World Receiver Yacht Boy 400 Pe Important Notice

Total Page:16

File Type:pdf, Size:1020Kb

World Receiver Yacht Boy 400 Pe Important Notice WORLD RECEIVER YACHT BOY 400 PE IMPORTANT NOTICE NEED HELP? QUICK SETUP CALL OUR SHORTWAVE HOTLINE (But please read the rest of the manual later!) 1. Insert batteries or connect the included AC adaptor. If, after reading this owner’s manual, you need help learning to operate your YACHT BOY 400 PROFESSIONAL EDITION, call us toll free, Monday through Friday, 8:30 a.m. to 4:30 p.m., 2. Set the DX/LOCAL switch to DX (left side of radio). PST at: 1-800-872-2228 from the U.S. 3. Turn the SSB switch OFF (right side of radio). 1-800-637-1648 from Canada OWNER’S RECORD 4. Fully extend the telescopic antenna. This model is the GRUNDIG YACHT BOY 400 PROFES- 5. With the radio off, press and release the AM button once. SIONAL EDITION, herin after referred to as the YB400PE. The serial number is located on the sticker inside the battery compartment. Refer to this number whenever you call GRUNDIG 6. Immediately press and release the STEP button. regarding this product. “10KHz” now appears in the right side of the display, and will disappear in a few seconds. (See page 4 for more information about this procedure. 7. Turn the radio on by pressing the ON/OFF button. 1 TABLE OF CONTENTS SUBJECT PAGE GRUNDIG TOLL-FREE PHONE NUMBER………………………………………………………….............................. 1 TABLE OF CONTENTS………………………………………………………….……………………............................ 2 YOUR RADIO AT-A-GLANCE………………………………………………….……………………............................. 3 INITIAL SETUP…………………………………………………………………..……………………............................ 4 SUPPLYING POWER…………………………………………………………….……………………............................ 5 GENERAL RADIO OPERATION………………………………………………..……………………............................. 6-8 SHORTWAVE RADIO OPERATION…………………………………………...……………………............................... 9-10 STORING STATIONS INTO MEMORY………………………………………..…………………….............................. 11-12 USING CLOCK, ALARM, AND SLEEP TIMER FEATURES..............................……………………............................. 13-14 MORE INFORMATION ABOUT SHORTWAVE................................................……………………............................... 15-22 SIGNLE SIDEBAND (SSB) AND TWO-WAY COMMUNICATIONS..............……………………............................... 23-27 TIME STATIONS..................................................................................................…………………….............................. 26 TECHNICAL INFORMATION............................................................................…………………….............................. 28 INDEX TO THE RADIO’S CONTROLS (buttons, switches, and sockets)............…………………….............................. 29 2 INITIAL SET-UP When traveling outside of the Americas, use the same procedure IMPORTANT! as above to set the spacing back to 9 kilohertz. SET-UP FOR NORTH AMERICAN USE ADDITIONAL SET-UP INFORMATION North America’s AM stations are exactly 10 kilohertz apart. At the factory, the radio is set up for the 9 kilohertz spacing of 1. On the right side of the radio, set the SSB switch to the stations in Europe. To change this to the 10KHZ spacing: OFF position. This feature is described on page 23. NOTE: the FINE TUNING control, on the right side of 1. With the radio OFF, press and release the AM button the radio, is only activated and needed when the once. YB400PE is in the SSB mode. You do not need to use this control when listening to regular AM, FM, and 2. Immediately press and release the STEP button. “10 shortwave broadcasts. KHz” now appears in the right side of the display and will disappear in a few seconds. On the left side of the radio, set the DX/LOCAL switch to the DX position. DX allows for maximum sensitivity, the preferred This change will be permanently in the radio’s memory as long as position. batteries are not taken out for a period of ten minutes or more. 4 SUPPLYING POWER AND USING EXTERNAL ANTENNAS HOW TO INSTALL BATTERIES NOTE: when using the adaptor, it is OK to leave batteries in the radio. Install six AA alkaline batteries. Follow the diagram imprinted on the back of the radio near the battery compartment. With the HOW TO USE THE INCLUDED “REEL” ANTENNA AND radio face down and the battery compartment toward you: THE EXTERNAL ANTENNA SOCKET (left side of the radio) · The flat ends (-) of the bottom batteries go toward the left. The SW EXT. ANT. Socket is for shortwave antennas. Use it · The flat ends (-) of the top batteries go with the included “reel” antenna. Always fully unroll the “reel” toward the right. antenna and place it as high off the floor as possible, next to the windows. AC ADAPTOR USE PROFESSIONALLY ENGINEERED ANTENNAS The Grundig adaptor supplied with this product is only for use in the Americas, where household AC voltage is 110-120 volts AC. Professionally engineered, outdoor shortwave antennas, available Do not use this adaptor in countries with household AC voltage through specialized retailers, can also be used. Use the SW. EXT. of 220-240 volts AC. ANT. Socket mentioned above. The socket is a 1/8 inch mono socket, used in conjunction with a 1/8 inch mono plug, such as the USING YOUR GRUNDIG AC ADAPTOR plugs often used for mono earphones. If you would like advice 1. Plug the adaptor into a household outlet. about shortwave antennas, please call Grundig technical support 2. Insert plug into the radio’s DC 9 V socket. at 1-800-872-2228 for U.S. and 1-800-637-1648 for Canada. 5 GENERAL RADIO OPERATION HOW TO TURN THE RADIO ON AND OFF HOW TO USE THYE WIDE/NARROW SWITCH (left side of radio) Press the ON/OFF button. Experiment with this switch and let your ears be your guide. HOW TO LISTEN TO YOUR LOCAL AM STATIONS WIDE gives the best audio fidelity; NARROW best minimizes interference from other nearby stations. This switch is used for 1. On the YB 400PE, the AM broadcast band is called AM, shortwave, and longwave listening. medium wave. When you are listening to AM, the letters “MW” appear in the display. HOW TO LISTEN TO YOUR LOCAL FM STATIONS 2. Press the ON/OFF button to turn the radio on. 3. Press the AM button several times, until MW appears 1. Press the FM Button. near the center of the display. 2. Automatically tune using the AUTO TUNING button. 4. If “STEP” appears in the display, press the STEP button The radio will automatically stop on stations. A quick to choose 10 KHz tuning rate. press-and-release tunes up-frequency; a long press- 5. Automatically tune using the AUTO TUNING button. and-release tunes down-frequency. The radio will automatically stop on stations. A quick 3. Manually tune using the TUNING BUTTONS. press-and-release tunes up-frequency; a long press-and- release tunes down-frequency. 6. Manually tune using the tuning button. 6 HOW TO USE THE STEREO/MONO SWITCH (left side of button finalizes the entry. Be sure to include the decimal point in radio). FM frequencies. Any kind of frequency may be entered regard- less of what kind of frequency you are presently tuned to, e.g. For true stereo reproduction in FM, select STEREO when you you can enter an FM frequency even if you are presently in use earphones or headphones. When STEREO is selected, and shortwave. the broadcast is in stereo, two circles appear above and to the right of the frequency in the display. Use the MONO position AM STATION EXAMPLE: to tune the frequency 810 kilohertz whenver reception is poor or marginal. in the AM band, press 8 1 0 , then press the FREQU./METER button. HOW TO USE THE TONE SWITCH FM STATION EXAMPLE: to tune the frequency 105.7 mega- Experiment and let your ears judge which position, HIGH or hertz in the FM band, press 1 0 5 . 7, then press the FREQU./ LOW, you like best. METER button. Be sure to include the decimal point in FM frequencies. DIRECT FREQUENCY ENTRY SHORTWAVE STATION EXAMPLE: to tune the frequency If you know the exact frequency of the station you want to hear, 5975 kilohertz in the shortwave 49 meter band, press 5975 then directly enter it using the keypad and immediately press the the FREQU./METER button. FREQU./METER BUTTON. Pressing the FREQU./METER 7 HOW TO USE THE STEP BUTTON When the radio is off: Pressing the LOCK button locks all keys. This will keep the radio from accidentally turning on when packed In AM (MW), SW, and LW (see below), the STEP button in a briefcase, etc. When you want to listen to your radio, press provides selection of the best tuning steps, in kilohertz. This LOCK and then the ON/OFF switch. button is not functional in FM. The tuning step rate is indicated in the lower right of the display, e.g. “STEP 5”. Use these guidelines: HOW TO USE THE AM BUTTON’S LAST STATION MEMORY FEATURE AM (MW): 10 KHz in the Americas; 9 KHz outside of the Americas Pressing the AM button over and over steps through the last station tuned in MW, SW and LW. LW (longwave): 9 KHz for broadcast stations. Note: You will probably not hear any stations in the Americas, as LW is not used HOW TO USE THE VOLUME CONTROL KNOB for broadcast stations. It is used in Europe and other parts of the world for broadcasts to those areas. Use this to control the loudness of the radio. SSB: 1KHz HOW AND WHEN TO USE THE RESET FEATURE HOW TO USE THE LOCK BUTTON If the radio operates erratically, gently poke an opened paper clip into the RESET hole on the front of the radio. Normal operation When lock is on, the word LOCK appears in the upper right area may be restored. Note that this procedure erases all memories of the display. Using this feature has no effect on alarm functions. and resets the clock When the radio is on: Pressing the LOCK button locks all keys except the ON/OFF button and the SNOOZE button. 8 HOW TO LISTEN TO SHORTWAVE STATIONS For example, the 19 meter shortwave band encompasses the frequency range of 15100 to 15600 kilohertz. The band chart If you already know the specific frequency of a shortwave station, on the back of the YB400PE shows the frequency range enter it, using the direct frequency entry technique described for each band.
Recommended publications
  • A Brief History of Radio Broadcasting in Africa
    A Brief History of Radio Broadcasting in Africa Radio is by far the dominant and most important mass medium in Africa. Its flexibility, low cost, and oral character meet Africa's situation very well. Yet radio is less developed in Africa than it is anywhere else. There are relatively few radio stations in each of Africa's 53 nations and fewer radio sets per head of population than anywhere else in the world. Radio remains the top medium in terms of the number of people that it reaches. Even though television has shown considerable growth (especially in the 1990s) and despite a widespread liberalization of the press over the same period, radio still outstrips both television and the press in reaching most people on the continent. The main exceptions to this ate in the far south, in South Africa, where television and the press are both very strong, and in the Arab north, where television is now the dominant medium. South of the Sahara and north of the Limpopo River, radio remains dominant at the start of the 21St century. The internet is developing fast, mainly in urban areas, but its growth is slowed considerably by the very low level of development of telephone systems. There is much variation between African countries in access to and use of radio. The weekly reach of radio ranges from about 50 percent of adults in the poorer countries to virtually everyone in the more developed ones. But even in some poor countries the reach of radio can be very high. In Tanzania, for example, nearly nine out of ten adults listen to radio in an average week.
    [Show full text]
  • Overview of Sensors for Applications
    OVERVIEW OF SENSORS FOR APPLICATIONS Deepak Putrevu Head, MTDD/AMHTDG EM SPECTRUM Visible 0.4-0.7μm Near infrared (NIR) 0.7-1.5μm Optical Infrared Shortwave infrared (SWIR) 1.5-3.0μm Mid-wave infrared (MWIR) 3.0-8.0μm (OIR) Region Longwave IR(LWIR)/Thermal IR(TIR) 8.0-15μm Far infrared (FIR) Beyond15μm Gamma Rays X Rays UV Visible NIR SWIR Thermal IR Microwave P-band: ~0.25 – 1 GHz Microwave Region L-band: 1 -2 GHz S-band: 2-4 GHz •Sensors are 24x365 C-band: 4-8 GHz •Signal data characteristics X-band: 8-12 GHz unique to the microwave region of the EM spectrum Ku-band: 12-18 GHz K-band: 18-26 GHz •Response is primarily governed by geometric Ka-band: 26-40 GHz structures and hence V-band: 40 - 75 GHz complementary to optical W-band: 75-110 GHz imaging mm-wave: 110 – 300GHz Basic Interactions between Electromagnetic Energy and the Earth’s Surface Incident Power reflected, ρP Reflectivity: The fractional part of the radiation, P incident radiation that is reflected by the surface. Power absorbed, αP Absorptivity: the fractional part of the = Power emitted, εP incident radiation that is absorbed by the surface. Power transmitted, τP Emissivity: The ratio of the observed flux emitted by a body or surface to that of a P= Pr + Pt + Pa blackbody under the same condition. 푃 푃 푃 푟 + 푡 + 푎 = 1 푃 푃 푃 Transmissivity: The fractional part of the ρ + τ + α =1 radiation transmitted through the medium. At thermal equilibrium, absorption and emission are the same.
    [Show full text]
  • Analogue & Digital Radio Worldwide
    Analogue & Digital Radio Worldwide MASS COMMUNICATION VIA SHORTWAVE HAS UNIQUE ADVANTAGES EVEN IN THE INTERNET AGE Global radio transmission via shortwave How it works Advantages of Shortwave Radio Simple, non-discriminatory reception Shortwave radio is radio transmission › Analogue or digital radio with of information on portable end user using shortwave radio frequencies, gen- one transmitter around the globe devices, independently from network erally 3.9–26.1 MHz (75–11 meter-band), › Audio transmission and data- providers and technical infrastructure: just above the medium-wave AM broad- transfer are possible These are the unique features which cast band. Shortwaves are directed at continue to make shortwave an impor- an angle into the sky can › Flexible transmission booking tant form of mass media. Therefore be reflected back to earth at great (daily, weekly, monthly or on- shortwave is an important platform for distances, beyond the horizon. Short- demand) public and commercial radio broad- wave radio is usually used for broad- › Reach thousands of people with casters as well as political and religious casting voice and music to shortwave one transmitter organisations to distribute their pro- listeners over entire continents or even grammes. larger areas. › Signals are hardly to disturb compared to Internet or satellite IONOSPHERE › Easy to receive with low-cost receivers SKYWAVE TRANSMITTER RECEIVER Shortwave stations of our partner service providers around the globe From Germany to the whole world › For providers of radio programmes intended for reception around the globe, Media Broadcast offers comprehensive consulting services and customised solutions for broadcasting signals via shortwave. We offer all required services- from one source, from IT-supported calculation of the desired transmission parameters and coordination of the suitable frequencies to technical broadcasting of the signals via our shortwave station in Nauen near Berlin.
    [Show full text]
  • Digital Radio Broadcasting Network in the Arctic Region
    ______________________________________________________PROCEEDING OF THE 24TH CONFERENCE OF FRUCT ASSOCIATION Digital Radio Broadcasting Network in the Arctic Region Oleg Varlamov, Vladimir Varlamov, Anna Dolgopyatova Moscow Technical University of Communications and Informatics Moscow, Russia [email protected], [email protected], [email protected] Abstract—Successful economic development of the Arctic 81°), where the geostationary orbit (GEO) is observed very low zone is impossible without creating a continuous information field above the horizon and only a small portion of it is visible, that covers its entire territory and is available not only at where the satellites of the required operator are not always stationary objects, but primarily in moving vehicles - ships, cars, present, providing information fields using satellites located on airplanes, etc. This information field must consist from the GEO is not possible. Approximately from 81 ° to the poles transmission of audio information (broadcasting programs), data (weather maps, ice conditions, etc.), navigation signals, alerts and GEO from the surface of the Earth is not visible even information about emergencies, and must be reserved from theoretically. different sources. As a backup system (and in the coming years, The most promising for the formation of the main the main one) it is advisable to use single-frequency digital information field in the Arctic zone can be considered satellite broadcasting networks of the Digital Radio Mondiale standard in the low frequency range. This is the most economical system for systems in highly elliptical (HEO) or low Earth (LEO) orbits. covering remote areas. For the use of these systems, have all the At the same time, the high cost of such systems, the long period necessary regulatory framework and standard high-efficiency of infrastructure deployment and the limited lifespan, combined radio transmitters.
    [Show full text]
  • Digitalization of Radio Through DRM Standard on Mediumwave And
    ISSN: 2277-3754 ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 9, March 2014 Digitalization of Radio through DRM Standard on Mediumwave and Shortwave Branimir Jaksic, Mile Petrovic, Petar Spalevic, Ratko Ivkovic, Sinisa Minic University of Prishtina, Faculty of Technical Sciences, Kosovska Mitrovica, Serbia University of Prishtina, Teachers College, Leposavic, Serbia areas where analog technology AM (amplitude modulation) Abstract— this paper work offers an overview of DRM was used. It is planned that AM should be replaced with standards used in digitization of radio on medium and short waves digital technology which is similar to technologies DAB and in the world. Firstly, it provides the raw characteristics of DRM DVB-T (all of these listed technologies use OFDM technology and its working principle, with a special focus on audio coding. After that, the state of DRM transmissions in modulation) [3]. The primary purpose of DRM technology is February 2014 is given. Also it gives an summary of radio stations for transfer of the audio content. With this basic purpose, which broadcast the program using DRM technology (country DRM also supports the transfer of some multimedia content and language transmission). Broadcasting areas of radio stations with lower transmission capacity: are also provided, as well as the number of active DRM - DRM text messages; frequencies by regions of the world, for each radio station - EPG (Electronic Program Guide); separately. Then, a map of DRM transmitters in the world is - Information text services (Journaline text based shown, with their main characteristics. information service); - Transmission frames (Slideshow); Index Terms—DRM, frequencie, radio channel, transmitters.
    [Show full text]
  • High-Frequency Radiowa Ve Probing of the High-Latitude Ionosphere
    RAYMOND A. GREENWALD HIGH-FREQUENCY RADIOWAVE PROBING OF THE HIGH-LATITUDE IONOSPHERE During the past several years, a program of high-frequency radiowave studies of the high-latitude ionosphere has been developed in the APL Space Department. Studies are now being conducted on the formation and motion of high-latitude ionospheric electron density irregularities, using a sophisti­ cated high-frequency radar system installed at Goose Bay, .Labrador. The radar antenna is also being used to receive signals from a beacon transmitter located at Thule, Greenland. This information is providing a better understanding of the spatial and temporal variability of high-latitude propagation channels and their relationship to disturbances in the magnetosphere-ionosphere system . INTRODUCTION turbances prior to their impingement on the magneto­ At altitudes above 100 kilometers, the atmosphere sphere is quite limited. Therefore, we still have only of the earth gradually changes from a predominantly limited success in forecasting sudden changes in the neutral medium to an increasingly ionized gas or plas­ high-latitude ionosphere and consequently in high­ ma. The ionization is caused chiefly by a combination latitude radiowave propagation. of solar extreme ultraviolet radiation and, at high lati­ In order for space scientists to obtain a better un­ tudes, particle precipitation from the earth's magne­ derstanding of the various interactions occurring tosphere. Because of its ionized nature between 100 among the solar wind, the magnetosphere, and the ion­ and 1000 kilometers, this part of the atmosphere is osphere, active measurement programs are conduct­ commonly referred to as the ionosphere. In this re­ ed in all three regions.
    [Show full text]
  • Implementation Considerations for the Introduction and Transition to Digital Terrestrial Sound and Multimedia Broadcasting
    Report ITU-R BS.2384-0 (07/2015) Implementation considerations for the introduction and transition to digital terrestrial sound and multimedia broadcasting BS Series Broadcasting service (sound) ii Rep. ITU-R BS.2384-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Portable Shortwave Receivers
    Portable Shortwave Receivers ● Longwave, AM, FM and Shortwave ELITE SATELLIT ● VHF Air Band ● HD Radio Reception ● RDS Display ● Superior Sensitivity and Selectivity ● Dual Conversion Design ● Huge 5.7 Inch Backlit Display ● Drift-free Digital Phase Lock Loop ● Direct Frequency and Band Entry ● Single Sideband Synchronous Detector ● Selectable Bandwidths ● High Dynamic Range ● Dual Programmable Clocks ● Dual Event Programmable Timers ● Stereo Line Level Input ● Stereo Line Level Output ● Earphone Jack ● Separate Bass and Treble Controls ● Adjustable AGC: Fast or Slow ● Telescopic Antenna AM/FM/SW ● Battery (4xD) or Included AC Adapter ● Scan and Search ● 1700 Total Memories (500 alphanumeric) ● Deluxe Carry Bag The Elite Satellit is simply the finest full-sized portable in the world. The Elite Satellit is an elegant confluence of performance, features and capabilities. The look, feel and finish of this radio is superb. The solid, quality feel is second to none. The digitally synthesized, dual conversion shortwave tuner covers all long wave, mediums wave (AM) and shortwave frequencies. HD Radio improves audio fidelity and adds additional programming without a subscription fee. Adjacent frequency interference can be minimized or eliminated with a choice of three bandwidths [7.0, 4.0, 2.5 kHz]. The sideband selectable Synchronous AM Detector further minimizes adjacent frequency interference and reduces fading distortion of AM signals. IF Passband Tuning is yet another advanced feature that functions in AM and SSB modes to reject interference. AGC is selectable at fast or slow. High dynamic range permits the detection of weak signals in the presence of strong signals. All this coupled with great sensitivity will bring in stations from every part of the globe.
    [Show full text]
  • Hans Knot International Radio Report April 2016 Welcome to Another
    Hans Knot International Radio Report April 2016 Welcome to another edition of the International Radio Report. Thanks all for your e mails, memories, photos, questions and more. Part of the report is what was left after the March edition was totally filled and so let’s go with this edition in which first there’s space for a story I wrote last months after again doing some research: ‘Ronan O’Rahilly, Georgie Fame and the Blue Fames. Where it really went wrong!’ On this subject I’ve written before but let’s go back in time and also add some new facts to it: ‘Was Ronan O’Rahilly the manager of Georgie Fame?’ I can tell you there was a problem with an important instrument. When in April 1964 Granada Television came with an edition of the ‘World in action’ series, which was a production from Michael Hodges, they informed the television public about a new form of Piracy, the watery pirates. Two radio ships bringing music and entertainment under the names of Radio Caroline and Radio Atlanta. Radio Caroline was the first 20th century Pirate off the British coast with programs, at that stage, for 12 hours a day. Interviews with the Caroline people were made in the offices of Queen Magazine in the city of London and included – among others – Jocelyn Stevens and the then 23-year old Irish Ronan O’Rahilly. During this documentary it became known, which we would also read in several newspapers in the then following weeks, that Ronan O’Rahilly had started his radiostation Caroline as he couldn’t get his artists played on stations like Radio Luxembourg.
    [Show full text]
  • Downloaded 09/25/21 09:30 PM UTC
    1434 JOURNAL OF HYDROMETEOROLOGY VOLUME 9 NASA Cold Land Processes Experiment (CLPX 2002/03): Local Scale Observation Site ϩ JANET HARDY,* ROBERT DAVIS,* YEOHOON KOH,* DON CLINE, KELLY ELDER,# RICHARD ARMSTRONG,@ HANS-PETER MARSHALL,@ THOMAS PAINTER,& ϩϩ GILLES CASTRES SAINT-MARTIN,** ROGER DEROO,** KAMAL SARABANDI,** TOBIAS GRAF, ϩϩ TOSHIO KOIKE, AND KYLE MCDONALD## *Cold Regions Research and Engineering Laboratory, Engineer Research and Development Center, U.S. Army Corps of Engineers, Hanover, New Hampshire ϩNOAA/NWS/National Operational Hydrologic Remote Sensing Center, Chanhassen, Minnesota #USDA Forest Service, Fort Collins, Colorado @University of Colorado, Boulder, Colorado &University of Utah, Salt Lake City, Utah **University of Michigan, Ann Arbor, Michigan ϩϩUniversity of Tokyo, Tokyo, Japan ##NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California (Manuscript received 12 January 2007, in final form 19 March 2008) ABSTRACT The local scale observation site (LSOS) is the smallest study site (0.8 ha) of the 2002/03 Cold Land Processes Experiment (CLPX) and is located within the Fraser mesocell study area. It was the most intensively measured site of the CLPX, and measurements here had the greatest temporal component of all CLPX sites. Measurements made at the LSOS were designed to produce a comprehensive assessment of the snow, soil, and vegetation characteristics viewed by the ground-based remote sensing instruments. The objective of the ground-based microwave remote sensing was to collect time series of active and passive microwave spectral signatures over snow, soil, and forest, which is coincident with the intensive physical characterization of these features. Ground-based remote sensing instruments included frequency modulated continuous wave (FMCW) radars operating over multiple microwave bandwidths; the Ground-Based Mi- crowave Radiometer (GBMR-7) operating at channels 18.7, 23.8, 36.5, and 89 GHz; and in 2003, an L-, C-, X- and Ku-band scatterometer radar system.
    [Show full text]
  • AN1597 Longwave Radio Data Decoding Using an HC11 and an MC3371
    Freescale Semiconductor, Inc... microprocessor used for decoding is the MC68HC(7)11 while microprocessor usedfordecodingisthe MC68HC(7)11 2023. and 1995 between distinguish Itisnotpossible to 2022. and thiscanbeusedtocalculate ayearintherange1995to beworked out cyclecan,however, leap–year/year–start–day data.Thepositioninthe28–year available andcannotbeuniquelydeterminedfromthe transmitted and yeartype)intoday–of–monthmonth.Theisnot dateinformation(day–of–week,weeknumber transmitted the form.Themicroprocessorconverts hexadecimal displayed whilst allincomingdatacanbedisplayedin In thisapplication,timeanddatecanbepermanently standards. Localtimevariation(e.g.BST)isalsotransmitted. provides averyaccurateclock,traceabletonational Freescale AMCU ApplicationsEngineering Topping Prepared by:P. This documentcontains informationonaproductunder development. This to thecompanyleasingitforuseinaspecificapplication. available blocks areusedcommerciallywhereeachblockis other 0isusedfortimeanddate(andfillerdata)whilethe Type purpose.There are16datablocktypes. used foradifferent countriesbuthasamuchlowerdatarateandis European with theRDSdataincludedinVHFradiosignalsmany aswelltheaudiosignal.Thishassomesimilarities data using an HC11 and Longwave an Radio MC3371 Data Decoding Figure 1showsablock diagramoftheapplication; Figure data is transmitted every minuteontheand Time The BBC’s Radio4198kHzLongwave transmittercarries The BBC’s Ltd.,EastKilbride RF AMPLIFIERDEMODULATOR FM BF199 FILTER/INT.: LM358 FILTER/INT.: AMP/DEMOD.: MC3371 LOCAL OSC.:MC74HC4060
    [Show full text]
  • Quick Start Pl-990
    TECSUN PL-990 QUICK START FM-stereo / Longwave / Medium Wave / Shortwave-SSB Audio Player TIME Clock time User Manual Page 7 ANT. GAIN DX / Local Gain Selection User Manual Page 17 AUDIO PLAYBACK CONTROLS User Manual Page 20 SNOOZE DISPLAY (top side) User Manual Pages 19, 21, 24 and 25 ● Time setting (24-hour clock) DX: For distant or weak stations. This device supports 16bit / 44.1kHz audio files in FLAC / WAV / APE / ● Snooze: When the power on alarm time is reached (TIMER A / TIMER B), quick press the button to 1. Press and hold [ TIME ] until the clock flashes. NORM: Standard WMA and MP3 formats. temporarily turn off the device; it will turn on again after 5 minutes. 2. Use the numeric keys to enter the time (4 digits). LOCAL: For near or strong stations. [ ] Play/Pause: Quick press ● Display: While listening to radio, quick press to switch between Signal Strength/Signal-to-Noise Ratio, alarm time, ● With the device on, quick press to switch between clock and radio / audio player display. Repeat track: Press and hold clock time and memory location information. ● Display: While listening to the audio player, quick press to display the current album number and the total number of ANT. SWITCH Antenna Selection User Manual Page 8 [ ] Previous: Quick press twice Restart track: Quick press tracks within the album. Quick press again to display the total number of albums and audio tracks. INT.: Whip antenna TIMER A, TIMER B Auto Turn On (Alarm) User Manual Pages 22, 23 Rewind: Press and hold ● Keylock: Press and hold, causing the “ “ icon to appear on the display.
    [Show full text]