Differentiated Water Pollution Regulation in China
    NBER WORKING PAPER SERIES THE CONSEQUENCES OF SPATIALLY DIFFERENTIATED WATER POLLUTION REGULATION IN CHINA Zhao Chen Matthew E. Kahn Yu Liu Zhi Wang Working Paper 22507 http://www.nber.org/papers/w22507 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts Avenue Cambridge, MA 02138 August 2016 We would like to thank seminar participants at Xiamen University, Shanghai Jiaotong University, Fudan-UC Young Scholars Conference 2015, Urban Economic Association 2015 Annual Meeting in Portland. We thank Matthew Norris for useful comments. Any remaining errors are our own. The views expressed herein are those of the authors and do not necessarily reflect the views of the National Bureau of Economic Research. NBER working papers are circulated for discussion and comment purposes. They have not been peer-reviewed or been subject to the review by the NBER Board of Directors that accompanies official NBER publications. © 2016 by Zhao Chen, Matthew E. Kahn, Yu Liu, and Zhi Wang. All rights reserved. Short sections of text, not to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given to the source. The Consequences of Spatially Differentiated Water Pollution Regulation in China Zhao Chen, Matthew E. Kahn, Yu Liu, and Zhi Wang NBER Working Paper No. 22507 August 2016 JEL No. Q25,Q52 ABSTRACT China’s environmental regulators have sought to reduce the Yangtze River’s water pollution. We document that this regulatory effort has had two unintended consequences. First, the regulation’s spatial differential stringency has displaced economic activity upstream. As polluting activity agglomerates upstream, more Pigouvian damage is caused downstream.
    [Show full text]
  • Hydropower in China
    Hydro power in China DEPARTMENTOFTECHNOLOGYAND BUILTENVIRONMENT Hydropower in China Jie Cai September 2009 Master’s Thesis in Energy System Program Examiner: Alemayehu Gebremedhin Supervisor: Alemayehu Gebremedhin 1 Hydro power in China Acknowledgement This master thesis topic is Hydropower in China. After several months’ efforts, I have finally brought this thesis into existence. Firstly, I appreciated the opportunity to write this topic with my supervisor, Alemayehu Gebremedhin. I would like to thank him for attention and helped me. He is instrumental and without his honest support or guidance, my thesis would not be possible. Secondly, I would like to thank my opponent Yinhao Lu. Thirdly, I would like to thank my uncle, aunt from Australia. They helped me translate the websites and correction grammar. Lastly, I acknowledge with gratitude the contributions of the scholars, presses and journals that I have frequently referred to for relevant first-hand data. I hope that readers would find this thesis somewhat useful. In addition, I promise that there are no copies in my thesis. Jie Cai September 2009 2 Hydro power in China Abstract Today, with the great development of science and technology, it seems to be more and more important to develop renewable energy sources. In this thesis, I would like to introduce something about Chinese water resources. The renewable energy sources can generate electricity. Furthermore, hydropower is the most often used energy in the world. Hydropower develops quickly in recent years in China and it is significant to Chinese industries. The data collection in this paper comes from China Statistics Yearbook and this study draws on the existing literature, which projects Chinese future hydropower development.
    [Show full text]
  • Annex XV Reporting Format 040615
    ANNEX XV RESTRICTION REPORT PROPOSAL FOR A RESTRICTION SUBSTANCE NAME(S): Perfluorohexane sulfonic acid (PFHxS), its salts and PFHxS-related substances IUPAC NAME(S): n.a. EC NUMBER(S): n.a. CAS NUMBER(S): n.a. CONTACT DETAILS OF THE DOSSIER SUBMITTER: Norwegian Environment Agency P.O. Box 5672 Torgarden, N-7485 Trondheim, Norway VERSION NUMBER: 1.1 DATE: 13 June 2019 Annankatu 18, P.O. Box 400, FI-00121 Helsinki, Finland | Tel. +358 9 686180 | Fax +358 9 68618210 | echa.europa.eu ANNEX XV REST RICT ION REPORT – PFHxS, its salts and PFHxS-related substances TABLE OF CONTENTS List of abbreviations ....................................................................................... viii S umma ry ....................................................................................................... 1 Report .......................................................................................................... 7 1. The problem identified ................................................................................... 7 1.1. Hazard, exposure/emissions and risk .............................................................. 7 1.1.1. Identity of the substance(s), and physical and chemical properties.................. 7 1.1.2. Justification for grouping .................................................................... 11 1.1.3. Classification and labelling .................................................................. 14 1.1.4. Hazard assessment........................................................................... 15 1.1.5.
    [Show full text]
  • Seismicity,Structure and Local Stress Fields Around the Downstream of Jinsha River, Western China
    Seismicity,structure and Local Stress Fields around the Downstream of Jinsha River, Western China Zhao Cuiping, Zuo kezhen, Duan Mengqiao, Zhao Ce, Zhou Lianqing The Institute of Earthquake Forecasting, CEA, Beijing, China [email protected] Introduction: In the downstream of Jinsha River, 4 large Focal mechanism and Stress Field dams are built or under construction. Among them, Xiangjiaba CAP and GPAT method are used to invert focal mechanisms and Xiluodu reservoir have been filled since Oct. 2012 and May for earthquakes with magnitude of M≥2.0 from Jan. 2016 to 2013 respectively. Baihetan and Wudongde are under July 2018 recorded by the reservoir network. We obtained construction. In order to monitor earthquake activity around total of 542 focal mechanism solutions. Then we use these reservoirs, a dense seismic network has been operated iterative joint inversion method (IJIM) to invert stress field along the downstream of Jinsha River since Jan. 2016,which for four sub-regions, named as the Xiluodu dam area, the is much denser than before. From Jan. 2016 till July. 2018, Baihetan dam area, the Wudongde dam area, and the more than 10 thousand of earthquakes have been located by Ludian source region, in order to investigate the current the intensive network. It is obvious that small quakes became stress environment and the effect of impoundment. more active and frequent since 2013 and continued till Dec. 2017. Earthquake clustered along the upstream section of Xiluodu, and also along the EW direction branch formed by aftershocks of Aug.3 2014 Ludian M 6.6. a. Before 2013.5(37) b.
    [Show full text]
  • Effects of Climate Variability on Evaporation in Dongping Lake, China, During 2003–2010
    Hindawi Publishing Corporation Advances in Meteorology Volume 2013, Article ID 789290, 11 pages http://dx.doi.org/10.1155/2013/789290 Research Article Effects of Climate Variability on Evaporation in Dongping Lake, China, during 2003–2010 Yuan Rong,1,2 Hongbo Su,1 Renhua Zhang,1 and Zheng Duan3 1 Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands Correspondence should be addressed to Hongbo Su; [email protected] Received 24 May 2013; Accepted 27 August 2013 Academic Editor: Xiangzheng Deng Copyright © 2013 Yuan Rong et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Based on two long-term, hourly (10:30–11:30 and 13:10–14:10) meteorological over-lake observations and data from Shenxian meteorological station, nearby Dongping Lake, the Penman-Monteith equation and reference evaporation ratio algorithm were used to calculate lake evaporation in Dongping Lake, China, from 2003 to 2010. The variation trend of evaporation of Dongping Lake was analyzed, and the influences that caused changes in lake evaporation were also discussed. The results show that (1) the total annual evaporation in Dongping Lake increased
    [Show full text]
  • Chinese Research Perspectives on the Environment, Volume 1 Chinese Research Perspectives: Environment
    Chinese Research Perspectives on the Environment, Volume 1 Chinese Research Perspectives: Environment International Advisory Board Judith Shapiro, American University Guobin Yang, University of Pennsylvania Erika Scull VOLUME 1 The titles published in this series are listed at brill.com/crp Chinese Research Perspectives on the Environment, Volume 1 Urban Challenges, Public Participation, and Natural Disasters Edited by Yang Dongping Friends of Nature LEIDEN • bOSTON 2013 This book is the result of a copublication agreement between Social Sciences Academic Press and Koninklijke Brill NV. These articles were selected and translated into English from the original 《中国 环境发展报告 (2011)》(Zhongguo huanjing fazhan baogao 2011) and《中国 环境发展 报告 (2012)》(Zhongguo huanjing fazhan baogao 2012) with the financial support of the Chinese Fund for the Humanities and Social Sciences. This publication has been typeset in the multilingual “Brill” typeface. With over 5,100 characters covering Latin, IPA, Greek, and Cyrillic, this typeface is especially suitable for use in the humanities. For more information, please see www.brill.com/brill-typeface. ISSN 2212-7496 ISBN 978-90-04-24953-0 (hardback) ISBN 978-90-04-24954-7 (e-book) Copyright 2013 by Koninklijke Brill NV, Leiden, The Netherlands. Koninklijke Brill NV incorporates the imprints Brill, Global Oriental, Hotei Publishing, IDC Publishers and Martinus Nijhoff Publishers. All rights reserved. No part of this publication may be reproduced, translated, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without prior written permission from the publisher. Authorization to photocopy items for internal or personal use is granted by Koninklijke Brill NV provided that the appropriate fees are paid directly to The Copyright Clearance Center, 222 Rosewood Drive, Suite 910, Danvers, MA 01923, USA.
    [Show full text]
  • Nitrogen Contamination in the Yangtze River System, China
    中国科技论文在线 http://www.paper.edu.cn Journal of Hazardous Materials A73Ž. 2000 107±113 www.elsevier.nlrlocaterjhazmat Nitrogen contamination in the Yangtze River system, China Chen Jingsheng ), Gao Xuemin, He Dawei, Xia Xinghui Department of Urban and EnÕironmental Science, Peking UniÕersity, Beijing 100871, People's Republic of China Received 29 July 1998; received in revised form 25 April 1999; accepted 2 October 1999 Abstract The data at 570 monitoring stations during 1990 were studied. The results indicate as follows: Ž.i the contents of nitrogen in the Yangtze mainstream has a raising trend from the upper reaches to the lower reaches;Ž. ii total nitrogen content at a lot of stations during the middle 1980s is 5±10 times more than that during the 1960s;Ž. iii seasonal variances of nitrogen content vary with watersheds; andŽ. iv the difference of nitrogen contamination level is related to the regional population and economic development. q 2000 Elsevier Science B.V. All rights reserved. Keywords: China; The Yangtze River; Nitrogen contamination 1. Introduction The Yangtze River is the largest river in China, and its mainstream is 6300-km long and drainage area is about 1.8=106 km2. The natural and economic conditions vary largely with regions. The degree of nitrogen contamination differs from one area to another. Since 1956, the Water Conservancy Ministry of China had set up more than 900 chemical monitoring stations in succession on 500 rivers all over the country. Within 1958±1990, a quantity of water-quality data, including nitrogen, was accumulated but nobody has studied them systematically.
    [Show full text]
  • Supplement of a Systematic Examination of the Relationships Between CDOM and DOC in Inland Waters in China
    Supplement of Hydrol. Earth Syst. Sci., 21, 5127–5141, 2017 https://doi.org/10.5194/hess-21-5127-2017-supplement © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Supplement of A systematic examination of the relationships between CDOM and DOC in inland waters in China Kaishan Song et al. Correspondence to: Kaishan Song ([email protected]) The copyright of individual parts of the supplement might differ from the CC BY 3.0 License. Figure S1. Sampling location at three rivers for tracing the temporal variation of CDOM and DOC. The average widths at sampling stations are about 1020 m, 206m and 152 m for the Songhua River, Hunjiang River and Yalu River, respectively. Table S1 the sampling information for fresh and saline water lakes, the location information shows the central positions of the lakes. Res. is the abbreviation for reservoir; N, numbers of samples collected; Lat., latitude; Long., longitude; A, area; L, maximum length in kilometer; W, maximum width in kilometer. Water body type Sampling date N Lat. Long. A(km2) L (km) W (km) Fresh water lake Shitoukou Res. 2009.08.28 10 43.9319 125.7472 59 17 6 Songhua Lake 2015.04.29 8 43.6146 126.9492 185 55 6 Erlong Lake 2011.06.24 6 43.1785 124.8264 98 29 8 Xinlicheng Res. 2011.06.13 7 43.6300 125.3400 43 22 6 Yueliang Lake 2011.09.01 6 45.7250 123.8667 116 15 15 Nierji Res. 2015.09.16 8 48.6073 124.5693 436 83 26 Shankou Res.
    [Show full text]
  • China's Looming Water Crisis
    CHINADIALOGUE APRIL 2018 (IMAGE: ZHAOJIANKANG) CHINA’S LOOMING WATER CRISIS Charlie Parton Editors Chris Davy Tang Damin Charlotte Middlehurst Production Huang Lushan Translation Estelle With special thanks to China Water Risk CHINADIALOGUE Suite 306 Grayston Centre 28 Charles Square, London, N1 6HT, UK www.chinadialogue.net CONTENTS Introduction 5 How serious is the problem? 6 The problem is exacerbated by pollution and inefficient use 9 Technical solutions are not sufficient to solve shortages 10 What are the consequences and when might they hit? 14 What is the government doing? 16 What is the government not doing and should be doing? 19 Can Xi Jinping stave off a water crisis? 25 Global implications 28 Global opportunities 30 Annex - Some facts about the water situation in China 32 About the author 37 4 | CHINA’S LOOMING WATER CRISIS SOUTH-NORTH WATER TRANSFER PROJECT (IMAGE: SNWTP OFFICIAL SITE) 5 | CHINA’S LOOMING WATER CRISIS INTRODUCTION Optimism or pessimism about the future success of Xi Jinping’s new era may be in the mind of the beholder. The optimist will point to the Party’s past record of adaptability and problem solving; the pessimist will point out that no longer are the interests of reform pointing in the same directions as the interests of Party cadres, and certainly not of some still powerful vested interests. But whether China muddles or triumphs through, few are predict- ing that problems such as debt, overcapacity, housing bubbles, economic rebalancing, the sheer cost of providing social security and services to 1.4 billion people will cause severe economic disruption or the collapse of Chi- na.
    [Show full text]
  • Acknowledgements
    Acknowledgements First of all, I sincerely thank all the people I met in Lisbon that helped me to finish this Master thesis. Foremost I am deeply grateful to my supervisor --- Prof. Ana Estela Barbosa from LNEC, for her life caring, and academic guidance for me. This paper will be completed under her guidance that helped me in all the time of research and writing of the paper, also. Her profound knowledge, rigorous attitude, high sense of responsibility and patience benefited me a lot in my life. Second of all, I'd like to thank my Chinese promoter professor Xu Wenbin, for his encouragement and concern with me. Without his consent, I could not have this opportunity to study abroad. My sincere thanks also goes to Prof. João Alfredo Santos for his giving me some Portuguese skill, and teacher Miss Susana for her settling me down and providing me a beautiful campus to live and study, and giving me a lot of supports such as helping me to successfully complete my visa prolonging. Many thanks go to my new friends in Lisbon, for patiently answering all of my questions and helping me to solve different kinds of difficulties in the study and life. The list is not ranked and they include: Angola Angolano, Garson Wong, Kai Lee, David Rajnoch, Catarina Paulo, Gonçalo Oliveira, Ondra Dohnálek, Lu Ye, Le Bo, Valentino Ho, Chancy Chen, André Maia, Takuma Sato, Eric Won, Paulo Henrique Zanin, João Pestana and so on. This thesis is dedicated to my parents who have given me the opportunity of studying abroad and support throughout my life.
    [Show full text]
  • The Framework on Eco-Efficient Water Infrastructure Development in China
    KICT-UNESCAP Eco-Efficient Water Infrastructure Project The Framework on Eco-efficient Water Infrastructure Development in China (Final-Report) General Institute of Water Resources and Hydropower Planning and Design, Ministry of Water Resources, China December 2009 Contents 1. WATER RESOURCES AND WATER INFRASTRUCTURE PRESENT SITUATION AND ITS DEVELOPMENT IN CHINA ............................................................................................................................. 1 1.1 CHARACTERISTICS OF WATER RESOURCES....................................................................................................... 6 1.2 WATER USE ISSUES IN CHINA .......................................................................................................................... 7 1.3 FOUR WATER RESOURCES ISSUES FACED BY CHINA .......................................................................................... 8 1.4 CHINA’S PRACTICE IN WATER RESOURCES MANAGEMENT................................................................................10 1.4.1 Philosophy change of water resources management...............................................................................10 1.4.2 Water resources management system .....................................................................................................12 1.4.3 Environmental management system for water infrastructure construction ..............................................13 1.4.4 System of water-draw and utilization assessment ...................................................................................13
    [Show full text]