750 Review Insert
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Radio Wave Spectrum Allocations and Dial Markings on Old Radios – Page 1
Radio Wave Spectrum Allocations and Dial Markings on Old Radios – page 1 When you look at the dial of an old radio you may be confused by the numbers and letters written on the dial. In Australia and New Zealand the dials of Medium Wave radios (often called the Broadcast Band) were usually marked with the station call signs. In Australia, if the dial scale was quite small, a radio would only have the stations in that state marked on the dial. Some radios also had the Frequency and/or the Wave Length marked but this was not common throught period from 1936 to the end of the Australian made radios. Medium Wave Broadcast Band This is the band we tune to when we listen to an AM radio and most countries use frequency allocations between 526.5KHz and 1705KHz. Not all countries use all this allocation. Stereo transmission is possible and has been offered by some stations in the U.S., Canada, Mexico, the Dominican Republic, Paraguay, Australia, The Philippines, Japan, South Korea, South Africa, and France. However, there are multiple standards for AM stereo with C-QUAM being the most common in the United States as well as other countries, and receivers that implement the technologies are relatively rare. The FM Broadcast Band This is the range of frequencies we tune to when we tune a modern FM radio receiver. The international frequency allocation for this band is now 87.5MHz to 108MHz. This is often referred to as the CCIR Band. Over the years some countries have used other frequencies for this band and you will see these on the dials of some old FM radios you may find from time to time. -
BETS-5 Issue 1 November 1, 1996
BETS-5 Issue 1 November 1, 1996 Spectrum Management Broadcasting Equipment Technical Standard Technical Standards and Requirements for AM Broadcasting Transmitters Aussi disponible en français - NTMR-5 Purpose This document contains the technical standards and requirements for the issuance of a Technical Acceptance Certificate (TAC) for AM broadcasting transmitters. A certificate issued for equipment classified as type approved or as technically acceptable before the coming into force of these technical standards and requirements is considered to be a valid and subsisting TAC. A Technical Acceptance Certificate is not required for equipment manufactured or imported solely for re-export, prototyping, demonstration, exhibition or testing purposes. i Table of Contents Page 1. General ...............................................................1 2. Testing and Labelling ..................................................1 3. Standard Test Conditions ..............................................2 4. Transmitting Equipment Standards .....................................3 5. Equipment Requirements ..............................................4 6. RF Carrier Performance Standards .................................... 5 6.1 Power Output Rating .................................................5 6.2 Modulation Capability ................................................5 6.3 Carrier Frequency Stability ............................................6 6.4 Carrier Level Shift ...................................................7 6.5 Spurious Emissions -
Overview of Sensors for Applications
OVERVIEW OF SENSORS FOR APPLICATIONS Deepak Putrevu Head, MTDD/AMHTDG EM SPECTRUM Visible 0.4-0.7μm Near infrared (NIR) 0.7-1.5μm Optical Infrared Shortwave infrared (SWIR) 1.5-3.0μm Mid-wave infrared (MWIR) 3.0-8.0μm (OIR) Region Longwave IR(LWIR)/Thermal IR(TIR) 8.0-15μm Far infrared (FIR) Beyond15μm Gamma Rays X Rays UV Visible NIR SWIR Thermal IR Microwave P-band: ~0.25 – 1 GHz Microwave Region L-band: 1 -2 GHz S-band: 2-4 GHz •Sensors are 24x365 C-band: 4-8 GHz •Signal data characteristics X-band: 8-12 GHz unique to the microwave region of the EM spectrum Ku-band: 12-18 GHz K-band: 18-26 GHz •Response is primarily governed by geometric Ka-band: 26-40 GHz structures and hence V-band: 40 - 75 GHz complementary to optical W-band: 75-110 GHz imaging mm-wave: 110 – 300GHz Basic Interactions between Electromagnetic Energy and the Earth’s Surface Incident Power reflected, ρP Reflectivity: The fractional part of the radiation, P incident radiation that is reflected by the surface. Power absorbed, αP Absorptivity: the fractional part of the = Power emitted, εP incident radiation that is absorbed by the surface. Power transmitted, τP Emissivity: The ratio of the observed flux emitted by a body or surface to that of a P= Pr + Pt + Pa blackbody under the same condition. 푃 푃 푃 푟 + 푡 + 푎 = 1 푃 푃 푃 Transmissivity: The fractional part of the ρ + τ + α =1 radiation transmitted through the medium. At thermal equilibrium, absorption and emission are the same. -
The Market Leader in Over-The-Air Broadcasting Solutions
Connecting What’s Next The Market Leader in Over-the-Air Broadcasting Solutions GatesAir efficiently leverages broadcast spectrum to maximize performance for multichannel TV and radio services, offering the industry’s broadest portfolio to help broadcasters wirelessly deliver and monetize content. With nearly 100 years in broadcasting, GatesAir’s exclusive focus on the over-the-air market helps broadcasters optimize services today and prepare for future revenue-generating business opportunities. All research, development and innovation is driven from the company’s facilities in Mason, Ohio and supported by the long-standing manufacturing center in Quincy, Illinois. GatesAir’s turnkey solutions are built on three pillars: Content Transport, TV Transmission, and Radio Transmission. GatesAir’s globally renowned Intraplex range comprises the Transport pillar, enabling audio contribution and distribution (along with data) over IP and TDM networks. Intraplex solutions provide value for broadcasters for point-to-point (STL, remote broadcast) and multipoint (single-frequency networks, syndicated distribution) connectivity. GatesAir continues to innovate robust and reliable solutions for traditional RF STL connections that can also accommodate IP traffic. In larger transmitter networks, Simulcasting technology ensures all GatesAir transmitters are time-locked for synchronous, over-the-air content delivery. Powering over-the-air analog and digital radio/TV stations and networks worldwide with the industry’s most operationally efficient transmitters is a longtime measure of success for GatesAir. Groundbreaking innovations in low, medium and high- power transmitters reduce footprint, energy use and more to establish the industry’s lowest total cost of ownership. Support for all digital standards and convergence with mobile networks ensure futureproof systems. -
Guidelines for FM Broadcast Standards
TECHNICAL GUIDELINES FOR FM BROADCAST STANDARDS Directorate of Technical Regulations February 2014 94, Kairaba Avenue, P. O. Box 4230 Bakau, The Gambia Tel. (220) 4399601 / 4399606 Fax: (220) 4399905 EMail: [email protected] Website: www.pura.gm Contents 1. DEFINITIONS ........................................................................................................................... 2 2. INTRODUCTION ...................................................................................................................... 3 3. CLASSES OF FM BROADCAST STATIONS ........................................................................ 3 3.1 Public/Commercial FM station .................................................................................................. 3 3.2 Community Fm Stations ............................................................................................................. 3 3.3 Educational/Scientific FM station [Non Commercial] ............................................................... 3 4. FREQUENCY SPACING .......................................................................................................... 3 5. TECHNICAL REQUIREMENTS ............................................................................................. 4 5.1 Safety Requirements ................................................................................................................... 4 5.2 Transmitting Facilities ............................................................................................................... -
Digital Radio Broadcasting Network in the Arctic Region
______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION Digital Radio Broadcasting Network in the Arctic Region Oleg Varlamov, Vladimir Varlamov, Anna Dolgopyatova Moscow Technical University of Communications and Informatics Moscow, Russia [email protected], [email protected], [email protected] Abstract—Successful economic development of the Arctic 81°), where the geostationary orbit (GEO) is observed very low zone is impossible without creating a continuous information field above the horizon and only a small portion of it is visible, that covers its entire territory and is available not only at where the satellites of the required operator are not always stationary objects, but primarily in moving vehicles - ships, cars, present, providing information fields using satellites located on airplanes, etc. This information field must consist from the GEO is not possible. Approximately from 81 ° to the poles transmission of audio information (broadcasting programs), data (weather maps, ice conditions, etc.), navigation signals, alerts and GEO from the surface of the Earth is not visible even information about emergencies, and must be reserved from theoretically. different sources. As a backup system (and in the coming years, The most promising for the formation of the main the main one) it is advisable to use single-frequency digital information field in the Arctic zone can be considered satellite broadcasting networks of the Digital Radio Mondiale standard in the low frequency range. This is the most economical system for systems in highly elliptical (HEO) or low Earth (LEO) orbits. covering remote areas. For the use of these systems, have all the At the same time, the high cost of such systems, the long period necessary regulatory framework and standard high-efficiency of infrastructure deployment and the limited lifespan, combined radio transmitters. -
SBE Comments to FINAL AM Improvement Docket
Before the FEDERAL COMMUNICATIONS COMMISSION Washington, DC 20554 In the Matter of ) ) Revitalization of the AM Radio Service ) MB Docket No. 13-153 To: The Commission COMMENTS OF THE SOCIETY OF BROADCAST ENGINEERS, INCORPORATED 1. The Society of Broadcast Engineers, Incorporated (“SBE”)1 respectfully submits its Comments in response to portions of the Commission’s Notice of Proposed Rulemaking, 13-139, 28 FCC Rcd. 15221, released October 31, 2013 in the above-captioned proceeding (the “Notice”).2 The Notice proposes “to introduce a number of possible improvements to the … AM… radio service and the rules pertaining to AM broadcasting.” The Commission also seeks “to revitalize further the AM band by identifying ways to enhance AM broadcast quality and proposing changes to our technical rules that would enable AM stations to improve their service.” The Commission proposes to “help AM broadcasters better serve the public, thereby advancing the Commission’s fundamental goals of localism, competition, and diversity in broadcast media.” SBE applauds this effort and offers the following comments on some of the technical issues raised in this proceeding. Specifically, SBE offers its comments on four issues that will provide both immediate and long-term relief to AM broadcast licensees: 1 SBE is the national association of broadcast engineers and technical communications professionals, with more than 5,000 members worldwide. 2 The Notice of Proposed Rulemaking was published in the Federal Register November 20, 2013. See, 78 Fed. Reg. 69629. 1 -
Uwìälu @Aiswww@
Nov. 27, 1951 s. s. H|l_|_v 2,576,115 ARRANCEMENT ECR TRANSMIITINC ELECTRIC sICNALs CCCURYINC A wIDE FREQUENCY BAND CvER NARRow BAND CIRCUITS Filed Feb. 4, 1948 Nîä,_ , Emmaüzzwru www@ @waisuwìälu Patented Nov. 27, 1951 ' 2,576,115 UNITED STATES A,lnßxrlszN'r oFFlcE 2,516,115 ARRANGEMENT FOR TRANSMITTING ELEC TRIC SIGNALS OCCUPYING A WIDE FRE QUENCY BAND OVERI NARROW BAND CIR CUITS i Stuart Seymour Hill, London, England, assigner to International Standard Electric Corpora tion, New York, N. Y., a corporation of Dela Application February 4, 1948, Serial No. 6,316 In Great Britain February 7, 1947 13 Claims.` (Cl. 17H4) 2 The present invention relates to electric signal of one or more sections to the frequency range. transmission systems of the kind in which signals passed by the corresponding channel and meansl occupying a relative wide frequency band are for transmitting the frequency shifted sections. transmitted over two or more circuits each of over the respective channels, characterised in which is capable of transmitting only a relative “ this, that the frequency shifting means in thev ly narrow frequency band. case of at least one section comprises two succes The invention has its principal application to sive frequency changes, one of which employs a broadcasting circuits. fixed carrier frequency and the other a carrier It is frequently necessary to send broadcast ma frequency which is adjusted to a value deter terial to the studios by telephone line. Some 10 mined by the cut-off frequency of the correspond times special broadcast channels designed for a ing channel. -
High-Frequency Radiowa Ve Probing of the High-Latitude Ionosphere
RAYMOND A. GREENWALD HIGH-FREQUENCY RADIOWAVE PROBING OF THE HIGH-LATITUDE IONOSPHERE During the past several years, a program of high-frequency radiowave studies of the high-latitude ionosphere has been developed in the APL Space Department. Studies are now being conducted on the formation and motion of high-latitude ionospheric electron density irregularities, using a sophisti cated high-frequency radar system installed at Goose Bay, .Labrador. The radar antenna is also being used to receive signals from a beacon transmitter located at Thule, Greenland. This information is providing a better understanding of the spatial and temporal variability of high-latitude propagation channels and their relationship to disturbances in the magnetosphere-ionosphere system . INTRODUCTION turbances prior to their impingement on the magneto At altitudes above 100 kilometers, the atmosphere sphere is quite limited. Therefore, we still have only of the earth gradually changes from a predominantly limited success in forecasting sudden changes in the neutral medium to an increasingly ionized gas or plas high-latitude ionosphere and consequently in high ma. The ionization is caused chiefly by a combination latitude radiowave propagation. of solar extreme ultraviolet radiation and, at high lati In order for space scientists to obtain a better un tudes, particle precipitation from the earth's magne derstanding of the various interactions occurring tosphere. Because of its ionized nature between 100 among the solar wind, the magnetosphere, and the ion and 1000 kilometers, this part of the atmosphere is osphere, active measurement programs are conduct commonly referred to as the ionosphere. In this re ed in all three regions. -
Portable Shortwave Receivers
Portable Shortwave Receivers ● Longwave, AM, FM and Shortwave ELITE SATELLIT ● VHF Air Band ● HD Radio Reception ● RDS Display ● Superior Sensitivity and Selectivity ● Dual Conversion Design ● Huge 5.7 Inch Backlit Display ● Drift-free Digital Phase Lock Loop ● Direct Frequency and Band Entry ● Single Sideband Synchronous Detector ● Selectable Bandwidths ● High Dynamic Range ● Dual Programmable Clocks ● Dual Event Programmable Timers ● Stereo Line Level Input ● Stereo Line Level Output ● Earphone Jack ● Separate Bass and Treble Controls ● Adjustable AGC: Fast or Slow ● Telescopic Antenna AM/FM/SW ● Battery (4xD) or Included AC Adapter ● Scan and Search ● 1700 Total Memories (500 alphanumeric) ● Deluxe Carry Bag The Elite Satellit is simply the finest full-sized portable in the world. The Elite Satellit is an elegant confluence of performance, features and capabilities. The look, feel and finish of this radio is superb. The solid, quality feel is second to none. The digitally synthesized, dual conversion shortwave tuner covers all long wave, mediums wave (AM) and shortwave frequencies. HD Radio improves audio fidelity and adds additional programming without a subscription fee. Adjacent frequency interference can be minimized or eliminated with a choice of three bandwidths [7.0, 4.0, 2.5 kHz]. The sideband selectable Synchronous AM Detector further minimizes adjacent frequency interference and reduces fading distortion of AM signals. IF Passband Tuning is yet another advanced feature that functions in AM and SSB modes to reject interference. AGC is selectable at fast or slow. High dynamic range permits the detection of weak signals in the presence of strong signals. All this coupled with great sensitivity will bring in stations from every part of the globe. -
Hans Knot International Radio Report April 2016 Welcome to Another
Hans Knot International Radio Report April 2016 Welcome to another edition of the International Radio Report. Thanks all for your e mails, memories, photos, questions and more. Part of the report is what was left after the March edition was totally filled and so let’s go with this edition in which first there’s space for a story I wrote last months after again doing some research: ‘Ronan O’Rahilly, Georgie Fame and the Blue Fames. Where it really went wrong!’ On this subject I’ve written before but let’s go back in time and also add some new facts to it: ‘Was Ronan O’Rahilly the manager of Georgie Fame?’ I can tell you there was a problem with an important instrument. When in April 1964 Granada Television came with an edition of the ‘World in action’ series, which was a production from Michael Hodges, they informed the television public about a new form of Piracy, the watery pirates. Two radio ships bringing music and entertainment under the names of Radio Caroline and Radio Atlanta. Radio Caroline was the first 20th century Pirate off the British coast with programs, at that stage, for 12 hours a day. Interviews with the Caroline people were made in the offices of Queen Magazine in the city of London and included – among others – Jocelyn Stevens and the then 23-year old Irish Ronan O’Rahilly. During this documentary it became known, which we would also read in several newspapers in the then following weeks, that Ronan O’Rahilly had started his radiostation Caroline as he couldn’t get his artists played on stations like Radio Luxembourg. -
Downloaded 09/25/21 09:30 PM UTC
1434 JOURNAL OF HYDROMETEOROLOGY VOLUME 9 NASA Cold Land Processes Experiment (CLPX 2002/03): Local Scale Observation Site ϩ JANET HARDY,* ROBERT DAVIS,* YEOHOON KOH,* DON CLINE, KELLY ELDER,# RICHARD ARMSTRONG,@ HANS-PETER MARSHALL,@ THOMAS PAINTER,& ϩϩ GILLES CASTRES SAINT-MARTIN,** ROGER DEROO,** KAMAL SARABANDI,** TOBIAS GRAF, ϩϩ TOSHIO KOIKE, AND KYLE MCDONALD## *Cold Regions Research and Engineering Laboratory, Engineer Research and Development Center, U.S. Army Corps of Engineers, Hanover, New Hampshire ϩNOAA/NWS/National Operational Hydrologic Remote Sensing Center, Chanhassen, Minnesota #USDA Forest Service, Fort Collins, Colorado @University of Colorado, Boulder, Colorado &University of Utah, Salt Lake City, Utah **University of Michigan, Ann Arbor, Michigan ϩϩUniversity of Tokyo, Tokyo, Japan ##NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California (Manuscript received 12 January 2007, in final form 19 March 2008) ABSTRACT The local scale observation site (LSOS) is the smallest study site (0.8 ha) of the 2002/03 Cold Land Processes Experiment (CLPX) and is located within the Fraser mesocell study area. It was the most intensively measured site of the CLPX, and measurements here had the greatest temporal component of all CLPX sites. Measurements made at the LSOS were designed to produce a comprehensive assessment of the snow, soil, and vegetation characteristics viewed by the ground-based remote sensing instruments. The objective of the ground-based microwave remote sensing was to collect time series of active and passive microwave spectral signatures over snow, soil, and forest, which is coincident with the intensive physical characterization of these features. Ground-based remote sensing instruments included frequency modulated continuous wave (FMCW) radars operating over multiple microwave bandwidths; the Ground-Based Mi- crowave Radiometer (GBMR-7) operating at channels 18.7, 23.8, 36.5, and 89 GHz; and in 2003, an L-, C-, X- and Ku-band scatterometer radar system.